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Abstract
This thesis considers statistical test theory in portfolio theory. It analyses the asymptotic behavior of the considered tests 
in the high-dimensional setting, meaning k/n → c ∈ (0, ∞) as n → ∞, where k and n are portfolio size and sample size, 
respectively. It also considers the high-dimensional asymptotic of the product of components involved in the computation 
of the optimal portfolio. The thesis comprises four manuscripts:

Paper I is concerned with the test on the location of the tangency portfolio on the set of feasible portfolios. Considering 
the independent and normally multivariate asset returns, we propose a finite-sample test on the mean-variance efficiency 
of the tangency portfolio (TP). We derive the distribution of the proposed test statistic under both the null and alternative 
hypotheses, using which we assess the power of the test and construct a confidence interval. The out-of-sample performance 
of the portfolio determined by the proposed test is conducted and through an extensive simulation study, we show the 
robustness of the developed test towards the violation of the normality assumptions. We also apply the developed test to 
real data in the empirical study.

Paper II extends the results of paper I. It is concerned with the study of the asymptotic distributions of the test on the 
existence of efficient frontier (EF) and the efficiency of the tangency portfolio in the mean-variance space in the high-
dimension setting under both the null and alternative hypotheses. Finite-sample performance and robustness of the proposed 
tests are studied through an extensive simulation study.

In paper III, we study the distributional properties of the TP weights under the assumption of normally distributed 
logarithmic returns. The distribution of the weights of the TP is given under the form of a stochastic representation (SR). 
Using the derived SR we deliver the asymptotic distribution of the TP weights under a high-dimensional asymptotic regime. 
Besides, we consider tests about the elements of the TP weights and derive the asymptotic distribution of the test statistic 
under the null and alternative hypotheses. In a simulation study, we compare the power function of the high-dimensional 
asymptotic and the exact tests. Moreover, in an empirical study, we apply the developed theory in analysing the TP weights 
in a portfolio made of stocks from the S&P 500 index.

In paper IV, we derive a stochastic representation of the product of a singular Wishart matrix and a singular Gaussian 
vector. We then use the derived SR in the obtention of the characteristic function of that product and in proving the 
asymptotic normality under the double asymptotic regime. The performance of the obtained asymptotic is shown in the 
simulation study.
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1. Introduction

The choice of investment allocation is of great importance for both indi-

viduals, e.g., retirement savings, as well as for banks and other institutional

investors. The way this choice is done depends on the investor’s view on

risk about the return. A prominent theory in dealing with that problem is

the mean-variance analysis introduced by Markowitz (1952) and later ex-

tended by Tobin (1958). It plays an important role in finance and invest-

ment for both practitioners and researchers in that area (Merton (1972)). It

has been observed that, in practice, mean-variance efficient portfolios are

of paramount importance in portfolio management applications, whereas

research-wise, it may be used in a larger number of asset pricing theories as

well as in empirical tests that involve those theories (Britten-Jones (1999)).

It is also known as the first area of finance in which multivariate distribution

concepts have been applied (Jajuga (2008)). Unfortunately, its implementa-

tion faces several challenges.

In recent years, estimating the covariance matrix by the sample covari-

ance matrix becomes a serious problem if the sample size n is compara-

ble with the number of assets k in a portfolio (see, e.g, Bodnar et al. (2019);

Glombek (2014)). Despite substantial advancements in sophisticated math-

ematical and statistical methods dealing with portfolios managements, still,

a lot has to be done. The 2008 financial crisis reminds us that novel and effi-

cient mathematical and statistical models and methods in that area need to

be developed.

Indeed, the mean-variance optimization techniques serve as a quanti-

tative tool that considers the trade-off between the risk of the portfolio and

its expected return. It also helps the investors in the construction of an opti-

mal portfolio by minimizing the risk for a given level of the expected return

or by maximizing the portfolio return for a given level of the portfolio risk

(Li et al. (2015)). If there is a possibility of investing in risk-free assets, the
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tangency portfolio (TP) is constructed and is composed of both risk-free as-

sets and risky assets. There has been significant interest in understanding

the statistical properties of the TP. Also, the TP has a far-reaching role in fi-

nancial literacy and is usually used as a market portfolio in the capital asset

pricing model. Having a thorough understanding of the properties of the

TP becomes crucial for any financial actors. However, numerous challenges

are encountered in the estimation of TP and in studying its statistical prop-

erties(Bodnar et al. (2019); Glombek (2014)).

The specific goal of this thesis is to study the statistical properties of

TP by developing new statistical models. In particular, it suggests an exact

test for the location of the TP on the set of feasible portfolios and provides

the distribution of the test statistic under both hypotheses. It delivers the

high-dimensional asymptotic distributions of the test statistics for testing

both the existence of the efficient frontier and the efficiency of the TP. It also

delivers the high-dimensional asymptotic distribution of the estimated TP

weights as well as the asymptotic distribution of the statistical test about the

elements of the TP. Lastly, it gives the distribution properties of the compo-

nents involved in the construction of optimal portfolios(mean vector and

covariance matrix) together with its asymptotic distribution under the dou-

ble asymptotic regime.

In the following chapters of this thesis, we give a brief introduction of

portfolio management theory. We also focus on multivariate methods used

in it. The main emphasis goes on definitions of a multivariate normal distri-

bution, a matrix-variate normal distribution, and a Wishart distribution and

provides some of their respective properties, followed by an introduction to

high-dimensional asymptotics. At the end, we provide an overview/summary

of the papers included in this thesis.
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2. Portfolio Management Theory

In this chapter, we define and give the basics of portfolio theory. We start

with the Markowitz selection problem and all its possible solutions. We put

much emphasis on the construction of optimal portfolios under parameter

uncertainty.

2.1 Portfolio selection problem and its solution

Investment strategies and its corresponding statistical challenges have be-

come an eminent research area in finance since its inception by Markowitz

(1952). Let us consider an investor that wants to invest in k assets. For

now, we exclude the possibility to invest into the risk-free asset. Let x =
(x1, . . . , xk )′ be the returns on k assets. We also assume that the vector of

asset returns x has a k-dimensional distribution with mean vector µ ∈ Rk

and positive definite covariance matrix Σ ∈Rk×k .

Definition 2.1.1. A portfolio P is a linear combination of the k assets. The

symbol w = (w1, . . . , wk )′ ∈Rk denotes a vector of weights (allocation vector)

of that linear combination and it fulfils the budget constraint w′1 = 1, where

1 = (1, . . . ,1)′ ∈Rk .

Allowing short-selling means that the vector of weights w may contain

negative components.

Definition 2.1.2. For a given portfolio P , its expected return and variance

are respectively given by

R = E
(
w′x

)= w′µ,

V = V
(
w′x

)= w′Σw.

A well-known strategy for an investor to optimally allocate his/her in-

vestment is to maximize the portfolio return given the level of portfolio risk
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or to minimize the portfolio risk given the level of portfolio return (Li et al.

(2015)). The latter expression is formulated as an optimization problem by

minw′Σw subject to w′µ=µP ,w′1 = 1, (2.1.1)

where µP is the given level of portfolio return.

Alternatively, Ingersoll (1987) showed that the mean-variance analysis

is fully consistent with the expected utility maximization under special cir-

cumstances. The corresponding optimization problem is given by

maxw′µ− α

2
w′Σw subject to w′1 = 1, (2.1.2)

where α stands for the risk aversion.

The solutions to optimization problems (2.1.1) and (2.1.2) are optimal

portfolios, which is called efficient frontier. Merton (1972) showed that the

efficient frontier is the upper limb of a parabola in the mean-variance space.

A limit of the optimal solutions of the maximization problem (2.1.2) when

the risk aversionα tends to infinity gives a global minimum variance portfo-

lio (GMVP). The GMVP is the smallest portfolio with the smallest variance,

characterized by its weights, expected return and variance expressed as

wGMV = Σ−11

1′Σ−11
,RGMV = µ′Σ−11

1′Σ−11
and VGMV = 1

1′Σ−11
. (2.1.3)

Based on the characteristics of the GMVP, Bodnar and Schmid (2008)

proposed a new parameterization of the efficient frontier,

(R −RGMV )2 = s(V −VGMV ) where s =µ′Rµwith R =Σ−1 − Σ11′Σ−1

1′Σ−11
.(2.1.4)

Here s is the slope of the efficient frontier.

If there is a possibility to invest into the risk-free asset, the choice of al-

locating a part of the wealth in it will reduce the portfolio risk. In that case,

a new quadratic utility function needs to be maximized to obtain optimal

portfolio compositions, that is

maxr f +w′(µ− r f 1)− α

2
w′Σw (2.1.5)

An alternative investment strategy in this case for an investor is to maximize

the performance of his investment, which is the Sharpe ratio, measured by

relating the portfolio expected return to its risk.
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Definition 2.1.3. The Sharpe ratio is defined as,

SR(w) = w′µ− r f 1p
w′Σw

. (2.1.6)

The optimization problem based on the Sharpe ratio is given by

maxSR(w) with respect to w. (2.1.7)

The solutions to optimization problems (2.1.5) and (2.1.7) are the optimal

portfolios in case the investment into the risk-free asset is available. The

portfolio that uniquely minimizes the problems (2.1.5) and (2.1.7) is called

tangency portfolio (TP)and characterized by its weights expressed as

wT P = Σ−1(µ− r f 1)

1′Σ−1(µ− r f 1)
(2.1.8)

provided that 1′Σ−1(µ−r f 1) 6= 0 (Glombek (2012)). The expected return and

variance of the TP are

RT = r f +
(µ− r f 1)′Σ−1(µ− r f 1)

1′Σ−1(µ− r f 1)
and VT = (µ− r f 1)′Σ−1(µ− r f 1)

(1′Σ−1(µ− r f 1))2 . (2.1.9)

Again, the equation of the efficient frontier in case with a risk-free asset is

given by

(R − r f )2 = (µ− r f 1)′Σ−1(µ− r f 1)V. (2.1.10)

2.2 Portfolio selection under parameter uncertainty

Practical implementation of the above solutions requires the knowledge of

the parametersµ andΣ. Unfortunately, these parameters are not known and

need to be estimated. This problem is known in portfolio selection theory

as parameter uncertainty (see, e.g., Kan and Zhou (2007)). For any investor,

it is unavoidable to determine his investment policy without estimating the

parametersµ andΣ. Using the random sample of asset returns x1, . . . ,xn , we

estimate the parameters µ and Σ by their empirical counterparts. We have

µ̂= 1

n

n∑
i=1

xi
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and

Σ̂= 1

n −1

n∑
i=1

(xi − µ̂)(xi − µ̂)′.

If xi , i = 1, . . . ,n are independent and identically distributed with xi ∼Nk (µ,Σ),

we know from Muirhead (1982) Theorem 3.1.2 that µ̂∼Nk (µ,Σ), (n −1)Σ̂∼
Wk (n −1,Σ). Moreover, µ̂ and Σ̂ are independent. The estimated portfolio

weights and the equation of the sample efficient frontier are obtained by re-

placing the parametersµ and Σ by their respective sample estimators µ̂ and

Σ̂. Hence in case without a possibility to invest into the risk-free asset, the

sample efficient frontier becomes

(R − R̂GMV )2 = ŝ(V − V̂GMV ) with ŝ = µ̂′R̂µ̂,

where

R̂GMV = µ̂′Σ̂−11

1′Σ̂−11
and V̂GMV = 1

1′Σ̂−11
are the estimators of the expected return and variance of the global mini-

mum variance portfolio respectively, with estimated weights

ŵGMV = Σ̂−11

1′Σ̂−11
.

The properties of the characteristics of the sample efficient frontier are

detailed in Bodnar and Schmid (2008, 2009); Kan and Zhou (2008). While the

properties of the portfolio with a smallest risk among the efficient portfolios

are highlighted in Bodnar et al. (2017a,b); Frahm (2010); Glombek (2014);

Okhrin and Schmid (2006).

Similarly, if there is a possibility to invest into the risk-free asset, the es-

timators of the optimal portfolio weights, the expected return and the vari-

ance of the TP are obtained by replacing the parameters µ and Σ with their

corresponding sample mean vector and sample covariance matrix µ̂ and Σ̂,

respectively. The sample efficient frontier becomes

(R − r f )2 = (µ̂− r f 1)′Σ̂−1(µ̂− r f 1)V , (2.2.1)

with the optimal allocation vector given by

ŵT P = Σ̂−1(µ̂− r f 1)

1′Σ̂−1(µ̂− r f 1)
. (2.2.2)
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The properties and distribution properties of the estimated weights, sam-

ple expected return and sample variance of the TP are detailed in Bauder

et al. (2018); Bodnar et al. (2019); Bodnar and Zabolotskyy (2017); Britten-

Jones (1999); Lo (2002); Okhrin and Schmid (2006); Schmid and Zabolotskyy

(2008) and Javed et al. (2020).
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3. Multivariate distribution

In this chapter, we review important distributions that are very useful in easy

reading of the rest of this thesis.

3.1 Univariate normal distribution and related univari-

ate distributions

This subsection reviews relevant univariate distributions later used in the

construction of the stochastic representation.

Definition 3.1.1 (Normal distribution). A random variable x with the prob-

ability density function

(2πσ2)−1/2 exp{− 1

2σ2 (x −µ)2}, x ∈Rwhere µ ∈R,σ> 0 (3.1.1)

is said to have a normal distribution with mean µ and variance σ2. It is de-

noted by x ∼ N (µ,σ2). When µ = 0 and σ = 1, it is said to have the stan-

dard normal distribution and is denoted by z ∼N (0,1). A univariate normal

random variable can also be characterised by its stochastic representation,

given by

x
d=µ+σz,µ ∈R,σ> 0.

The symbol
d= stands for the equality in distribution.

Definition 3.1.2 (chi-square distribution). The central chi-square distribu-

tion with n degrees of freedom is defined as the sum of n squared indepen-

dent standard normal distributions, that is

ξ
d=

n∑
i=1

z2
i = z′z ∼χ2(n), where z = (z1, . . . , zn)′ with zi ∼N (0,1). (3.1.2)

9



Alternatively, if x1, . . . , xn are indepedent and normally distributed with

xi ∼N (µi ,σ2
i ), then

ξ
d=

n∑
i=1

(
xi −µi

σi

)2

∼χ2(n).

Note that E(ξ) = n and V(ξ) = 2n.

If xi =µi + zi , where µi 6= 0, then

ξ
d=

n∑
i=1

x2
i =

n∑
i=1

(µi + zi )2 ∼χ2(n,λ). (3.1.3)

This is called the non-central chi-square distribution with n degrees of

freedom and non-centrality parameter λ = ∑n
i=1µ

2
i , its mean and variance

are given by n +λ and 2n +4λ, respectively.

Definition 3.1.3 (t-distribution). The central t-distribution with n degrees

of freedom is defined as the ratio of independent standard normal distri-

bution as a numerator and the square root of a central chi-square random

variable divided by its degrees of freedom,

t
d= z√

ξ/n
(3.1.4)

where z ∼N (0,1),ξ∼χ2(n) and z and ξ are independent.

On the other side, one can define a non-central t-distribution in the

following way

t
d= z +µ√

ξ/n
, (3.1.5)

where z ∼N (0,1),ξ∼χ2(n) and z and ξ are independent.

Definition 3.1.4 (F -distribution). The central F -distribution with k and n

degrees of freedom is defined as the ratio of two independent central chi-

square random variables divided by their respective degrees of freedom,

η
d= ξ1/k

ξ2/n
(3.1.6)

where ξ1 ∼χ2(k), ξ2 ∼χ2(n) and ξ1 and ξ2 are independent.
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In similar way, one can define the non-central F -distribution as the ra-

tio of two independent chi-square random variables, each divided by its de-

grees of freedom, where the numerator has a non-central chi-square distri-

bution and the denominator has a central chi-square distribution,

η
d= ξ1/k

ξ2/n
(3.1.7)

where ξ1 ∼χ2(k,λ), ξ2 ∼χ2(n) and ξ1 and ξ2 are independent.

3.2 Multivariate normal distribution

Definition 3.2.1. A random vector x ∈Rp is multivariate normally distributed

with mean vector µ ∈Rp and covariance matrix Σ> 0,Σ ∈Rp×p if its density

is given by

(2π)−p/2|Σ|−1/2etr {−1

2
Σ−1(x−µ)(x−µ)′}, (3.2.1)

where etr (·) = exp(tr (·)); |·| and tr denote the determinant and the trace of a

square matrix, respectively. The multivariate normal distribution is usually

denoted by x ∼Np (µ,Σ). Its stochastic representation is given by

x
d=µ+Σ1/2z,

where z ∼Np (0,I) is a standard multivariate normally distributed vector, i.e.

with zero mean vector and identity covariance matrix.

Remark 3.2.2. A random vector x is said to have a singular normal vector if

its covariance matrix Σ is singular.

Definition 3.2.3. A random matrix X ∈ Rp×n is matrix normally distributed

with mean matrix M ∈ Rp×n and covariance matrices Σ > 0,Σ ∈ Rp×p and

Ψ> 0,Ψ ∈Rn×n if its density is

(2π)−np/2|Σ|−n/2|Ψ|−p/2etr {−1

2
Σ−1(X−M)Ψ−1(X−M)′}. (3.2.2)

It is denoted by X ∼Np,n(M,Σ⊗Ψ).

The following theorem gives some important properties of normal dis-

tributions (details and proofs of these results can be found, for example, in

Gupta and Nagar (2000); Mathai and Provost (1992); Muirhead (1982)).
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Theorem 3.2.4. Let

x =
(

x1

x2

)
∼Np (µ,Σ),µ=

(
µ1

µ2

)
and Σ=

(
Σ11 Σ12

Σ21 Σ22

)
,

where x ∈Rp , x1,µ1 ∈Rr ,Σ11 ∈Rr×r , x2,µ2 ∈Rp−r and Σ22 ∈R(p−r )×(p−r ).

a) If A ∈ Rq×p , and b ∈ Rq , then Ax+b ∼Nq (Aµ+b,AΣA′). In particular, if

a ∈Rp and b ∈R, then a′x+b ∼N (a′µ+b,a′Σa).

b) x1 ∼Nr (µ1,Σ11) and x2 ∼Np−r (µ2,Σ22);

c) x1|x2 ∼Nr (µ1 +Σ12Σ
−1
22 (x2 −µ2),Σ11 −Σ12Σ

−1
22Σ21). The matrix Σ12Σ

−1
22 is

called the matrix of regression coefficient. If Σ12 = 0, then the subvectors

x1 and x2 are independent;

d) Let Σ = T′T be the Cholesky decomposition of Σ, where T is the upper tri-

angular matrix.Then z = (T′)−1(x−µ) ∼Np (0,I), and (x−µ)′Σ−1(x−µ) =
z′z ∼χ2

p ;

e) If A = A′, and Σ > 0, then x′Ax ∼ χ2
r (δ2),δ2 = µ′Aµ if and only if AΣA = A

and tr (AΣ) = r . If µ= 0 it implies that δ2 = 0;

f ) Let L1 = x′Ax+a′
1x+b1 such that A = A′ and L2 = a′

2x+b2. Then the nec-

essary and sufficient conditions of L1 and L2 to be independent are the

following: (i) ΣAΣa2 = 0 and (ii) (a1 +2Aµ)′Σa2 = 0;

g) Let x1, . . . ,xn ∼Np (µ,Σ) be independent. Then x ∼Np (µ, 1
nΣ);

h) If X ∼ Np,n(M,Σ⊗Ψ), for any A ∈ Rq×p ,B ∈ Rn×m and C ∈ Rq×m , then

AXB+C ∼Nq,m(AMB+C,AΣA′⊗B′ΨB);

i) Let X =
(

X1 X2

)
∼Np,n(M,Σ⊗Ψ), M =

(
M1 M2

)
, Σ=

(
Σ11 Σ12

Σ21 Σ22

)

andΨ=
(
Ψ11 Ψ12

Ψ21 Ψ22

)
with X1,M1 ∈Rp×m , andΨ11 ∈Rm×m , then

X1|X2 ∼Np,m(M1 + (X2 −M2)Ψ−1
22Ψ21,Σ⊗Ψ1.22)

whereΨ1.22 =Ψ11 −Ψ12Ψ
−1
22Ψ21;
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j) Let S = XAX′ and V = XL,A ∈ Rn×n ,L ∈ Rn×q , and X ∼Np,n(M,Σ⊗ I). The

necessary and sufficient condition for S and V to be stochastically inde-

pendent is that AL = 0. Moreover, if X ∼Np,n(M,Σ⊗Ψ), then S and V are

stochastically independent if and only if AΨL = 0.

3.3 Wishart distributions

The Wishart distribution, which is the subject of study in this section was

first derived in Wishart (1928) and belongs to the family of matrix distribu-

tions. It is regarded as a multivariate analog of a chi-square distribution in

the univariate case. It has been applied in various fields of applied and theo-

retical statistics, for instance, the inference procedures based on the sample

covariance matrix of Gaussian observations.

However, it may be needed to work with the number of observations less

than the dimension or the inverse sample covariance matrix. This leads to

two other useful versions of Wishart distributions, namely, singular Wishart

and inverse Wishart distributions.

3.3.1. Wishart distribution. In the following, we define the Wishart distri-

bution as in Gupta and Nagar (2000); Kollo and von Rosen (2006); Muirhead

(1982).

Definition 3.3.1. Let X ∼Np,n(M,Σ⊗I) be p×n matrix andΣ> 0. The matrix

S of size p ×p is said to be Wishart distributed if and only if S = XX′.
If M = 0 we have a central Wishart distribution denoted by S ∼Wp (n,Σ), oth-

erwise, we have a non central Wishart distribution denoted by S ∼Wp (n,Σ,Ω)

whereΩ=Σ−1MM′.

For a central Wishart distributed matrix with n ≥ p, the density function

is given by

|S|(n−p−1)/2

2pn/2Γp (n/2)|Σ|n/2
etr {−1

2
Σ−1S} (3.3.1)

where Γp (·) denotes the multivariate gamma function. In the following the-

orem, we summarize the basic properties of a Wishart distribution.

13



Theorem 3.3.2. Muirhead (1982, Theorems 3.2.10 & 3.2.11). Let X ∼Np,n(M,Σ⊗
I) and S ∼Wp (n,Σ) and considering the following partition of S and Σ:

S =
(

S11 S12

S21 S22

)
,Σ=

(
Σ11 Σ12

Σ21 Σ22

)
(3.3.2)

and put

S11.2 = S11 −S12S−1
22 S21,Σ11.2 =Σ11 −Σ12Σ

−1
22Σ21 (3.3.3)

with dim(S11) = dim(Σ11) = r × r,r < p ≤ n

a) If A : n × n symmetric and idempotent, so that MA = 0. Then XAX′ ∼
Wp (r ank(A),Σ);

b) Suppose the partition in (3.3.2), then

• S11.2 ∼Wr (n − r +k,Σ11.2) and is independent of S12 and S22;

• S12|S22 ∼N (Σ12Σ
−1
22 S22,Σ11.2 ⊗S22);

• S22 ∼Wp−r (n,Σ22);

c) Suppose A ∈Rp×p , then ASA′ ∼Wp (n,AΣA′);

d) Suppose A ∈Rk×p of rank k, then (AS−1A′)−1 ∼Wk (n −p +k, (AΣ−1A′)−1).

3.3.2. Singular Wishart distribution. In many applications, the dimension

may exceed the number of observations. We make use of singular Wishart

distribution to deal with complications raised in that case. Its definition and

basic properties are delivered below.

Definition 3.3.3. Let X = (x1, . . . ,xn) be independent identically normally

distributed, with xi ∼ Np (0,Σ) and Σ > 0. Let p > n. Then the matrix of

size p ×p, S = XX′ is said to have a singular Wishart distribution.

Theorem 3.3.4 summarizes the properties of the singular Wishart distri-

bution.

Theorem 3.3.4. Bodnar and Okhrin (2008, Lemma 1,Theorem 1). Let S ∼
Wp (n,Σ) and consider the following partition of S and Σ:

S =
(

S11 S12

S21 S22

)
,Σ=

(
Σ11 Σ12

Σ21 Σ22

)
(3.3.4)
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with dim(S11) = dim(Σ11) = r × r,r < n < p. Then it holds that

a) S11 ∼Wr (n,Σ11);

b) S21|S11 ∼N (Σ21Σ
−1
11 S11,Σ22.1 ⊗S11), with Σ22.1 =Σ22 −Σ21Σ

−1
11Σ12;

c) the density of S21S−1
11 is given by

fS21S−1
11

(X) = |Σ11| n−r
2 Γr ( n+p−r

2 )

|Σ22.1| r
2π

(p−r )r
2 Γr ( n

2 )

×
∣∣∣I+Σ11

(
X−Σ21Σ

−1
11

)′
Σ−1

22.1

(
X−Σ21Σ

−1
11

)∣∣∣− 1
2 (n+p−r )

3.3.3. Inverse Wishart distribution. Even though Wishart distribution has

numerous applications in statistics, it is not directly applicable in the port-

folio theory, which is the subject of this thesis. Rather we use the inverse

Wishart distribution denoted by W−1(n,Σ). We define the inverse Wishart

distribution as in Gupta and Nagar (2000).

Definition 3.3.5. A p×p random matrix S is said to have an inverse Wishart

with n degrees of freedom and p × p parameter matrix Σ, if its density is

given by

2− 1
2 (n−p−1)|Σ| (n−p−1)

2

Γp [ 1
2 (n −p −1)]|S| 1

2 n
exp{−1

2
S−1Σ},S > 0,Σ> 0,n > 2p. (3.3.5)

The property of the inverse Wishart are summarized below

Theorem 3.3.6. Bodnar and Okhrin (2008, Theorem 3). Suppose S ∼W−1(n,Σ)

and consider the partition as in (3.3.2), with dim(S11) = dim(Σ11) = r × r,r <
p < n. Then

a) S11.2 ∼W−1
r (n −p + r,Σ11.2) and is independent of S22;

b) S12|S22,S11.2 ∼ N (Σ12Σ
−1
22 S22,S11.2 ⊗ S22Σ

−1
22 S22), with S11.2 defined as in

(3.3.3);

c) S22 ∼W−1
p−r (n −2r,Σ22);
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d) S12S−1
22 is independent of S22, with the density given by

fS12S−1
22

(X) = |Σ11.2|−
p−r

2 |Σ22| r
2Γr ( n−r−1

2 )

π
(p−r )r

2 Γr ( n−p−1
2 )

×
∣∣∣I+Σ−1

11.2

(
X−Σ12Σ

−1
22

)
Σ22

(
X−Σ12Σ

−1
22

)′∣∣∣− 1
2 (n−p−1)

e) S22 is independent of S12S−1
22 and S11.2;

f ) S11.2|(S12S−1
22 = X) ∼W−1

r

(
n,Σ11.2 +

(
X−Σ12Σ

−1
22

)
Σ22

(
X−Σ12Σ

−1
22

)′)

3.4 High-dimensional asymptotics

Nowadays, we live in a world where data storage and computing resources

allow the production, processing, and storage of an exponentially growing

volume of data. Data has become omnipresent in almost every part of hu-

man activities, namely, science, medicine, business, and finance to name

just a few. Most of the modern data are characterized by the fact that they

record several features on each object or individual. Technically, we say that

the dimension p is comparable to the sample size n. Such data are said to

be high-dimensional (Giraud (2014)).

This type of data renders most of the usual statistical methods obsolete.

For example, under the normality assumption of the asset returns, the in-

verse of their sample covariance matrix is a biased estimator of the preci-

sion matrix. The bias tends to zero only when the portfolio dimension is

considerably smaller than the sample size. When the portfolio dimension is

comparable to the sample size, an improved estimator of the precision ma-

trix is needed. Due to the presence of the precision matrix in the formulas

of optimal portfolio weights and their characteristics, the problem becomes

very important in portfolio theory.

For a fixed dimension p and a growing sample size n, the standard asymp-

totics holds (Yang and Le Cam (2000)). On the other hand, if the dimension

p is comparable or larger than the sample size n, the following scenarios

may be considered

• p,n are both large;
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• p/n → c > 0, p →∞ and n →∞;

• (p,n) → (∞,∞) this means

– first p →∞ then n →∞;

– first n →∞ then p →∞;

– p →∞ and n →∞ simultaneously.

Here we are dealing with high-dimensional asymptotics or Kolmogorov asymp-

totics (Bühlmann and Van De Geer (2011)). In this situation, the classical

limit theorems are no longer suitable.
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4. Summary

The understanding of the behaviour of the TP and the components involved

in its computation in both traditional and high-dimensional asymptotics is

of great importance for financial actors. Because of its considerable interest,

a number of works in connection to it have been produced (e.g., Bauder et al.

(2018); Bodnar (2009); Bodnar et al. (2019); Javed et al. (2020)). Most of them

focus on the properties and distributional properties of the TP weights.

In paper I, we focus on the determination of the existence of the TP.

Specifying the location of the TP on the set of feasible portfolios is a chal-

lenging task due to parameter uncertainty. By assuming that the returns

are independent and multivariate normally distributed, we propose a finite

sample test on the mean-variance efficiency of the TP, and we derive the dis-

tribution of the proposed test statistic under both the null and alternative

hypotheses. Particularly, we use the derived distribution of the test statistic

in assessing the power of the test and in the construction of a confidence

set. Moreover, We conduct the out-of-sample performance. We noticed that

the performance of the proposed test is better compared to the naive way of

keeping the optimal portfolio at hand. We also show through an extensive

simulation study that our test is robust towards the violation of the normal-

ity assumption and can be used for heavy-tailed stochastic models. At the

end, the derived results are illustrated using actual stock returns. We notice

the following, when the sample size is relatively large and a stable period is

observed on the market, then the mean-variance efficiency of the TP can be

justified. We also note that using the developed test statistic, we can draw

the decision about the inefficiency of the TP at the end of 2008, which sig-

nals the financial crisis period. During this period we are not able to accept

the efficiency of the TP.

Paper II extends the results of paper I. Firstly, we propose a test on the

existence of the efficient frontier based on the slope parameter. Basing on
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the derivation in Bodnar and Schmid (2008) we deliver the test statistic and

provide its distributions under both the null and alternative hypotheses.

Moreover, we derive the distribution of the proposed test in the high-dimensional

setting and studied the behavior of its power function compared to the em-

pirical one. We found that the high-dimensional expression of the power

provides a reliable approximation of the true power function. Secondly, due

to the failure in providing good results when the portfolio size k and sample

size n is comparable, i.e, k/n → c ∈ (0,∞) as n →∞, we extend the results

in Muhinyuza et al. (2017) by deriving a distribution of the test on the loca-

tion of the TP on the efficient frontier in high-dimensions. We also deliver

the power function of that test in a high-dimensional setting. A good perfor-

mance of asymptotic power is noticed. Furthermore, through a simulation

study, we analyze the performance of the two tests. We found that both tests

are robust to the violation of the normality assumption. We also observe

that when the slope of the efficient frontier s is small and the Sharpe ratio

of the GMVP SGMV is large, then the test based on the slope of the efficient

frontier Tλ performs better. On the other hand, if the slope of the efficient

frontier s is large and Sharpe ratio of the GMVP SGMV is small, then the test

on the location of the TP on the efficient frontier T is preferable.

In PaperIII, we assume the existence of the TP and study the distribu-

tional properties of the TP weights assuming a normal distribution of the

logarithmic returns. We derive a stochastic representation (SR) of the TP

that fully describes its distribution. Using the SR, we provide the asymp-

totic distribution of the TP weights under the high-dimensional asymptotic

regime. Furthermore, we consider a test about the elements of the TP weights

and derive the asymptotic distribution of the test statistic under the null and

alternative hypotheses. The comparison study between the asymptotic dis-

tribution of the TP weights and exact finite sample density is conducted and

we observe that the asymptotic distribution serves as a good approxima-

tion of the exact finite sample distribution. Comparing the power function

of the asymptotic test to the power obtained for the exact test we find that

both powers are indistinguishable. In an empirical study, we analyse the TP

weights in portfolios containing stocks from the S& P 500 index by studying

the dynamic behaviour of the p-values obtained from the exact and asymp-
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totic tests. We first note that the p-values obtained from both tests are al-

most identical, which is a sign of a good performance of high-dimensional

asymptotic.

In the last paper, we study properties of components involved in the

computation of the TP, namely, the properties of the product of a singular

Wishart matrix and a singular Gaussian vector. We first derive the distribu-

tion of that product in the form of a stochastic representation (SR). The SR

provides a fast and efficient way of how the elements the product should be

simulated. We then use the derived SR in the obtention of the characteris-

tic function of that product, which is later used in proving the asymptotic

normality of that product under the double asymptotic regime. A good per-

formance of the obtained asymptotic distribution is documented in a sim-

ulation study even for the case where c > 1.
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5. Sammanfattning

Att förstå beteendet av den tangerande portföljen (TP) och dess komponen-

ter i beräknandet av den traditionella och högdimensionella asymptotiken

är oerhört viktigt för finansiella aktörer. Då det är av så pass stort intresse har

mycket forskning bedrivits på den(e.g., Bauder et al. (2018); Bodnar (2009);

Bodnar et al. (2019); Javed et al. (2020)). De flesta fokuserar på beteendet

och fördelningens beteende av TP portfäljens vikter.

I första manuskriptet fokuserar vi på att bestämma om TP existerar eller

inte. Att specificera vart denna ligger på mängden av möjliga portföljer är

svårt på grund av parameter osäkerheten från våra skattningar. Genom att

anta att våra tillgångslag är oberoende och likafördelade multivariata nor-

malt fördelade föreslår vi ett statistiskt test baserat på ändlig mångd infor-

mation. Testet ämnar att testa om TP portföljen är effektiv, i markovitz anda.

Vi härleder statistikans fördelning under både null och alternativ hypote-

sen. Genom detta kan vi också uppskatta testets styrka och konstruera kon-

fidensintervall. Utöver detta undersöker vi dess prestanda på ny data, så-

dant som parametrarna inte känner till. Där ser vi att testet är bättre än att

naivt äga denna specifika optimala portfölj. Vi visar också genom en om-

fattande simuleringsstudie att testet är robust mot brott mot fördelningsan-

tagandet och kan användas för processer med tunga svansar. För att kom-

pletera simuleringsstudien applicerar vi testet på riktig akitedata. Vi ser då

att när stickprovsstorleken är relativt stort och marknaden har befunnit sig i

en stabil period så kan TP bedömas vara effektiv. Vi ser också att med hjälp

av detta test kan vi dra slutsatsen att TP inte är effektiv i slutet av 2008, då fi-

nanskrisen uppdagades. Under den följande perioden kan inte TP bedömas

vara effektiv alls.

Det andra manuskriptet utökar det första. Först föreslår vi ett test baserat

på lutningen av den effektiva fronten. Från teorin presenterad i Bodnar and

Schmid (2008) levererar vi en test staitistka och dess fördelning under både
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null och alternativhypotesen. Vi härleder också testets högdimensionella

fördelning och studerar dess styrka i jämförelse med den empiriska. Vi fann

att den högdimensionella styrke funktionen approximerar den sanna styrke

funktionen bäst. Då vi inte lyckas med att ge ett bra resultat där portföljstor-

leken k och stickprovsstorleken är jämförbara i storlek, dvs. k/n → c ∈ (0,∞)

då n → ∞, utökar vi resultaten frran Muhinyuza et al. (2017) genom att

härleda en fördelning för testet för TP plats i högre dimensioner. Vi härleder

också dess styrke funktion i högre dimensioner. Denna visar sig ha god

asymptotisk styrka. Genom en simuleringsstudie kan vi analysera de två

olika testen. de två olika testen är robusta mot brott av fördelningsanta-

gandet. Vi ser också att då lutningen av den effektiva fronten s är liten och

Sharpe ration SGMV är stor, så är testet baserat på lutningen bäst. Om det

omvånda gäller så är platsen för TP bättre.

I det tredje manuskriptet antar vi att TP existerar och att våra tillgångslag

följer en logaritmisk normal fördelning. Vi härleder den stokastiska repre-

sentationen för TP som beskriver hela dess fördelning. Med hjälp av den

stokastiska representationen härleder vi vikterna för TP i den högdimen-

sionella asymptotiska ramverket. Vi tar fram ett test om vikterna i portföljen

och härleder dess fördelning under både null och alternativhypotesen i höga

dimensioner. Därefter jämför vi TP fördelningen med dess asymptotiska

fördelning. Vi ser att den asymptotiska fördelningen är en bra approxima-

tion av den exakta fördelningen. I en jämförelse mellan styrke funktionerna

för testets asymptotiska fördelning och den som är baserad på dess exakta

fördelning finner vi att de går ej att se någon skillnad mellan dem. I en em-

pirisk studie analyserar vi vikterna i TP portföljen med aktier från S&P500

index:et. Här studerar vi det dynamiska beteendet av p-värden från den ex-

akta och asymptotiska testen. Första noterar vi att dessa p-värden är närpå

identiska, vilket talar för testen i högre dimensioner.

I sista manuskriptet studerar vi de olika komponenter som är involver-

ade i att konstruera TP vikterna, nämligen produkten mellan en singulär

Wishart- och en singulär multivariat fördelning. Först härleder vi dess stokastiska

representation. Denna ger oss ett sätt att snabbt simulera denna produkt. Vi

använder senare den stokastiska representationen för att härleda den karak-

teristiska funktionen för produkten vilken senare används för att härleda

24



den högdimensionella fördelningen. Vi ser god prestanda i den asympto-

tiska fördelningen genom en simuleringsstudie, även i fallet då c > 1.
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bDepartment of Mathematics, College of Science and Technology,University of Rwanda, P.O. Box 3900,

Kigali-Rwanda

Abstract

Due to the problem of parameter uncertainty, specifying the location of the

tangency portfolio(TP) on the set of feasible portfolios becomes a challenging task.

The set of feasible portfolios is a parabola in the mean-variance space with optimal

portfolios lying on its upper part. Using statistical test theory, we want to decide if

the tangency portfolio is mean-variance efficient, i.e. if it belongs to the upper limb

of the efficient frontier. In the opposite case, the investor would prefer to invest into

the risk-free asset or into the global minimum variance portfolio which lies in the

vertex of the set of feasible portfolios. Assuming that the portfolio asset returns are

independent and multivariate normally distributed, we suggest a test on the location

of the tangency portfolio on the set of feasible portfolios. The distribution of the

test statistic is derived under both hypotheses, which we use to assess the power of

the test and construct a confidence interval. Moreover, out-of-sample performance

of the test is evaluated based on real data. The robustness to the assumption of

normality is investigated via an extensive simulation study where we show that the

new test is robust to the violation of the normality assumption and can also be used

for heavy-tailed stochastic models. Moreover, in an empirical study we apply the

developed theory to real data. We find that when the sample size is relatively large

and a stable period is present on the market, then the mean-variance efficiency of

the tangency portfolio can be statistically justified.

Keywords: tangency portfolio, feasible portfolios, test theory, power function, out-of-

sample performance
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1 Introduction

The question of wealth allocation is relevant for both individuals, e.g. retirement savings,

as well as for banks and other institutional investors. How this should be done in practice,

however depend on a multitude of factors, not the least the investors view on risk in

relation to return. The most influential approach to deal with this problem is the mean-

variance analysis proposed by Markowitz (1952). Following Markowitz (1952), the optimal

portfolio weights are found by minimizing the risk, i.e. the variance, of the portfolio for

a given level of the expected return.

In the case without a risk-free asset, Merton (1972) showed that all optimal solutions

of Markowitz’s optimization problem lie on the upper limb of the parabola in the mean-

variance space. This parabola is known as the efficient frontier and given by

V =
a− 2bR + cR2

ac− b2
, (1)

where a = µ′Σ−1µ, b = 1′Σ−1µ, c = 1Σ−11; R = w′µ is the expected return of the

portfolio with the weights w; V = w′Σw is its variance; µ and Σ are the expected return

vector and the covariance matrix of the asset returns, respectively. The symbol 1 denotes

the vector of ones of an appropriate order. Unfortunately, the set of parameters {a, b, c},
known as the efficient set of constants, does not possess an appropriate financial meaning.

Rewriting (1) we obtain an alternative expression of the efficient frontier

(R−RGMV )2 = s(V − VGMV ) (2)

where

RGMV =
1′Σ−1µ

1′Σ−11
and VGMV =

1

1′Σ−11
(3)

are the expected return and the variance of the global minimum variance portfolio (GMVP),

that is, the portfolio with the smallest variance among the efficient portfolios (see, e.g.,

Frahm (2010); Glombek (2014); Bodnar et al. (2017a,b)). The parameter

s = µ′Rµ with R = Σ−1 − Σ−111′Σ−1

1′Σ−11
(4)

stands for the slope coefficient of the parabola in the mean-variance space. The properties

of the efficient frontier together with the statement about the distribution of the sample

efficient frontier were discussed in detail by Bodnar and Schmid (2008); Kan and Zhou

(2008); Bodnar and Schmid (2009).

If there is a possibility to invest into a risk-free asset, then the efficient frontier becomes

a tangent line in the mean-variance space which is drawn from the return of the risk-

free asset to the parabola (2). The tangent point is known as the tangency portfolio

2
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Figure 1: Location of the tangency portfolio on the set of feasible portfolios in the two
cases: Figure 1(a) RGMV ≥ rf and Figure1(b) RGMV < rf .

(TP), see e.g., Ingersoll (1987). This portfolio maximizes the Sharpe ratio (SR), SR =

(w′µ−rf )/(
√

w′Σw), and it has recently received a lot of attention in the literature. For

instance, its statistical properties under different assumptions imposed on the distribution

of the asset returns were discussed in Lo (2002), whereas Britten-Jones (1999) derived an

exact test on the TP weights and showed that it is not possible to reject the null hypothesis

that the weight of the US market is equal to one in an international portfolio. Further,

while Okhrin and Schmid (2006) showed that the estimated weights of this portfolio do

not possess the first moment, Schmid and Zabolotskyy (2008) proved that the unbiased

estimator of the TP weights does not exist at all. Recently, Bodnar and Zabolotskyy

(2017) investigated the risk properties of the TP and showed that this portfolio is a very

risky investment opportunity which should be carefully considered in practice.

The location of the TP portfolio on the set of feasible portfolio depends crucially on

the relation between the expected return of the GMVP and the return of the risk-free

asset (see Figure 1). The TP is mean-variance efficient, i.e. it belongs to the upper part of

the efficient frontier as in Figure 1(a) only if the expected return of the GMVP is greater

than the return on the risk-free asset return (see, e.g., Ingersoll (1987, chapter 4)). On

the other hand, this consideration may not be appropriate in many practical situations

where the expected return of the GMVP is inferior to the return of the risk-free asset.

In this case the tangent line drawn to the set of feasible portfolios from the return of

the risk-free rate has no joint point with the efficient frontier and, consequently, the TP

belongs to the set of the feasible portfolios which are located on the lower part of the

parabola as shown in Figure 1(b). The investor would then prefer to invest into the risk-
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free asset or in the GMVP which lies in the vertex of the efficient frontier. We contribute

to the existing literature on the TP by deriving an exact test on its location on the set

of feasible portfolios. The distribution of the suggested test statistic is obtained under

both hypotheses. Moreover, out-of-sample performance of the portfolio determined by

implementing the derived test is assessed.

The remainder of the paper is organised as follows. Section 2 contains a detailed

description of statistical test theory for the location of the tangency portfolio on the set of

feasible portfolios. We concentrate on the derivation of the test statistic, its distribution

under both hypotheses, the analysis of the power function, and the construction of a

confidence interval. In Section 3, out-of-sample performance is presented. In Section

4, the numerical procedure for investigating the robustness of normality assumption are

provided, while empirical results are discussed in Section 5. Final remarks are presented

in Section 6. All proofs are found in the appendix.

2 Finite-sample test on the location of the tangency

portfolio

The location of the tangency portfolio on the set of feasible portfolios depends on the

relation between the risk-free rate rf and the expected return on the GMVP(RGMV ) as

shown in Figure 1. If the investor wants to be sure in the investment into the TP, (s)he

has to check if RGMV > rf . This problem can be formulated as a statistical test with the

hypotheses given by

H0 : RGMV ≤ rf against H1 : RGMV > rf . (5)

The rejection of the null hypothesis means that the TP lies on the upper part of the

efficient frontier as shown in Figure 1(a). In contrast, if the null hypothesis in (5) cannot

be rejected, then the investor cannot be certain of the optimality of the TP and allocation

into the risk-free asset could be considered as a suitable alternative.

Let X1, . . . ,Xn denote an independent k-dimensional sample of the asset returns,

where E[Xt] = µ and cov[Xt] = Σ, for t = 1, . . . , n. The test statistic for testing (5) is

obtained following the derivation in Bodnar and Schmid (2009) and is given by

T =

√
n− k√
n− 1

R̂GMV − rf√
1 + n

n−1 ŝ

√
V̂GMV

n

, (6)

where R̂GMV , V̂GMV , and ŝ are the sample estimators for RGMV , VGMV , and s given by

R̂GMV =
1′Σ̂−1µ̂

1′Σ̂−11
and V̂GMV =

1

1′Σ̂−11
(7)
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and

ŝ = µ̂′R̂µ̂, R̂ = Σ̂−1 − Σ̂−111′Σ̂−1

1′Σ̂−11
(8)

where

µ̂ =
1

n

n∑
t=1

Xt and Σ̂ =
1

n− 1

n∑
t=1

(Xt − µ̂)(Xt − µ̂)′

are the sample mean vector and the sample covariance matrix, respectively. Further, the

distribution of T is given by

Proposition 1. Let X1, . . . ,Xn be independent random vectors of asset returns with

Xt ∼ Nk(µ,Σ) for t = 1, . . . , n. Assume that Σ is positive definite and n > k. Then the

density of T is given by

fT (x) =
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

ftn−k,δ(y)(x)fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy (9)

where

δ(y) =

√
n

1 + y(n/(n− 1))
SGMV and where SGMV =

RGMV − rf√
VGMV

is the Sharpe ratio of the GMVP. The slope parameter s is defined in (4).

The proof of Proposition 1 follows from Proposition 1 in Bodnar and Schmid (2009).

Hence, from Proposition 1 it is seen that the test statistic T may be represented as a

mixture of a non-central t distribution with n−k degrees of freedom and a non-centrality

parameter δ(y). Further, by using Proposition 1 it is possible to derive the critical value

for the test (5) at significance level α. The result of this is stated in Proposition 2, whose

proof is given in the appendix.

Proposition 2. Under the conditions of Proposition 1, it holds that

sup
VGMV >0,s≥0,RGMV ≤rf

GT,α,tn−k,1−α(SGMV , s) ≤ PH0:RGMV =rf (T > tn−k,1−α) = α,

where

GT,α,c(SGMV , s) = P(T > c) =

∫ ∞
c

fT (x)dx .

Thus, from Proposition 2 it is seen that the test of (5) rejects H0 in favour of H1 as

soon as T ≥ tn−k,1−α. Another important characteristic of a statistical test is its power

function. It turns out that the power function of the test (5) only depends on µ and Σ

5



in terms of SGMV and s and is given by

GT,α,tn−k,1−α(SGMV , s) = P(T > tn−k,1−α)

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
1− Ftn−k,δ(y)(tn−k,1−α)

)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy.
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Figure 2: Power function of test (5) for portfolio dimension k ∈ {5, 10, 15, 20} and sample
size n = 50

This is a nice property of the suggested test which allows us to visualize its power

function for fixed values of k and n as a function of s and SGMV only. In Figures 2

and 3, we present the power of the test (5) for k ∈ {5, 10, 15, 20}, n ∈ {50, 250}, and

s = {0.1, 0.3, 0.5}. The values of SGMV smaller than or equal to 0 corresponds to the null
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Figure 3: Power function of test (5) for portfolio dimension k ∈ {5, 10, 15, 20} and sample
size n = 100
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hypothesis. We observe that the power increases rapidly as SGMV becomes larger than

zero. It reaches one already for moderate values of SGMV . For example, it is close one for

SGMV around 0.2 when n = 250 corresponding to approximately one year of daily market

observations or five years of weekly data. Furthermore, we note that the power increases

if s decreases. This result is in line with the behaviour of the non-central F -distribution

whose distribution function is decreasing in the non-centrality parameter. This result also

has an interesting financial interpretation. If the slope parameter s is smaller, then the

optimal portfolio with the same Sharpe ratio and the excess expected return as one in the

case of larger s has a higher variance. Consequently, it deviates from the GMVP stronger

than in the case of larger s and thus can be easier detected by the test (5).

We conclude this section with the two important remarks:

Remark 1. Performing a statistical test on the hypotheses (5), one can only draw con-

clusions about investing into the TP. However, if the null hypothesis cannot be rejected,

then we still have no statistical justification about avoiding the wealth allocation into the

TP. In order to be sure that the TP belongs to the lower part of the parabola as in Figure

1(b), one has to perform the lower one-sided test with the hypotheses given by

H̃0 : RGMV ≥ rf against H̃1 : RGMV < rf . (10)

This test reject the null hypothesis, i.e. it confirms that the TP is not efficient, as soon

as T < tn−k,α where the statistic T is given in (6).

The power function of the test (10) is obtained similarly to the power function of the

test (5) and is given by

G̃T,α,tn−k,α(SGMV , s) = P(T < tn−k,α)

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
Ftn−k,δ(y)(tn−k,α)

)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy.

which also only depends on µ and Σ through SGMV and s.

Remark 2. Using a one-to-one correspondence between a statistical test and an interval

estimation, we can draw a further important conclusion by using the suggested two tests.

Namely, it is possible to specify a (1 − α) one-sided confidence interval for the risk-free

rate such that if rf belongs to this interval, a conclusion about the investment into the TP

can be drawn.

In the case of the upper one-sided test this interval is given by

I1−α =

R̂GMV − tn−k,1−α
√
n− 1√
n− k

√
1 +

n

n− 1
ŝ

√
V̂GMV

n
,+∞

 ,
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while for the lower one-sided we get

Ĩ1−α =

−∞, R̂GMV − tn−k,α
√
n− 1√
n− k

√
1 +

n

n− 1
ŝ

√
V̂GMV

n

 ,
Hence, for all rf 6∈ I1−α we conclude that the TP belongs to the efficient frontier and for

all rf 6∈ Ĩ1−α the TP lies on the lower part of the set of feasible portfolios.

3 Out-of-sample performance

In this section we investigate the behaviour of the realized expected return of the GMVP

in the period n + 1 given by R̂GMV,n+1 = ŵ′GMV Xn+1 where Xn+1 is the vector of asset

returns at time point n + 1 and ŵGMV = Σ̂−11/(1′Σ̂−11) are the estimated weights of

the GMVP by using asset returns X1, ...,Xn. The aim is to provide statements about the

two conditional probabilities:

P1 = P
(
R̂GMV,n+1 > rf |R̂GMV > rf

)
(11)

and

P2 = P
(
R̂GMV,n+1 > rf |T > tn−k,1−α

)
(12)

While the probability in (11) can be considered as a naive approach about forecasting the

efficiency of the TP at time point t + 1 given that the estimated expected return of the

GMVP is larger than the return of the risk-free asset, the second probability provides a

similar statement which is based on the result of the statistical test developed in Section

2.

In order to determine the conditional probabilities in (11) and (12), we first derive the

joint distributions (R̂GMV,n+1, R̂GMV ) and (R̂GMV,n+1, T ) in Theorem 1 presented in terms

of their stochastic representations which is a very popular tool in computational statistics

(Givens and Hoeting (2012)), frequentist statistics (Gupta et al. (2013)) and Bayesian

statistics (Bodnar et al. (2017a)). Let the symbol
d
= denote equality in distribution.

Then we get the following results.

Theorem 1. Let X1, . . . ,Xn be independent random vectors of asset returns with Xt ∼
Nk(µ,Σ) for t = 1, . . . , n. Assume that Σ is positive definite and n > k. Then:

(a) the stochastic representation for (R̂GMV , R̂GMV,n+1) is given by

R̂GMV
d
= RGMV +

√
VGMV√
n

z4 +

√
1

n
ξ3 +

1

n

(√
ns+ z5

)2√
VGMV

z1√
ξ1

(13)
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and

R̂GMV,n+1
d
= RGMV +

√
VGMV z6 +

√
VGMV

( √
s(
√
ns+ z5)√

ξ3 + (
√
ns+ z5)2

+ z7

)
z1√
ξ1

+
√
VGMV

√
ξ4

(
z3√
ξ2

z1√
ξ1

+
z2√
ξ2

)
(14)

where z1, z2, z3, z4, z5, z6, z7 ∼ N (0, 1), ξ1 ∼ χ2
n−k+1, ξ2 ∼ χ2

n−k+2, ξ3 ∼ χ2
k−2, ξ4|z5, ξ3 ∼

χ2
k−2;δ2(s,ξ3,z5) with δ2(s, ξ3, z5) = sξ3

ξ3+(
√
ns+z5)

2 ; z1, z2, z3, z4, z6, z7, ξ1, ξ2, (z5, ξ3, ξ4) are

mutually independent.

(b) the stochastic representation for (T, R̂GMV,n+1) is given by (14) and

T
d
=

√
n− k√
ξ5

1√
1 +

ξ3+(
√
ns+z5)

2

ξ1

√nRGMV − rf√
VGMV

+ z4 +

√
ξ3 + (

√
ns+ z5)

2

ξ1
z1


(15)

where ξ5 ∼ χ2
n−k independent of z1, z2, z3, z4, z6, z7, ξ1, ξ2, (z5, ξ3, ξ4).

The proof of Theorem 1 is given in the appendix. The stochastic representations of

Theorem 1 appear to be a very useful tool to investigate the distributional properties of

(R̂GMV , R̂GMV,n+1) as well as of (T, R̂GMV,n+1). Moreover, they show that the distributions

of (R̂GMV , R̂GMV,n+1) and of (T, R̂GMV,n+1) depend on µ and Σ only through the three

parameters of the efficient frontier (RGMV , VGMV , s).

An important application of the stochastic representation for (R̂GMV , R̂GMV,n+1) and

of the stochastic representation for (T, R̂GMV,n+1) is that they allow for computation of

the conditional probabilities P1 and P2 from (11) and (12) in a simple and efficient way.

It is remarkable that a high numerical precision of the approximations of the conditional

probabilities can be obtained by increasing the size of the drawn samples.

In the case of (R̂GMV , R̂GMV,n+1), the following algorithm can be used to evaluate P1:

10



Algorithm 1 : Computing P1 from (11)

(i) fix the values of rf and (RGMV , VGMV , s);

(ii) generate independently zb1, z
b
2, z

b
3, z

b
4, z

b
5, z

b
6, z

b
7 ∼ N (0, 1), ξb1 ∼ χ2

n−k+1, ξ
b
2 ∼ χ2

n−k+2,
ξb3 ∼ χ2

k−2;

(iii) generate ξb4 ∼ χ2
k−2;δ2(s,ξb3,zb5)

with δ2(s, ξb3, z
b
5) =

sξb3

ξb3+(
√
ns+zb5)

2 ;

(iv) compute (R̂b
GMV , R̂

b
GMV,n+1) as in (13) and (14) by using zb1, z

b
2, z

b
3, z

b
4, z

b
5, z

b
6, z

b
7,

ξb1, ξ
b
2, ξ

b
3, ξ

b
4;

(v) determine
cb1 = 1{R̂bGMV >rf ,R̂

b
GMV,n+1>rf}

and cb2 = 1{R̂bGMV >rf}
,

where 1{A} is the indicator function of set A;

(vi) repeat steps (i)-(v) for b = 1, ..., B and approximate P1 by

P̂1 =

∑B
b=1 c

b
1∑B

b=1 c
b
2

For (T, R̂GMV,n+1), the above algorithm is slightly modified and it is given by
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Algorithm 2 : Computing P2 from (12)

(i) fix the values of rf and (RGMV , VGMV , s);

(ii) generate independently zb1, z
b
2, z

b
3, z

b
4, z

b
5, z

b
6, z

b
7 ∼ N (0, 1), ξb1 ∼ χ2

n−k+1, ξ
b
2 ∼ χ2

n−k+2,
ξb3 ∼ χ2

k−2, ξ
b
5 ∼ χ2

n−k;

(iii) generate ξb4 ∼ χ2
k−2;δ2(s,ξb3,zb5)

with δ2(s, ξb3, z
b
5) =

sξb3

ξb3+(
√
ns+zb5)

2 ;

(iv) compute (T b, R̂b
GMV,n+1) as in (13) and (14) by using zb1, z

b
2, z

b
3, z

b
4, z

b
5, z

b
6, z

b
7,

ξb1, ξ
b
2, ξ

b
3, ξ

b
4;

(v) determine

cb1 = 1{T b>tn−k,1−α,R̂bGMV,n+1>rf}
and cb2 = 1{T b>tn−k,1−α};

(vi) repeat steps (i)-(v) for b = 1, ..., B and approximate P2 by

P̂2 =

∑B
b=1 c

b
1∑B

b=1 c
b
2

In Figure 4 we present the approximated conditional probabilities P̂1 and P̂2 as a

function of RGMV − rf for rf = 0.001, VGMV = 0.001, and s = 0.22 . The values of

rf , VGMV , and s corresponds to the considered data sets of the empirical illustration of

Section 5.1 in Bodnar and Schmid (2009). We also put n = 50 (Figure 4) and consider

k ∈ {5, 10, 15, 20}. We observe that the probability P̂2 is always larger than P̂1 and,

consequently, the realized expected return of the GMVP at time (n + 1) is larger than

the risk-free rate with a higher probability when the decision about this investment op-

portunity is based on the test (5). Furthermore, we note that the distance between the

two curves in the figures is larger for smaller values of RGMV − rf and for larger values of

k.

4 Robustness to the assumption of normality

In this section we investigate the robustness of the test procedure presented in Section 2

when the assumption of normality is violated. The empirical power of the test is computed

via simulations by generating samples from the multivariate normal distribution and the

standardized multivariate t-distribution with 5 and 10 degrees of freedom, where the

standardization of the t-distribution is done in order to have samples with the same mean

vector and covariance matrices. Recall that as a result of Proposition 2 it is seen that the

power function of the test depends on the mean vector and the covariance matrix only

through the slope parameter s of the efficient frontier and the Sharpe ratio SGMV of the

12
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Figure 4: Probabilities P̂1 and P̂2 for portfolio dimension k ∈ {5, 10, 15, 20} and sample
size n = 50
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GMVP. Due to this, we set Σ = Ik, an identity matrix of appropriate dimension k in the

simulation study, and consider several values of µ given by2

• µ1 = (0.1, 0, . . . , 0)′;

• µ2 = (0.1, 0.1, 0, . . . , 0)′;

• µ3 = (0.1, 0.1, 0.1, 0 . . . , 0)′;

• µ4 = (0.1, 0.1, 0.1, 0.1, 0, . . . , 0)′;

• µ5 = (0.1, 0.1, 0.1, 0.1, 0.1, 0, . . . , 0)′.

The resulting values of s and SGMV are summarized in Table 1. The values with SGMV ≤
0 corresponds to the null hypothesis in (5), while SGMV > 0 favours the alternative

hypothesis. For the cases SGMV = 0 we expected the empirical significance level of the

test obtained via simulations to be at the nominal significance level α = 0.05. Further,

the risk-free rate is set to be equal to 0.01 and the portfolio size is k ∈ {5, 10, 15, 20}.
Moreover, we observe that the slope parameter s becomes larger as k increases, while the

Sharpe ratio SGMV increases when the number of non-zero elements in the mean vector

becomes larger.

k s&SGMV µ1 µ2 µ3 µ4 µ5

s 0.0080 0.0120 0.0120 0.0080 0.0000
5 SGMV 0.0224 0.0671 0.1118 0.1565 0.2012

s 0.0090 0.0160 0.0210 0.0240 0.0250
10 SGMV 0.0000 0.0316 0.0632 0.0949 0.1265

s 0.0093 0.0173 0.0240 0.0293 0.0333
15 SGMV -0.0129 0.0129 0.0387 0.0645 0.0904

s 0.0095 0.018 0.0255 0.0320 0.0375
20 SGMV -0.0224 0.0000 0.0224 0.0447 0.0671

Table 1: Slope parameter s and Sharpe ratio SGMV for the portfolio dimension k ∈
{5, 10, 15, 20} and several values of µ

In Tables 2, 3 and 4 the results of the simulation study are presented for k ∈
{5, 10, 15, 20} and n ∈ {50, 100, 250}. Each value of the power function presented in

the tables is obtained by drawing B = 106 independent samples from the correspond-

ing model. The simulation study suggests that even though data are generated using a

heavy tailed t-distribution the tests are performing well. This observation remains true

independently of the considered sample size n and portfolio dimension k. Furthermore,

we observe that the power grows as the number of non-zero elements in the mean vector

2From Proposition 2 it is seen that the power of test (5) only depends on µ and Σ through SGMV

and s, hence any choice of µ and Σ with the same values of SGMV and s will not affect the power of the
test if the asset returns are multivariate normally distributed.
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becomes larger and decreases for larger values of k. The power is not larger than the nom-

inal significance level of the test, namely 5% in all cases where SGMV is non-positive and

it is always larger than 5% for SGMV > 0. This statements remains valid independently

if data are generated from the normal distribution or from the t-distribution. Finally, we

note that the empirical power obtained under the t-distribution is always smaller than the

one obtained for the normal distribution and, thus, the test becomes slightly conservative

when data are drawn from a heavy-tailed distribution, but it always keeps the nominal

significance level.

k Distribution µ1 µ2 µ3 µ4 µ5

Normal 0.0669 0.1151 0.1833 0.2731 0.3827
5 t5 0.0638 0.1061 0.1670 0.2473 0.3438

t10 0.0660 0.1110 0.1767 0.2622 0.3655
Normal 0.0497 0.0738 0.1055 0.1456 0.1952

10 t5 0.0464 0.0683 0.0952 0.1316 0.1752
t10 0.0485 0.0710 0.1012 0.1402 0.1866

Normal 0.0426 0.0582 0.0781 0.1020 0.1310
15 t5 0.0392 0.0526 0.0699 0.0912 0.1163

t10 0.0414 0.0561 0.0745 0.0969 0.1244
Normal 0.0389 0.0497 0.0634 0.0801 0.0991

20 t5 0.0348 0.0447 0.0567 0.0707 0.0873
t10 0.0371 0.0480 0.0607 0.0762 0.0941

Table 2: Power function for the portfolio dimension k ∈ {5, 10, 15, 20} and the sample
size n = 50. The nominal significance level of the test is α = 0.05.

k Distribution µ1 µ2 µ3 µ4 µ5

Normal 0.0771 0.1592 0.2869 0.4492 0.6234
5 t5 0.0715 0.1443 0.2546 0.4004 0.5631

t10 0.0744 0.1533 0.2733 0.4285 0.5985
Normal 0.0500 0.0889 0.1464 0.2239 0.3220

10 t3 0.0463 0.0801 0.1301 0.1976 0.2833
t5 0.0484 0.0856 0.1395 0.2129 0.3058

Normal 0.0388 0.0636 0.0981 0.1447 0.2041
15 t5 0.0352 0.0563 0.0864 0.1261 0.1772

t10 0.0374 0.0609 0.0934 0.1372 0.1928
Normal 0.0327 0.0499 0.0735 0.1053 0.1453

20 t5 0.0293 0.0442 0.0646 0.0909 0.1241
t10 0.0312 0.0479 0.0700 0.0990 0.1360

Table 3: Power function for the portfolio dimension k ∈ {5, 10, 15, 20} and the sample
size n = 100. The nominal significance level of the test is α = 0.05.
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k Distribution µ1 µ2 µ3 µ4 µ5

Normal 0.0966 0.2735 0.5372 0.7859 0.9339
5 t5 0.0877 0.2394 0.4732 0.7204 0.8921

t10 0.0939 0.2596 0.5114 0.7608 0.9185
Normal 0.0502 0.1231 0.2496 0.4240 0.6136

10 t5 0.0454 0.1075 0.2145 0.3650 0.5412
t10 0.0482 0.1167 0.2346 0.3988 0.5837

Normal 0.0326 0.0736 0.1445 0.2517 0.3892
15 t5 0.0295 0.0639 0.1234 0.2119 0.3295

t10 0.0316 0.0700 0.1356 0.2345 0.3637
Normal 0.0236 0.0498 0.0945 0.1643 0.2587

20 t5 0.0211 0.0428 0.0797 0.1360 0.2145
t10 0.0226 0.0471 0.0881 0.1530 0.2401

Table 4: Power function for the portfolio dimension k ∈ {5, 10, 15, 20} and the sample
size n = 250. The nominal significance level of the test is α = 0.05.

5 Empirical Study

In order to get a better understanding of the findings obtained in the previous sections,

we apply the derived theoretical results to real data. Weekly returns on 29 stocks listed

on Dow Jones Industrial (DJI) index are considered for the period from 0.1.01.2006 to

31.12.2015.3 The 13 weeks US treasury bill covering the aforementioned period is con-

sidered as a risk-free asset. The results are obtained for different portfolio dimension

k ∈ {5, 10, 15, 20} and sample size n ∈ {50, 100, 250}. The chosen values of n roughly

correspond to one year, two years, and five years of weekly data.

5.1 Empirical distribution of p-values

In order to provide some general statements about the location of the TP on the effi-

cient frontier independently of the chosen stocks, we perform the test (5) for 1000 ran-

domly selected sets of stocks listed in the DJI index for each k ∈ {5, 10, 15, 20} and

n ∈ {50, 100, 250}. Namely, for all pairs of k and n we choose randomly k stocks listed in

DJI and their n most recent returns. Then, using these data we perform the test on the

hypothesis (5) and calculate the corresponding p-value. The procedure is repeated 1000

times resulting in a sample of p-values calculated from different sets of stocks with fixed

k and n. From these samples the histograms are constructed which are shown in Figure

5 for n = 50, in Figure 6 for n = 100, and in Figure 7 for n = 250.

We observe that the number of rejection of the null hypothesis depends crucially on the

3In comparison to daily returns Fama (1976) showed that the distribution of monthly returns is
approximately normal. On the other hand, the application of monthly data may result to the bias due
to time-varying dynamics in model parameters. For this reason, weekly returns are used as a trade-off
between daily and monthly returns.
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Figure 5: Histograms of p-values for 1000 randomly sampled sets of stocks listed in the
DJI index in the case of k = 5 (top left), k = 10 (top right), k = 15 (bottom left), and
k = 20 (bottom right). For each chosen set of stocks n = 50 most recent returns are used.
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Figure 6: Histograms of p-values for 1000 randomly sampled sets of stocks listed in the
DJI index in the case of k = 5 (top left), k = 10 (top right), k = 15 (bottom left), and
k = 20 (bottom right). For each chosen set of stocks n = 100 most recent returns are
used.
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Figure 7: Histograms of p-values for 1000 randomly sampled sets of stocks listed in the
DJI index in the case of k = 5 (top left), k = 10 (top right), k = 15 (bottom left), and
k = 20 (bottom right). For each chosen set of stocks n = 250 most recent returns are
used.
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sample size. For n = 50, we are not able to reject the null hypothesis at 5% significance

level in most of the considered cases. That is, it is not possible to conclude that the TP is

a suitable alternative to both the GMVP and the investment into the risk-free asset as it

might be located on the lower part of the feasible set of optimal portfolio. However, when

n increases, the p-values become smaller and, in particular, they are almost all below 10%

for n = 250. Table 5 provides further insight into the behavior of the p-values. Here,

the number of rejections of the null hypothesis (5) for the significance levels of 1%, 5%,

and 10% are present. The number of rejections dramatically increases when n becomes

larger. Also, we observe an increase when k is larger. To this end, we conclude that

the decision about the location of the tangency portfolio on the feasible set of portfolios

depends crucially on the amount of information used to make a decision. If the sample

size is small, then the test (5) is not powerful enough to reject the null hypothesis and to

be able to draw a conclusion about investing in the TP. This finding is in line with the

results of the simulation study presented in Section 4.

k/n
5 10 15 20

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
50 0 2 6 0 2 8 0 6 18 1 7 26
100 0 25 98 0 13 89 2 29 123 3 44 124
250 90 575 846 67 685 946 63 719 956 84 753 957

Table 5: Number of rejections of the null hypothesis in (5) for 1000 randomly sampled sets
of stocks listed in the DJI index in the case of k ∈ {5, 10, 15, 20} and n ∈ {50, 100, 250}.
The significance level of the test is set to α ∈ {0.01, 0.05, 0.1}

5.2 Time series behavior of the p-values

In order to investigate the performance of the suggested test on the location of the tan-

gency portfolio at several time points, we apply the rolling window estimation (testing)

technique with sample size (window length) of n ∈ {50, 100, 250}. In all cases we choose

k = {5, 10, 15, 20} stocks listed in the DJI index following their alphabetical order.

In Figure 8 we present the values of the Sharpe ratio calculated for the estimated

GMVP. A very volatile behavior is present, especially when the window length is small.

If k increases, then the values of the calculated Sharpe ratio become larger showing a

positive effect of diversification, a well-known result in portfolio theory. Finally, larger

values of the Sharpe ratio are present at the end of the considered time period leading

to the conclusion that the capital market recovers after the financial crisis in 2008, while

negative values of the Sharpe ratio are present around the period of the financial crisis.

Finally, we point out, that larger values red of the Sharpe ratio can be obtained for smaller

sample sizes when most recent data are used in the construction of the GMVP. However,

in this case we also see more volatile behaviour of the estimated characteristics of the

GMVP which leads to higher risk.
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In Figures 9, 10, and 11, the p-values (blue lines) are shown for the test (5) in the case

of k ∈ {5, 10, 15, 20} and n ∈ {50, 100, 250}. In addition, we also present the p-values

(red line) of the test (10) (see Remark 1 in Section 2) where we test if the TP lies on the

lower part of the efficient frontier under H1, i.e. we check if the TP is not mean-variance

efficient. Similarly to the Sharpe ratio, the p-values show high fluctuation over time when

using smaller sample size, while they are quite stable for larger sample sizes. For n = 50

the p-values of both tests are larger than the nominal significance level of 5% and, hence,

no decision about the investment into the TP could be done since both null hypotheses

cannot be rejected. This point is fully related to the power properties of the tests, i.e.

the window length is too small for drawing a conclusive decision. By increasing the value

of n, the situation improves and we may draw conclusions concerning the mean-variance

efficiency of the TP in almost the whole period starting at the end of 2013 for n = 250.

In contrast, the decision about the inefficiency of the TP can be drawn at the end of 2008

when n = 50 and k ∈ {5, 10}. We also note that in all cases where the empirical Sharpe

ratio is negative, we are not able to reject the null hypothesis of the test (5).

Finally, we present the values of the conditional probabilities P̂1 and P̂2 in Table 6

which are defined in Section 3 as the probabilities that the realized expected return of

the GMVP is larger than the risk-free rate in the consequent period provided that the

estimated expected return of this portfolio is larger than the risk-free rate (for P̂1) or

the test (5) at significance level 5% rejects the null hypothesis (for P̂2). Note that the

number of cases used in the computation of P̂1 and P̂2 depends on the occurrence of the

events {R̂GMV > rf} and {T > tn−k,1−α}, respectively. The number of rejections of the

null hypothesis by test (5) are summarized in Table 6. In these cases, P̂2 were computed,

while slightly larger samples were used for the calculation of P̂1. Table 6 documents that

P̂2 outperforms P̂1 for n = 50 and n = 100, while they have the same performance for

n = 250. Hence, the best strategy to forecast the efficiency of the TP is to use the

statistical approach developed in Section 2. Furthermore, the results of Table 6 are in

line with the findings of the simulation study of Section 3 where similar performance is

documented.

k/n
5 10 15 20

Rej P̂1 P̂2 Rej P̂1 P̂2 Rej P̂1 P̂2 Rej P̂1 P̂2

50 87 0.9861 1 61 0.9744 1 70 0.9702 1 83 0.9862 1
100 96 0.9853 1 99 0.9823 1 124 0.9875 1 103 1 1
250 107 1 1 118 1 1 130 1 1 248 1 1

Table 6: Empirical probabilities P̂1 and P̂2 of the realized return of the GMVP to be
positive calculated for the first k ∈ {5, 10, 15, 20} stocks listed in the DJI index in the
alphabetical order. Rolling window estimation is used with the window length equal to
n ∈ {50, 100, 250}. The nominal significance level of the test (5) used in the calculations
of P̂2 is α = 0.05.
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Figure 9: p-values calculated for the test (5) (blue line) and for the test (10) (red line)
for the first k ∈ {5, 10, 15, 20} stocks listed in the DJI index in the alphabetical order.
Rolling window estimation is used with the window length equal to n = 50.
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Figure 10: p-values calculated for the test (5) (blue line) and for the test (10) (red line)
for the first k ∈ {5, 10, 15, 20} stocks listed in the DJI index in the alphabetical order.
Rolling window estimation is used with the window length equal to n = 100.
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Figure 11: p-values calculated for the test (5) (blue line) and for the test (10) (red line)
for the first k ∈ {5, 10, 15, 20} stocks listed in the DJI index in the alphabetical order.
Rolling window estimation is used with the window length equal to n = 250.
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6 Summary

The tangency portfolio plays an important role in the financial literature and is usually

used as a market portfolio in the capital asset pricing model. However, due to the way

how the TP is constructed together with the large amount of uncertainty that is present in

financial markets, the TP might not be mean-variance efficient at all. Although a number

of studies is devoted to the estimation of the TP weights and investigating the distri-

butional properties of the tangency portfolio (see, Ingersoll (1987); Britten-Jones (1999);

Okhrin and Schmid (2006); Schmid and Zabolotskyy (2008); Bodnar and Zabolotskyy

(2017)), the problem of the location of the TP on the set of feasible portfolios has not

been treated in the literature to the best of our knowledge.

In this paper we introduce a finite-sample test on the mean-variance efficiency of

the tangency portfolio. The distribution of the test statistic is also derived under both

hypotheses. Further, it is shown that the suggested test is easily performed in practice by

comparing the value of the test statistic with the quantile of a t-distribution. Moreover,

the result under the alternative hypothesis is used to investigate the test power. Within

an extensive simulation study, we show that the new test is robust to the violation of the

normality assumption and can also be used for heavy-tailed stochastic models. Finally,

the theoretical results are applied to recent data based on the returns on the stocks

included into the DJI index. We conclude, empirically, that the TP is not mean-variance

efficient during some parts of the financial crisis. On the other hand, we are not able to

accept the efficiency of the TP when the sample size is small because of a large amount

of uncertainty present in the financial markets. However, if the sample size is relatively

large and a stable period is present on market, then the mean-variance efficiency of the

TP can be statistically justified.

7 Appendix

Proof of Proposition 2. For a given constant c, we get that

GT,α(SGMV , s) = P(T > c) =

∫ ∞
c

fT (x)dx

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
c

∫ ∞
0

ftn−k,δ(y)(x)fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dydx

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(∫ ∞
c

ftn−k,δ(y)(x)dx

)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy

=
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
1− Ftn−k,δ(y)(c)

)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy.
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In using that 1− Ftn−k,δ(y)(c) > 1− Ftn−k,0(c) for all y ≥ 0 and RGMV < rf , we get

GT,α(SGMV , s) ≤
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
1− Ftn−k,0(c)

)
fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy

=
(
1− Ftn−k,0(c)

) n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy︸ ︷︷ ︸

1

= 1− Ftn−k(c) = α.

with c = tn−k,1−α where tn−k,1−α denotes the (1 − α) quantile of the t-distribution with

n− k degrees of freedom.

Proof of Theorem 1. From Theorem 3.1.2 and Corollary 3.2.2 in Muirhead (1982), we get

µ̂ ∼ Nk(µ,Σ/n), (n − 1)Σ̂ ∼ Wk(n − 1,Σ) (k-dimensional Wishart distribution with

n − 1 degrees of freedom and the parameter matrix Σ); µ̂ and Σ̂ are independently

distributed. Moreover, we get Xn+1 is independent of both µ̂ and Σ̂ by the assumptions

of the theorem.

Let

Ω̂ =

 µ̂′

X′n+1

1′k

 Σ̂−1
[
µ̂ Xn+1 1k

]

Since Σ̂ is independent of µ̂ and Xn+1, the conditional distribution of Ω̂ given µ̂ = µ0

and Xn+1 = X0 is equal to Ω̃ expressed as

Ω̃ =

 µ′0
X′0
1′k

 Σ̂−1
[
µ0 X0 1k

]
=

 µ′0Σ̂
−1µ0 µ′0Σ̂

−1X0 µ′0Σ̂
−11k

X′0Σ̂
−1µ0 X′0Σ̂

−1X0 X′0Σ̂
−11k

1′kΣ̂
−1µ0 1′kΣ̂

−1X0 1′kΣ̂
−11k


Defining

Ω =

 µ′0Σ
−1µ0 µ′0Σ

−1X0 µ′0Σ
−11k

X′0Σ
−1µ0 X′0Σ

−1X0 X′0Σ
−11k

1′kΣ
−1µ0 1′kΣ

−1X0 1′kΣ
−11k


and using Theorem 3.2.11 by Muirhead (1982), we get that (n− 1)−1Ω̃−1 ∼ W3(n− k +

2,Ω−1). Hence, (n− 1)Ω̃ ∼ W−13 (n− k + 6,Ω).

Let

s0 = µ′0R̂µ0, h0 = X′0R̂µ0, v0 = X′0R̂X0.
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From Theorem 3.(b) in Bodnar and Okhrin (2008) we get µ′0Σ̂−11k

1′kΣ̂
−11k

X′0Σ̂−11k

1′kΣ̂
−11k

∣∣∣s0, h0, v0 ∼ N2

 µ′0Σ−11k
1′kΣ

−11k
X′0Σ−11k
1′kΣ

−11k

 ,
(n− 1)−1

1′kΣ
−11k

(
s0 h0

h0 v0

) , (16)

where 1′kΣ̂
−11k = V̂ −1GMV is independent of

(
µ′0Σ̂−11k

1′kΣ̂
−11k

,
X′0Σ̂−11k

1′kΣ̂
−11k

, s0, h0, v0

)
and (see, e.g.,

Lemma A1 in Bodnar and Schmid (2009))

(n− 1)
V̂GMV

VGMV

∼ χ2
n−k. (17)

Moreover, we get that (Theorem 3.(b) in Bodnar and Okhrin (2008))

(n− 1)−1

(
s0 h0

h0 v0

)
∼ W−12

(
n− k + 5,

(
µ′0Rµ0 µ′0RX0

X′0Rµ0 X′0RX0

))

and, consequently,

(n− 1)
µ′0Rµ0

s0
∼ χ2

n−k+1, (18)

h0
s0
|v0 − h20/s0 ∼ N

(
X′0Rµ0

µ′0Rµ0

,
(n− 1)−1

µ′0Rµ0

(
v0 − h20/s0

))
,(19)

(n− 1)
X′0RX0 − (X′0Rµ0)

2/µ′0Rµ0

v0 − h20/s0
∼ χ2

n−k+2 (20)

as well as s0 is independent of h0/s0 and v0 − h20/s0. Let

ŝ = µ̂′R̂µ̂, ĥ = X′n+1R̂µ̂, v̂ = X′n+1R̂Xn+1.

Then the unconditional distributions of

ξ1 = (n− 1)
µ̂′Rµ̂

ŝ
and ξ2 = (n− 1)

X′n+1RXn+1 − (X′n+1Rµ̂)2/µ̂′Rµ̂

v̂ − ĥ2/ŝ

coincide with the corresponding conditional ones as given in (18) and (20) as well as ξ1 is

independent of ĥ/ŝ and ξ2.

(a) The application of (16)-(20) leads to the stochastic representation for
(
R̂GMV , R̂GMV,n+1

)
given by

R̂GMV
d
=

µ̂′Σ−11k
1′kΣ

−11k
+

√
(n− 1)−1

1′kΣ
−11k

√
sz1

d
=

µ̂′Σ−11k
1′kΣ

−11k
+

√
µ̂′Rµ̂

1′kΣ
−11k

z1√
ξ1
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and

R̂GMV,n+1
d
=

X′n+1Σ
−11k

1′kΣ
−11k

+

√
(n− 1)−1

1′kΣ
−11k

(
h√
s
z1 +

√
v − h2/sz2

)
d
=

X′n+1Σ
−11k

1′kΣ
−11k

+

√
µ̂′Rµ̂

1′kΣ
−11k

X′n+1Rµ̂

µ̂′Rµ̂

z1√
ξ1

+

√√√√X′n+1RXn+1 −
(X′n+1Rµ̂)2

µ̂′Rµ̂

1′kΣ
−11k

(
z3√
ξ2

z1√
ξ1

+
z2√
ξ2

)

where z1, z2, z3 ∼ N (0, 1), ξ1 ∼ χ2
n−k+1, ξ2 ∼ χ2

n−k+2; z1, z2, z3, ξ1, ξ2 are mutually

independent.

Since

RΣ
Σ−11k

1′kΣ
−11k

=
R1k

1′kΣ
−11k

= 0,

we get that (see Corollary 7.8.6.1 in Gupta and Nagar (2000)) µ̂′Σ−11k
1′kΣ

−11k
X′n+1Σ−11k

1′kΣ
−11k

 and

(
µ̂′Rµ̂ µ̂′RXn+1

X′n+1Rµ̂ X′n+1RXn+1

)

are independently distributed with µ̂′Σ−11k
1′kΣ

−11k
X′n+1Σ−11k

1′kΣ
−11k

 ∼ N2

(
RGMV 12,

(
VGMV /n 0

0 VGMV

))
.

Moreover, using that µ̂ and Xn+1 are independent, we get that

X′n+1Rµ̂

µ̂′Rµ̂
|µ̂ ∼ N

(
µ′Rµ̂

µ̂′Rµ̂
,

1

µ̂′Rµ̂

)
X′n+1RXn+1 −

(X′n+1Rµ̂)2

µ̂′Rµ̂
|µ̂ ∼ χ2

k−2;δ2(µ̂)
with

δ2(µ̂) = µRµ− (µ′Rµ̂)2

µ̂′Rµ̂
=
µ′Rµ

µ̂′Rµ̂
µ̂′
(

R− Rµµ′R

µ′Rµ

)
µ̂,

and the two quantities given µ̂ are independently distributed. These results follow

from Corollary 5.1.3a and Theorem 5.5.1 of Mathai and Provost (1992) since(
R− Rµ̂µ̂′R

µ̂′Rµ̂

)
Σ

Rµ̂

µ̂′Rµ̂
= 0

29



and (
R− Rµ̂µ̂′R

µ̂′Rµ̂

)
Σ

(
R− Rµ̂µ̂R

µ̂′Rµ̂

)
= R− Rµ̂µ̂′R

µ̂′Rµ̂

with rank
((

R− Rµ̂µ̂′R
µ̂′Rµ̂

)
Σ
)

= k − 2.

In using that

µ̂′Rµ̂ = µ̂′
(

R− Rµµ′R

µ′Rµ

)
µ̂+ µ′Rµ

(
µ̂′Rµ

µ′Rµ

)2

and applying Corollary 5.1.3a and Theorem 5.5.1 of Mathai and Provost (1992), we

get that

µ̂′
(

R− Rµµ′R

µ′Rµ

)
µ̂ and

µ̂′Rµ

µ′Rµ

are independent with
µ̂′Rµ

µ′Rµ
∼ N

(
1,

n−1

µ′Rµ

)
and

nµ̂′
(

R− Rµµ′R

µ′Rµ

)
µ̂ ∼ χ2

k−2.

Hence, the stochastic representation for
(
R̂GMV , R̂GMV,n+1

)
expressed as

R̂GMV
d
= RGMV +

√
VGMV√
n

z4 +

√
1

n
ξ3 +

1

n

(√
ns+ z5

)2√
VGMV

z1√
ξ1

and

R̂GMV,n+1
d
= RGMV +

√
VGMV z6 +

√
VGMV

( √
s(
√
ns+ z5)√

ξ3 + (
√
ns+ z5)2

+ z7

)
z1√
ξ1

+
√
VGMV

√
ξ4

(
z3√
ξ2

z1√
ξ1

+
z2√
ξ2

)

where z1, z2, z3, z4, z5, z6, z7 ∼ N (0, 1), ξ1 ∼ χ2
n−k+1, ξ2 ∼ χ2

n−k+2, ξ3 ∼ χ2
k−2, ξ4|z5, ξ3 ∼

χ2
k−2;δ2(s,ξ3,z5) with δ2(s, ξ3, z5) = sξ3

ξ3+(
√
ns+z5)

2 ; z1, z2, z3, z4, z6, z7, ξ1, ξ2, (z5, ξ3, ξ4) are

mutually independent.

(b) Let

a =

√
n− k√
n− 1

1√
1 + n

n−1 ŝ0

√
V̂GMV

n

.
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Given µ̂ = µ0 and Xn+1 = X0, we get a
(

X′0Σ̂−11k

1′kΣ̂
−11k

− rf
)

X′0Σ̂−11k

1′kΣ̂
−11k

∣∣∣s0, h0, v0
∼ N2

 a
(
µ′0Σ−11k
1′kΣ

−11k
− rf

)
X′0Σ−11k
1′kΣ

−11k

 ,
(n− 1)−1

1′kΣ
−11k

(
a2s0 ah0

ah0 v0

) ,

Then, using the derivation of part (a) and (17) we get a stochastic representation for

R̂GMV,n+1 as in part (a) and a stochastic representation of T given by

T
d
=

√
n− k√
n− 1

1√
1 +

ξ3+(
√
ns+z5)

2

ξ1

√
ξ5

VGMV

(n−1)n

×

(
RGMV − rf +

√
VGMV√
n

z4 +

√
1

n
ξ3 +

1

n

(√
ns+ z5

)2√
VGMV

z1√
ξ1

)

=

√
n− k√
ξ5

1√
1 +

ξ3+(
√
ns+z5)

2

ξ1

√nRGMV − rf√
VGMV

+ z4 +

√
ξ3 + (

√
ns+ z5)

2

ξ1
z1

 ,

where ξ5 ∼ χ2
n−k independent of z1, z2, z3, z4, z6, z7, ξ1, ξ2, (z5, ξ3, ξ4).
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propose a new test based on the estimator for the slope parameter of the efficient frontier in the mean-variance space when
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1. Introduction

Since the introduction of mean-variance theory by Markowitz (1952), a large number of papers devoted

to the optimal portfolio selection have been published and brought remarkable contributions in different

avenues of finance, be it in research or in practice. Since then, the problem of testing the efficiency of a

given portfolio has gained a lot of attention (Bodnar and Schmid (2008); Bodnar et al. (2019a); Gibbons

et al. (1989); Glombek (2014); Britten-Jones (1999); Muhinyuza et al. (2017)) to just name a few. In this

regard, the aim of the investor is to find an optimal portfolio that minimizes the risk, i.e, the variance of

the portfolio for a given level of the expected return. In the absence of a risk-free asset, the risk aversion

strategy leads to minimal variance portfolio. Merton (1972) showed that all Markowitz’ optimal portfolios

lie on the upper part of the parabola in the mean-variance space (known as Efficient Frontier(EF)) and

its equation is given by

(R−RGMV )2 = s(V − VGMV ) (1)

where

RGMV =
1Σ−1µ

1′Σ−11
, VGMV =

1

1′Σ−11
, and s = µ′Rµ with R = Σ−1 − Σ−111′Σ−1

1′Σ−11
. (2)

Whereas, in the presence of a risk-free asset, the tangency portfolio (TP), i.e, a linear combination of

risky assets and a risk-free asset needs to be considered and the equation of the efficiency frontier in case

of the presence of risk-free asset is given by

(R− rf )2 = λV (3)

where

λ = (µ− rf1)′Σ−1(µ− rf1). (4)

In practice, this investment theory appears to be challenging because of the presence of the sampling

error while estimating the unknown theoretical quantities. A big number of the literature in this area of

research treats the case of classical asymptotics (the sample size n increases while the size of the portfolio

k remains constant). In this situation, the plug-in estimator (sample estimator) of the optimal portfolio

turns to be a good estimator due to its attractive properties, namely the consistency and asymptotic

normality.
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Nowadays, in several applications the number of assets k in a portfolio are comparable to the sample

size n, i.e., the portfolio size k and the sample size n grow to infinity at the same order, that means
k
n → c ∈ (0,∞). In this situation the traditional asymptotic theory cannot be applied because of the

failure in delivering consistent estimators of the unknown parameters of the assets returns, namely, the

mean vector and the covariance matrix. A number of papers treat the high-dimensional asymptotics

in portfolio theory by the help of the results from random matrix theory (see, e.g.,Frahm and Jaekel

(2008); Glombek (2014); Bodnar et al. (2019b, 2016b, 2018)). Recently, Bodnar et al. (2019a) studied

the distributional properties of the estimated TP weights and suggested inference procedures in small

and high-dimensions. Furthermore, they delivered the high-dimensional asymptotic distribution of the

estimated TP weights and they proposed a test statistic when both the population and sample covariance

matrices are singular. This paper complements the existing literature in different ways. It provides the

asymptotics of the test statistic for testing the existence of the EF and for testing the efficiency of the

TP under high-dimensional regime.

The rest of the paper is structured as follow: Section 2 discusses the main results of the two provided

tests including the stochastic representations of their test statistics. These stochastic representations

are later used to obtain the high-dimensional asymptotic distributions of the test statistics under both

the null and the alternative hypotheses. It also provides the power functions of the suggested tests for

different values of c. Section 3 presents the results of the simulation study, in which we compare the

performance of the two proposed tests, while the concluding remarks are given in Section 4.

2. Test theory on the location of the TP in high-dimension

Through-out this section, we assume x1, . . . ,xn to be an independent k-dimensional sample of asset

returns, with E(xt) = µ and cov(xt) = Σ, for t = 1, . . . , n, where Σ is assumed to be positive definite,

we also assume that xt ∼ Nk(µ,Σ).

2.1. A test on the existence of the EF based on the slope parameter. The slope parameter plays

an important role in the construction of the efficient frontier. It shows how the market is profitable, i.e.

how large is the increase in the portfolio profit in relation to the unit increase of the portfolio variance.

If the slope parameters is zero, the population efficient frontier reduces to a straight line. In this case,

the GMV portfolio is the only available investment. If there is a possibility to invest in the risk-free asset

with return rf , a part of the investor wealth may be invested into the riskless asset and it may reduce

the variance, whereas the rest of the wealth can be invested into the risky assets. In this case, a test for

the existence of the efficient frontier would be of importance and its hypotheses are given by

H0 : λ = 0 against H1 : λ > 0, (5)

where λ is defined in (4). The rejection of the null hypothesis ensures the existence of the efficient

frontier, i.e. it confirms the positiveness of the slope parameter(λ > 0), and the investor has a number of

investment options to choose from including the TP. On the other hand,

the non rejection of the null hypothesis means that the slope coefficient of the efficient frontier is

equal to zero. In this case the GMV portfolio is the only available portfolio for investment, and also the

allocation of the whole wealth into the riskless asset could be considered as a suitable alternative.

The test statistic for testing (5) is based on the derivation in Bodnar and Schmid (2009) and is given

by

Tλ =
n(n− k)

(n− 1)k
(µ̂− rf1)′Σ̂−1(µ̂− rf1), (6)
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with

µ̂ =
1

n

n∑
t=1

xt and Σ̂ =
1

n− 1

n∑
t=1

(xt − µ̂)(xt − µ̂)′ (7)

are the sample mean vector and the sample covariance matrix, respectively. The distribution of the test

statistic Tλ in the equation (6) is given in the following proposition. In the following the symbols Fa,b,d

denotes a non-central F -distribution with a, b degrees of freedom and non-centrality parameter d, while

Fa,b stands for a central F -distribution with a, b degrees of freedom.

Proposition 1. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk(µ,Σ), k < n. Σ is assumed to be

positive definite. Then it holds that

a) Tλ ∼ Fk,n−k,δT
under H1, where δT = nλ with λ as defined in (4);

b) Tλ ∼ Fk,n−k under H0.

Proof of proposition 1. From Theorem 3.1.2 of Muirhead (1982), it follows that

µ̂− rf1 ∼ N
(
µ− rf1,

1

n
Σ

)
and (n− 1)S ∼ Wk(n− 1,Σ),

where Wk(n− 1,Σ) denotes a k-dimensional Wishart distribution with n− 1 degree of freedom and the

parameter matrix Σ. On top of that, (µ̂ − rf1) and (n − 1)S are independent. Applying the results of

Theorem 6.7a.1 in Mathai and Provost (1992), we get the statement of part (a) of the proposition. The

statement of Proposition 1(b) follows by setting λ = 0 under the null hypothesis. �

Alternatively, one can represent the distribution of Tλ using the following stochastic representation

Tλ
d
=

n− k

k

(
√
nλ + z1)2 + ζ1

ζ2
(8)

where z1 ∼ N (0, 1), ζ1 ∼ χ2
k−1 and ζ2 ∼ χ2

n−k. Moreover, z1, ζ1 and ζ2 are independent. The symbol
d
=

stands for equality in distribution.

From Proposition 1, it is remarkable that the density function of the statistic Tλ depends on the

parameters µ and Σ only over the non-centrality parameter δT . Thus, the exact power function of

the test can be easily computed using any mathematical software package. However, some numerical

difficulties may be encountered when the power function of the test is computed for large values of k and

n.

To address this problem, we derive the asymptotic distribution of Tλ for high-dimensional setting. This

result is given in Theorem 1. We note that for finite case, this result has been used to test the efficiency

of any portfolio from the efficient frontier with respect to the GMV portfolio (Bodnar and Schmid (2009);

Bodnar and Bodnar (2010)).

Because of positive definiteness of the covariance matrix, the null hypothesis H0 : λ = 0 occurs only if

µ = rf1. Note that a similar test statistic is used when testing the hypothesis H0 : µ1 = · · · = µk (see,

e.g., Rencher and Christensen (2012)). This is not a surprise since both hypotheses are equivalent.

Theorem 1. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk(µ,Σ), k < n. Σ is assumed to be

positive definite. Then it holds that

√
k

(
Tλ − 1− n

k λ

σTλ

)
d→ N (0, 1)

where

σ2
Tλ

= 2 + 4
λ

c
+ 2

c

1− c

(
1 +

λ

c

)2
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for k/n → c ∈ (0, 1) as n → ∞. Under the null hypothesis,
√
k (Tλ − 1)

d→ N (0, 2/(1− c)) for k/n →
c ∈ (0, 1) as n→∞.

Proof of Theorem 1. Using the stochastic representation given in equation (8), it holds that

Tλ − 1− n

k
λ =

n− k

k

(
√
nλ + z1)2 + ζ1

ζ2
− 1− n

k
λ

=
n− k

ζ2

(
ζ1 + nλ + 2

√
nλz1 + z21

k
−
(

1 +
n

k
λ
) ζ2

n− k

)

=
n− k

ζ2

(
ζ1 + nλ + 2

√
nλz1 + z21

k
−
(

1 +
n

k
λ
)

+
(

1 +
n

k
λ
)
−
(

1 +
n

k
λ
) ζ2

n− k

)

=
n− k

ζ2

(
ζ1

k
+

n

k
λ + 2

√
nλ

k
z1 +

z21
k
− 1− n

k
λ−

(
1 +

n

k
λ
)( ζ2

n− k
− 1

))

=
n− k

ζ2

((
ζ1

k
− 1

)
−
(

1 +
n

k
λ
)( ζ2

n− k
− 1

)
+ 2

√
nλ

k
z1 +

z21
k

)

We then have

√
k
(
Tλ − 1− n

k
λ
)

=
n− k

ζ2

(
√
k

(
ζ1

k
− 1

)
−
(

1 +
n

k
λ
)√

k

(
ζ2

n− k
− 1

)
+ 2

√
nλ√
k
z1 +

z21√
k

)

Using Lemma 3 in Bodnar and Reiß (2016) and the proof of Lemma 4 in Bodnar et al. (2016b), we

obtain the following results:

ζ2

n− k

a.s→ 1, 1 +
n

k
λ

a.s→ 1 +
λ

c
,
√
k

(
ζ1

k
− 1

)
d→ N (0, 2) ,

√
k

(
ζ2

n− k
− 1

)
d→ N

(
0, 2

c

1− c

)
,

2

√
nλ√
k
z1

d→ N
(

0, 4
λ

c

)
and

z21√
k

a.s→ 0.

The fact that z1, ζ1 and ζ2 are independent and the application of Slutsky’s lemma (see, e.g., Theorem

2.8 in Van der Vaart (2000)) gives us

√
k

(
Tλ − 1− n

k λ

σTλ

)
d→ N (0, 1)

where

σ2
Tλ

= 2 + 4
λ

c
+ 2

c

1− c

(
1 +

λ

c

)2

�

The application of Theorem 1 leads to an asymptotic expression of the power function given by

GTλ
(s, SGMV ) = P

(√
k(Tλ − 1)√
2/(1− c)

> z1−α

)
= 1− P

(
√
k
Tλ − 1− n

k λ

σTλ

≤
√

2/(1− c)z1−α −
√
k n
k λ

σTλ

)
(9)

≈ 1− Φ

(√
2/(1− c)z1−α −

√
k λ

c

σTλ

)
(10)

where z1−α is the (1− α)-quantile of the standard normal distribution.
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In Figures 1 and 2 we plot the power function (10) as a function of λ for different values of c and n as

a solid line. We additionally plot the empirical power of the test for the same values of c and n as dashed

line, and it is interpreted as the number of rejections of the null hypothesis obtained via a simulation

study. As it can be seen from the proof of Theorem 1, instead of generating the huge random matrix

of order k × n of asset returns in each simulation run, we instead simulate three independent random

variables from standard univariate distributions and compute the statistic Tλ for given values of λ in

the stochastic representation given in equation (8). The following algorithm can be used to compute the

asymptotic power:

(i) generate independently z
(b)
1 ∼ N (0, 1), ζ

(b)
1 ∼ χ2

k−1 and ζ
(b)
2 ∼ χ2

n−k;

(ii) for fixed λ, compute

T (b)
s

d
=

n− k

k

(
√
nλ + z

(b)
1 )2 + ζ

(b)
1

ζ
(b)
2

(iii) repeat steps (i)-(ii) for b = 1, . . . , B and approximate P by

P̂ =
1

B

B∑
b=1

1{z1−α,+∞}

(
√
k

(T
(b)
λ − 1)√

2/(1− c)

)
where 1{A} is the indicator function of set A

In Figures 1 and 2 we observe that the high-dimensional expression of the power function provides a

reliable approximation of the true power function. We also note that for small values of the concentration

constant the two power functions are indistinguishable while a moderate discrepancy is present for large

values of the concentration coefficient c. The observed discrepancy comes from the fact that, as the

concentration ratio c is neighbouring to one, the estimator produces a high bias which consequently leads

to their inconsistency.

2.2. Test on the location of the TP on EF in high-dimensions. The location of the TP on the

EF depends crucially on the relation between the risk-free rate rf and the expected return of the global

minimum variance portfolio (GMVP). At each time point, the investor wants to check whether holding

TP is mean-variance efficient or it has to be reconstructed. As it can be seen from Figure 3, a TP is at

the tangency point of the parabola and the line passing through the risk-free rate. It is seen that the TP

lies on the upper part of the parabola since the expected return of the GMVP is greater than the return

of risk-free asset. However, a lower TP may also occur when the riskless return is less than the expected

return of the GMVP (see, e.g., Ingersoll (1987)).

For that reason, this problem can be formalised as a statistical test problem, with the following

hypotheses

H0 : RGMV ≤ rf versus H1 : RGMV > rf (11)

Rejecting H0 in (11), means that the TP is mean-variance efficient while the non rejection of H0 in (5)

does not guarantee the efficiency of the TP. In the case of non rejection of H0, the investor cannot be

sure of the optimality of the TP and the investment in the risk-free rate could be considered as a suitable

alternative.

Muhinyuza et al. (2017) proposed the following test statistics for (11)

T =

√
n− k√
n− 1

R̂GMV − rf√
1 + n

n−1 ŝ

√
V̂GMV

n

(12)

where R̂GMV , V̂GMV and ŝ are the sample estimators for RGMV , VGMV and s given by

R̂GMV =
1′Σ̂−1µ̂

1′Σ̂−11
and V̂GMV =

1

1′Σ̂−11
(13)
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Figure 1. Asymptotic power versus empircal power for different values of c as a function
of λ, significance level 5% and n = 250.

and

ŝ = µ̂′R̂µ̂ with R̂ = Σ̂−1 − Σ̂−111′Σ̂−1

1′Σ̂−11
. (14)

Moreover, they provided the distribution of T in form of a density function and a stochastic representation

under both the null and alternative hypotheses (see, Muhinyuza et al. (2017, Proposition 1,Theorem 1)).

The following proposition summarizes the distribution of T .

Proposition 2. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk(µ,Σ), k < n. Σ is assumed to be

positive definite. Then

(a) the density of T is given by

fT (x) =
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞

0

ftn−k,δ(y)
(x)fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy (15)
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Figure 2. Asymptotic power versus empircal power for different values of c as a function
of λ, significance level 5% and n = 500.

where

δ(y) =

√
n√

1 + n
n−1y

SGMV with SGMV =
RGMV − rf√

VGMV

being the Sharpe ratio of the GMVP. The slope parameter s = µ′Rµ with R = Σ−1−Σ−111′Σ−1/1′Σ−11.

(b) the stochastic representation of T is given by

T
d
=

√
n− k√
ξ

1√
1 +

ξ3+(
√
ns+z1)

2

ξ2

√nSGMV + z2 +

√
ξ3 + (

√
ns + z1)

2

ξ2
z3

 (16)

where z1, z2, z3 ∼ N (0, 1), ξ ∼ χ2
n−k, ξ2 ∼ χ2

n−k+1, ξ3 ∼ χ2
k−2 are mutually independent.
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Figure 3. A graphical illustration of the location of a tangency portfolio on the efficient
frontier .

It is seen that the distribution of test statistic in equation (12) can be represented as a mixture of a

non-central t distribution with n − k degrees of freedom and a non-centrality parameter δ(y), or it can

be given in the form of a stochastic representation as in equation (16).

Furthermore, using the results from Proposition 2 the power function of the test can be easily obtained

and it is easy to see that it depends on the parameters µ and Σ through s and SGMV . However, this

approach may encounter some difficulties for large values of k and n, since Σ becomes unstable for large

values of k. To deal with this problem, we derive the asymptotic distribution of T in a high-dimensional

environment. We assume that k/n→ c ∈ (0, 1) as n→∞. No further relation is imposed between k and

n. Note that, under high-dimensional setting, the usual estimators for the precision matrix (Inverse of the

covariance matrix) performs poorly and are not consistent anymore (Bodnar et al. (2016a)). Therefore,

it is worth to study the behaviour of the test statistic developed by Muhinyuza et al. (2017) under high-

dimensional environment and propose an alternative test which takes into account the correction of the

estimated precision matrix.

The next theorem presents the asymptotic distribution of T under double asymptotic regime.

Theorem 2. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk(µ,Σ), k < n. Σ is assumed to be

positive definite. Let k
n → c ∈ (0, 1) as n → ∞. Then, it holds that the asymptotic distribution of T is

given by

(a)

σ−1T

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
)
 d→ N (0, 1) (17)

where

σ2
T = 1 +

S2
GMV

1 + s

(
1

2
+

1

2

s2 + 2s + c

(1 + s)2

)
(18)

for k
n → c ∈ (0, 1) as n→∞.

(b) Under the null hypothesis it holds that T ∼ N(0, 1)
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Proof of Theorem 2. From the stochastic representation given in (16) and using the properties of a nor-

mally distributed random variable, we have that

T
d
=

√
n− k

ξ

√
nSGMV√
1 + ζ

ξ2

+ z0

√
n− k

ξ
(19)

where z0 ∼ N (0, 1), ξ ∼ χ2
n−k, ξ2 ∼ χ2

n−k+1, ζ ∼ χ2
k−1,ns, and on top of that z0, ζ, ξ and ξ2 are mutually

independent.

We then have

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
) =

√
n− k

ξ
z0 +

√
n

√
n− k

ξ

SGMV√
1 + ζ

ξ2

−
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
)

Adding and subtracting
√
n SGMV√

1+ ζ
ξ2

and factoring out SGMV√
1+ ζ

ξ2

and rearranging we get

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
)

=

√
n− k

ξ
z0 +

SGMV√
1 + ζ

ξ2

√n
(√

n− k

ξ
− 1

)
+
√
n

1−

√
1 + ζ

ξ2√
1 + k−1

n−k+1

(
1 + n

k−1s
)



Putting the last expression on common denominator and multiplying the numerator by its conjugate, we

obtain √
1 +

k − 1

n− k + 1

(
1 +

n

k − 1
s

)
−
√

1 +
ζ

ξ2
=

k−1
n−k+1

(
1 + n

k−1s
)
− ζ

ξ2√
1 + k−1

n−k+1

(
1 + n

k−1s
)

+
√

1 + ζ
ξ2

We then have

k − 1

n− k + 1

(
1 +

n

k − 1
s

)
− ζ

ξ2
=

k − 1

n− k + 1

(
1 +

n

k − 1
s− ζ/(k − 1)

ξ2/(n− k + 1)

)
(20)

Putting (20) on common denominator and rearranging it, we get

1 +
n

k − 1
s− ζ/(k − 1)

ξ2/(n− k + 1)
=

n− k + 1

ξ2

[(
1 +

n

k − 1
s

)(
ξ2

n− k + 1
− 1

)
−
(

ζ

k − 1
− 1− n

k − 1
s

)]
(21)

We also have that√
n− k

ξ
− 1 =

(√
n− k

ξ
− 1

) √n−k
ξ

+ 1√
n−k
ξ

+ 1
=

n−k
ξ
− 1√

n−k
ξ

+ 1
=

(
1− ξ

n−k

)
n−k
ξ√

n−k
ξ

+ 1
(22)

Considering (21) and (22), we then get

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
) =

√
n− k

ξ
z0 +

SGMV√
1 + ζ

ξ2

√n
(

1− ξ
n−k

)
n−k
ξ√

n−k
ξ

+ 1



+
SGMV√
1 + ζ

ξ2

 k−1
n−k+1

[
n−k+1

ξ2

((
1 + n

k−1s
)√

n
(

ξ2

n−k+1 − 1
)
−
√
n
(

ζ
k−1 − 1− n

k−1s
))]

√
1 + k−1

n−k+1

(
1 + n

k−1s
)(√

1 + k−1
n−k+1

(
1 + n

k−1s
)

+
√

1 + ζ
ξ2

)
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Using Lemma 3(a) in Bodnar and Reiß (2016), we obtain

ξ

n− k

a.s→ 1,
ξ2

n− k + 1

a.s→ 1 and
ζ

k − 1
− 1− n

k − 1
s

a.s→ 0⇒ ζ

k − 1

a.s→ 1 +
s

c
(23)

Consequently,

√
1 +

ζ

ξ2
=

√
1 +

ζ

ξ2

k − 1

k − 1

n− k + 1

n− k + 1
=

√
1 +

ζ

k − 1

n− k + 1

ξ2

k − 1

n− k + 1

a.s→
√

1 + s

1− c
(24)

and √
1 +

k − 1

n− k + 1

(
1 +

n

k − 1
s

)
a.s→
√

1 + s

1− c
(25)

By using Lemma 3(b) in Bodnar and Reiß (2016) and the proof of Lemma 4 in Bodnar et al. (2016b),

we get

√
n

(
ξ

n− k
− 1

)
d→ N (0, 2/(1− c)), (26)

(
1 +

n

k − 1
s

)√
n

(
ξ2

n− k + 1
− 1

)
d→ N

(
0,

2

1− c

(
1 +

s

c

)2)
, (27)

and

√
n

(
ζ

k − 1
− 1− n

k − 1
s

)
d→ N

(
0,

2

c

(
1 + 2

s

c

))
(28)

for k/n→ c ∈ (0, 1) as n→∞.

We also know that

√
n
(
z0/
√
n
) d→ N (0, 1) (29)

Since z0, ξ, ξ2 and ζ are independent and taking into account to equations (23)-(29), we obtain the

following asymptotic result

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
) d→ z0 +

SGMV√
1+s
1−c

z1
2

+
SGMV√

1+s
1−c

(
c/(1− c) (z2 + z3)

2 1+s
1−c

)

where z0 ∼ N (0, 1), z1 ∼ N
(

0, 2
1−c

)
, z2 ∼ N

(
0, 2

1−c
(
1 + s

c

)2)
and z3 ∼ N

(
0, 2

c

(
1 + 2 s

c

))
. Moreover,

z0, z1, z2 and z4 are independently distributed.

Finally, the application of Slutsky’s lemma (see, e.g., Theorem 2.8 in Van der Vaart (2000)) leads to

σ−1T

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
)
 d→ N (0, 1)

with

σ2
T = 1 +

S2
GMV

1 + s
(1− c)

(
1

2(1− c)
+

(1− c)2

4(1 + s)2

(
c2

(1− c)2

(
2

1− c

(
1 +

s

c

)2
+

2

c

(
1 + 2

s

c

))))
= 1 +

S2
GMV

1 + s
(1− c)

(
1

2(1− c)
+

s2 + 2s + c

2(1 + s)2(1− c)

)
= 1 +

S2
GMV

1 + s

(
1

2
+

s2 + 2s + c

2(1 + s)2

)
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Figure 4. Asymptotic power versus Exact power for different values of c as a function
of SGMV , significance level 5% and n = 250. We set s = 1.

The statement of Theorem 2(b) follows by setting SGMV = 0 under the null hypothesis. �

From Theorem 2, we obtain the asymptotic expression of the power which is given by

GT (s, SGMV ) = P

T −
√
n SGMV√

1+ k−1
n−k+1 (1+

n
k−1 s)

σT
> z1−α

 = 1− P

T −
√
n SGMV√

1+ k−1
n−k+1 (1+

n
k−1 s)

σT
< z1−α


≈ 1− Φ

T −
√
n SGMV√

1+ k−1
n−k+1 (1+

n
k−1 s)

σT


In Figures 4 and 5, we deliver the results of the power functions of the exact test and of the high-

dimensional asymptotic test that was obtained in Theorem 2 for different values of c ∈ {0.1, 0.4, 0.7, 0.9}



12 STANISLAS MUHINYUZA

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c=0.1

S_gmv

P
ow

er

Exact
Asymptotic

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c=0.4

S_gmv
P

ow
er

Exact
Asymptotic

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c=0.7

S_gmv

P
ow

er

Exact
Asymptotic

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c=0.9

S_gmv

P
ow

er

Exact
Asymptotic

Figure 5. Asymptotic power versus Exact power for different values of c as a function
of SGMV , significance level 5% and n = 500. We set s = 1.

and α = 5%. Since the power of the test depends on s and SGMV , for a good visualization of the power we

fix s = 1. The dashed black line represents the power function of the exact test, while the power function

of the high-dimensional test is indicated by a solid black line. A good performance of the asymptotic

power is observed for all considered values of c.

3. Comparison of the tests

In this section we examine the performance of developed test by comparing their asymptotic powers

and we also study how robust are the two approaches to the violation of normality assumption. we firstly

compare the performance of the power function of the test derived in Section 2.1 and the power function

of the statistical test developed in Muhinyuza et al. (2017) for k/n → c ∈ (0, 1) as n → ∞. Results of

both Theorem 2 and Muhinyuza et al. (2017, Proposition 1) show that the power functions of the tests

depend on the mean vector and the covariance matrix only through the slope parameter s of the efficient
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frontier and the Sharpe ratio SGMV of the GMVP. For that reason, we put Σ = Ik, an identity matrix

of dimension k in the simulation study, and consider several values of µ chosen as follows:

• for µ1, 15% of its first values are 0.1 and the remaining values are set to zero;

• for µ2, 20% of its first values are 0.1 and the remaining values are set to zero;

• for µ3, 25% of its first values are 0.1 and the remaining values are set to zero;

• for µ4, 30% of its first values are 0.1 and the remaining values are set to zero;

• for µ5, 35% of its first values are 0.1 and the remaining values are set to zero.

In order to have the equality µµµ = rf1, we choose µµµ0 with all its components equal to 0.01. Table 1

contains several values of s and SGMV obtained using the aforementioned values of µ and Σ. We note

that the values with SGMV = 0 corresponds to the null hypothesis in (11) and expect the empirical

significance level of the test obtained through-out the simulation to be the nominal significance level

0.05. Whereas the other values designate the alternative hypothesis. In addition, we set the risk-free

rate to be 0.01 and the portfolio size is k ∈ {50, 200, 350, 450}. We observe that the slope parameter

s becomes larger as k increases, while the Sharpe ratio SGMV increases when the number of non-zero

elements in the mean vector becomes larger, the increase is also noted when the portfolio size gets larger.

On the other hand, the values with λ = 0 are equivalent to the null hypothesis in (5)(which occurs only

when µµµ = rf1) while the other values favours the alternative hypothesis. We also note that λ grows as

either k or the number of non-zero elements in the mean vector become larger.

k µ0 µµµ1 µµµ2 µµµ3 µµµ4 µµµ5

s 0.0000 0.0672 0.0800 0.0962 0.1050 0.1152
50 λ 0.0000 0.0690 0.0850 0.1090 0.1250 0.1490

SGMV 0.0000 0.0424 0.0707 0.1131 0.1414 0.1838
s 0.0000 0.2550 0.3200 0.3750 0.4200 0.4550

200 λ 0.0000 0.2600 0.3400 0.4200 0.500 0.5800
SGMV 0.0000 0.0707 0.1414 0.2121 0.2828 0.3536

s 0.0000 0.4497 0.5600 0.6587 0.7350 0.7977
350 λ 0.0000 0.4590 0.5950 0.7390 0.8750 1.0190

SGMV 0.0000 0.0962 0.1871 0.2833 0.3742 0.4704
s 0.0000 0.5772 0.7200 0.8462 0.9450 1.0252

450 λ 0.0000 0.5890 0.7650 0.9490 1.1250 1.3090
SGMV 0.0000 0.1084 0.2121 0.3206 0.4243 0.5327

Table 1. Slope parameters s, λ and Sharpe ratio SGMV for the portfolio dimension
k ∈ {50, 200, 350, 450} and several values of µ.

Power T Tλ T Tλ T Tλ T Tλ T Tλ T Tλ

k Distribution µµµ0 µµµ1 µµµ2 µµµ3 µµµ4 µµµ5

Normal 0.0420 0.0400 0.2260 0.8230 0.4240 0.9190 0.7680 0.9810 0.8760 0.9940 0.9830 1.0000
50 t5 0.0270 0.0390 0.1480 0.7460 0.3390 0.8630 0.6060 0.9570 0.7860 0.9830 0.9510 0.9940

t10 0.0420 0.0500 0.1770 0.8040 0.3900 0.9060 0.7020 0.9690 0.8630 0.9880 0.9710 0.9940
Normal 0.0480 0.0460 0.3020 0.9920 0.6760 1.0000 0.9310 1.0000 0.9950 1.0000 1.0000 1.0000

200 t5 0.0140 0.0330 0.1270 0.9730 0.4730 0.9970 0.7770 1.0000 0.9520 1.0000 0.9920 1.0000
t10 0.0290 0.0540 0.2210 0.9870 0.5700 0.9970 0.8810 1.0000 0.9800 1.0000 0.9980 1.0000

Normal 0.0480 0.0500 0.2710 0.9810 0.5850 1.0000 0.8500 1.0000 0.9560 1.0000 0.9930 1.0000
350 t5 0.0130 0.0420 0.1090 0.9540 0.2820 0.9910 0.5870 0.9980 0.8050 1.0000 0.9450 1.0000

t10 0.0240 0.0450 0.1690 0.9640 0.4370 0.9960 0.7460 1.0000 0.9140 1.0000 0.9840 1.0000
Normal 0.0420 0.049 0 0.1280 0.7350 0.2900 0.9020 0.4930 0.9610 0.6700 0.9840 0.8230 0.9980

450 t5 0.0160 0.0480 0.0740 0.6500 0.1460 0.7670 0.2850 0.8750 0.4400 0.9370 0.6310 0.9770
t10 0.0440 0.0500 0.1140 0.6790 0.2310 0.8390 0.3650 0.9120 0.5620 0.9690 0.7010 0.9910

Table 2. Power function for the portfolio dimension k ∈ {50, 200, 350, 450} and the
sample size n = 500. The nominal significance level of the test is α = 0.05.
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In Table 2, we present the results from the simulation study of the powers of the tests for the hypotheses

(5) and (11) for different values of k ∈ {50, 200, 350, 450} and n = 500. Each value of the power function

given in the table was obtained by generating 106 independent sample from the corresponding model.

All obtained results show a good performance even for data generated from heavy tailed t-distribution.

Moreover, we observe an increase of the power functions a the number of non-zero elements of the

mean vector becomes larger. To this end, we note that the asymptotic power function of Tλ grows

faster compared to the asymptotic power function of T . We also note that for both hypotheses, our

tests are moderately conservative when data are generated from a heavy-tailed distribution, since the

powers obtained under the t−distribution are in all cases smaller than the one obtained for the normal

distribution. We also observe that the powers for T and Tλ are not larger that the nominal significance

level of the tests, in all cases where SGMV = 0 and λ = 0, respectively. This behaviour is maintained if

data are generated from the normal distribution or from the t-distribution.

Moreover, in order to compare the two tests, we first establish the relation between λ, s and SGMV as

it can be seen in the next lemma.

Lemma 1. Under the assumption of of Proposition 1, we have that λ = s + S2
GMV .

Proof of Lemma 1 .

λ = (µ− rf1)′Σ−1(µ− rf1)

= µ′Σ−1µ− 2rf1′Σ−1µ + r2f1′Σ−11

= µ′Σ−1µ− 1′Σ−11

(
2rf

1′Σ−1µ

1′Σ−11
− r2f

)
= µ′Σ−1µ− 1′Σ−11

((
1′Σ−1µ

1′Σ−11

)2

−
(

1′Σ−1µ

1′Σ−11

)2

+ 2rf
1′Σ−1µ

1′Σ−11
− r2f

)

= µ′Σ−1µ− 1′Σ−11

(
1′Σ−1µ

1′Σ−11

)2

+ 1′Σ−11

((
1′Σ−1µ

1′Σ−11

)2

− 2rf
1′Σ−1µ

1′Σ−11
+ r2f

)

= µ′Σ−1µ− (1Σ−1µ)2

1′Σ−11
+ 1′Σ−11

(
1Σ−1µ

1′Σ−11
− rf

)2

Lemma 1 is established. �

Lemma 1 helps us to compute the difference of two power functions given below

∆(s, SGMV ) = GTλ
(s, SGMV )−GT (s, SGMV ). (30)

To clearly visualize the difference of these two powers a contour-plot was used. In Figure 6, it is seen that

the difference becomes smaller as the concentration ratio gets larger. It also clearly shows that: when s

is small and SGMV is large, then the test based on Tλ performs better. On the other hand, if s is large

and SGMV is small, then the test T is preferable.

4. Conclusion

In this paper we focus on the property of the TP in high dimension. Especially, we provide the

high dimensional asymptotic distribution of the test statistic for testing the existence of the EF and for

testing the efficiency of the TP under high-dimensional regime. In either test the asymptotic distribution

is obtained under the null and alternative hypotheses. With an extensive simulation study, we have shown

that both tests are robust to the violation of the normality assumption and perform well for heavy-tailed

t-distribution.
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Figure 6. Contour plot of ∆(s, SGMV ) for c ∈ {0.1, 0.4, 0.7, 0.9} and n = 500.
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Abstract

In this paper, we study the distributional properties of the tangency portfolio

(TP) weights assuming a normal distribution of the logarithmic returns. We derive

a stochastic representation of the TP weights that fully describes their distribution.

Under a high-dimensional asymptotic regime, i.e. the dimension of the portfolio,

k, and the sample size, n, approach infinity such that k/n → c ∈ (0, 1), we deliver

the asymptotic distribution of the TP weights. Moreover, we consider test about

the elements of the TP and derive the asymptotic distribution of the test statistic

under the null and alternative hypotheses. In a simulation study, we compare the

asymptotic distribution of the TP weights with the exact finite sample density. We

also compare the high-dimensional asymptotic test with exact one. We document a

good performance of the asymptotic approximations except for small sample sizes

combined with c close to one. In an empirical study, we analyze the TP weights in

portfolios containing stocks from the S&P 500 index.
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1 Introduction

The fundamental goal of the portfolio theory introduced by Markowitz (1952) is to effi-

ciently allocate investments among various assets. The mean-variance optimization tech-

nique serves as a quantitative tool that considers the trade-off between the risk of the

portfolio and its return. In the formulation of the mean-variance analysis the investor

selects a portfolio with the highest expected return for a given level of risk or the smallest

risk for a given level of the expected return. The risk aversion strategy in the absence of

risk-free assets (bonds) leads to the minimum variance portfolio, whereas in the presence

of risk-free assets, the tangency portfolio (TP) is constructed and it consists of both risky

and risk-free assets. Moreover, it is the only portfolio that maximizes the Sharpe ratio.

Because of its significant role in finance for both researchers and practitioners, having a

full understanding of the properties of the TP becomes vital for any financial actor.

The statistical properties of the estimated TP weights are investigated in a number

of papers. Britten-Jones (1999) developed an exact finite sample F -test for TP weights.

Okhrin and Schmid (2006), under the assumption of independently and multivariate nor-

mally distributed returns, derived the univariate density of the TP weights as well as its

asymptotic distribution. Bodnar (2009) proposed a sequential monitoring procedures for

the TP weights, while Bodnar and Okhrin (2011) suggested several exact test of general

linear hypotheses about the elements of the portfolio weights. In Kotsiuba and Mazur

(2015), the asymptotic distribution and the approximate density function, based on a

third order Taylor series approximation, of the TP weights are derived. A test of the

existence of TP on the set of feasible portfolio is developed by Muhinyuza et al. (2017).

Bodnar and Zabolotskyy (2017) considered the risk properties of the TP and concluded

that this portfolio is a very risky investment opportunity which should be carefully con-

sidered in practice. Bauder et al. (2018) studied different distributional properties of TP

weights from Bayesian statistics point of view. Bodnar et al. (2019b) analyzed the dis-

tributional properties of the estimated TP weights and proposed inference procedures in

small and high dimensions when both the population and the sample covariance matri-

ces are singular. More recently, higher-order moments of the estimated TP weights are

obtained by Javed et al. (2020).

The present paper complements the existing literature by delivering the stochastic

representation and asymptotic distribution of the estimated TP weights as well as the

asymptotic distribution of the statistical test about the elements of the TP. Asymptotic

results are delivered under a high-dimensional asymptotic regime, i.e. k/n → c ∈ (0, 1)

as k → ∞ and n → ∞, and assuming positive definiteness of the population covariance

matrix.

The remaining parts of this paper are organized as follow. In Section 2, we present a

very useful stochastic representation of the estimated TP weights that depicts their distri-

bution. The obtained stochastic representation is then used in the derivation of the high-

2



dimensional asymptotic distribution of the estimated TP weights and high-dimensional

asymptotic test on the TP weights. In Section 3, we present the results of the simulation

and empirical studies, while the summary and concluding remarks are given in Section 4.

2 Main Results

We consider a portfolio that consists of k risky assets. Let xt = (x1t, . . . , xkt)
T be the

k-dimensional vector of log-returns of these assets at time point t = 1, . . . , n, and wt =

(w1, . . . , wk)
T be a vector of weights, where wi denotes the portion of the wealth allocated

to the ith asset. Let also the mean vector of the asset returns be denoted by µ and

the covariance matrix by Σ which assumed to be positive definite. Following the mean-

variance theory introduced by Markowitz (1952), an investor allocates her/his wealth

among k risky assets by maximizing the portfolio expected return for a given level of the

portfolio risk or, equivalently, by minimizing the risk given some predetermined level of

the portfolio expected return. In this context, the risk is measured by the variance of

the portfolio return. Levy and Markowitz (1979) and Kroll et al. (1984) showed that

the mean-variance portfolio problem is equivalent to maximizing the expected quadratic

utility. In the absence of a risk-free asset, the optimal portfolio is obtained by maximizing

the expected quadratic utility under the constraint wT1k = 1, where 1k denotes the vector

of ones. On the other hand, if short selling is allowed and there is a possibility to invest

in the risk free-asset with return rf , a portion of an investor’s wealth may be invested

in the risk-free asset and it may reduce the variance, while the rest of the wealth can be

invested in the risky assets. In this case, the expected return of the risky assets is given by

µp = wT (µ−rf1k)+rf with the variance σ2
p = wTΣw. The optimal portfolio composition

of the tangency portfolio (TP) is obtained by solving the following optimization problem

µp −
α

2
σ2
p → max

w
(1)

where the coefficient α describes the investor’s attitude towards risk or risk aversion.

All portfolios from the tangent line are obtained by varying α ∈ (0,∞). The higher

value of the risk aversion representing lesser tolerance to risk. The risk aversion level

can be looked as a characteristic of the investor’s indifference curve which represents the

investor’s preference for risk and return. How to choose or fix the value of α in practice

is not obvious and a number of papers have suggested different approaches to estimating

the risk aversion coefficient (see, e.g.,Chetty (2003); Campo et al. (2011); Bodnar and

Okhrin (2013); Bodnar et al. (2018b)).

When solving the maximization problem defined in (1), we note that short sales are

allowed and there are no restrictions on the portfolio weights, therefore, the optimization

problem is unconstrained. Consequently, it is easy to see that the global maximum, i.e.

3
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Figure 1: A graphical illustration of the efficient frontier in the presence of risk-free asset.

the TP weights, is given by

wTP = α−1Σ−1 (µ− rf1k) . (2)

Equation (2) gives the structure of the optimal portfolio composition corresponding to

the risky assets only, whereas the portion invested into the risk-free asset is determined by

1−wT
TP1k. Ingersoll (1987) defined a TP as a tangent point which lies on the intersection

of the mean-variance frontier and the tangency line drawn from the return of the risk-free

asset (see Figure 1).

The optimal portfolio weights depend on the unknown parameters µ and Σ and in

practice they need to be estimated. Using the random sample we estimate the parameters

by their sample counterparts as

x =
1

n

n∑
t=1

xt and S =
1

n− 1

n∑
t=1

(xt − x) (xt − x)T .

Replacing µ and Σ with x and S in (2), we get the sample estimator of the TP weights

given by

ŵTP = α−1S−1 (x− rf1k) . (3)

In practice, interest is often focused on just a few weights. In addition, analysis of the

whole vector becomes impractical as the dimensions k increases. We will hence focus on

the linear combination of wTP that is given by

4



θ = lTwTP = α−1lTΣ−1 (µ− rf1k) ,

where l is a k-dimensional vector of constants. Consequently, the sample estimator of θ

is expressed as

θ̂ = lT ŵTP = α−1lTS−1 (x− rf1k) .

By choosing different vectors l we are able to provide information about different

linear combinations of the TP weights and more insights into the behaviour of the TP.

For example, by choosing l = (1, 0, . . . , 0)T , an investor is able to study the behaviour of

the first asset in the portfolio. Similarly, if l = (1, 1, 0, . . . , 0)T an investor is interested

in the behaviour of the TP weights the two first assets of the portfolio. Taking l = 1k an

investor can study the share of the portfolio invested in risky assets.

In the following proposition, we derive a stochastic representation of θ̂. The stochastic

representation is a powerful tool in the theory of multivariate statistics, it can be used

to determine the distribution of random quantity as the distribution of functions of in-

dependent random variables with the standard probability distributions. It also plays an

important role in both frequentist and Bayesian statistics (see Givens and Hoeting (2012),

Bodnar et al. (2017a), Bauder et al. (2018)). Its usefulness is frequently remarkable in

Monte Carlo simulations (Givens and Hoeting (2012)) as well as in elliptical contoured

distributions (Gupta et al. (2013)).

Proposition 1. Let x1, . . . ,xn be identically and independently distributed random vectors

with x1 ∼ Nk(µ,Σ), k < n. Also, let l be a k-dimensional vector of constants. Then the

stochastic representation of θ̂ = lT ŵTP is given by

θ̂
d
=
n− 1

ξ

(
θ + α−1z0

√(
1

n
+

k − 1

n(n− k + 1)
u

)
lTΣ−1l

)
,

where ξ ∼ χ2
n−k, z0 ∼ N (0, 1) and u ∼ F(k−1, n−k+1, ns) with s = (µ−rf1k)TRl(µ−

rf1k) and Rl = Σ−1 −Σ−1llTΣ−1/lTΣ−1l. Moreover, the random variables ξ, z0 and u

are mutually independently distributed.

Proof of Proposition 1. From Theorem 3.1.2 of Muirhead (1982), it follows that

x ∼ Nk
(
µ,

1

n
Σ

)
and (n− 1)S ∼ Wk(n− 1,Σ),

where Wk(n − 1,Σ) denotes a k-dimensional Wishart distribution with n − 1 degrees of

freedom and the parameter matrix Σ. Moreover, x and (n−1)S are independent. Apply-

ing Corollary 1 of Bodnar and Okhrin (2011), we get the statement of the proposition.
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From Proposition 1, we have a stochastic representation of θ̂ given as a function of

independently distributed χ2, standard normal and non-central F random variables. It

is worth noting that the application of Proposition 1 speeds up the simulation of θ̂, since

it is sufficient to simulate only three univariate random quantities instead of generating

a sample mean vector and sample covariance matrix that can have high dimensions.

Proposition 1 also plays an important role in the derivation of the distribution of the

linear combination of the estimated TP weights in high dimensions.

Remark 1. According to (3), the sample estimator of the TP weights ŵTP depends on

the inverse of the sample covariance matrix S. In Proposition 1, it is assumed that

k < n and this assumption ensures that the distribution of S is non-singular, therefore,

the regular inverse of S can be taken. If k > n, the distribution of S is singular and

the regular inverse cannot be used. This issue is discussed in the portfolio context by

utilizing Moore-Penrose inverse (see Bodnar et al. (2016, 2017b), Tsukuma (2016), Bodnar

et al. (2019b)). Alternatively, one can use different regularization techniques such as the

ridge-type approach (Tikhonov and Arsenin (1977)), the Landweber Fridman iterative

algorithm (Kress (1999)), the spectral cut-off (Chernousova and Golubev (2014)), a form

of Lasso (Brodie et al. (2009)), and an iterative method based on a second order damped

dynamical systems (Gulliksson and Mazur (2019)).

Remark 2. In the Bayesian setting, the posterior distribution of the covariance matrix Σ

has the inverse Wishart distribution. Consequently, the posterior distribution of wTP can

be expressed as the product of the (singular) Wishart matrix and a normal vector. The

distributional properties of this product are well studied by Bodnar et al. (2013, 2014),

Bodnar et al. (2018a), Bodnar et al. (2019a).

Next, we study the asymptotic behaviour of θ̂ = lT ŵTP under a high-dimensional

asymptotic regime, that is, the portfolio size k increases together with the sample sizes n

and they all tend to infinity. More precisely, we assume that kn ≡ k(n) and cn := kn/n→
c ∈ (0, 1) as k → ∞ and n → ∞. The following condition is needed for ensuring the

validity of the asymptotic results presented in this section:

(A1) there exists m and M such that 0 < m ≤ µTΣ−1µ ≤M <∞, 0 < m ≤ 1TΣ−11 ≤
M <∞ and 0 < m ≤ lTΣ−1l ≤M <∞ uniformly in k.

Let us note that we don’t have assumptions about the eigenvalues of the population

covariance matrix Σ. Consequently, one can consider the case when Σ has unbounded

spectrum.

In the next theorem we deliver the high-dimensional asymptotic distribution of a linear

combination of the estimated TP weights for normally distributed data.

Theorem 1. Let x1, . . . ,xn be identically and independently distributed random vectors

with x1 ∼ Nk(µ,Σ), k < n. Let cn := kn/n → c ∈ (0, 1) as n → ∞. Also, let l
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be a k-dimensional vector of constants. Then, under (A1), it holds that the asymptotic

distribution of θ̂ = lT ŵTP is given by

√
n− kn

(
θ̂ − n− 1

n− kn
θ

)
D→ N (0, σ2)

where

σ2 =
α−2

(1− c)2
[
lTΣ−1l + (αθ)2 + lTΣ−1l(µ− rf1k)TΣ−1(µ− rf1k)

]
.

Proof of Theorem 1. Using the stochastic representation obtained in Proposition 1, we

get

θ̂ − n− 1

n− kn
θ =

n− 1

ξ
θ + α−1

n− 1

ξ

z0√
n

√(
1 +

kn − 1

n− kn + 1
u

)
lTΣ−1l− n− 1

n− kn
θ

=
n− 1

n− kn

(
n− kn
ξ
− 1

)
θ + α−1

n− 1

ξ

z0√
n

√(
1 +

kn − 1

n− kn + 1
u

)
lTΣ−1l,

where ξ ∼ χ2
n−k, z0 ∼ N (0, 1) and u ∼ F(k−1, n−k+1, ns) with s = (µ−rf1k)TRl(µ−

rf1k) and Rl = Σ−1−Σ−1llTΣ−1/lTΣ−1l. Let us also note that ξ, u and z0 are mutually

independently distributed.

Since ξ ∼ χ2
n−k, the application of Lemma 3 in Bodnar and Reiß (2016) leads us to

ξ

n− kn
− 1

a.s.→ 0 and
√
n− kn

(
ξ

n− kn
− 1

)
D→ N (0, 2) (4)

for kn/n→ c ∈ (0, 1) as n→∞.

We also have that √
n− kn

z0√
n

D→ N (0, 1− c). (5)

Using the stochastic representation of a non-central F -distributed random variable,

i.e. u = ζ1/(kn−1)
ζ2/(n−kn+1)

with independent variables ζ1 ∼ χ2
kn−1,ns and ζ2 ∼ χ2

n−kn+1, we obtain

that

u− 1− ns

kn − 1
=

ζ1/(kn − 1)

ζ2/(n− kn + 1)
− 1− ns

kn − 1

=
n− kn + 1

ζ2

[(
ζ1

kn − 1
− 1− ns

kn − 1

)
−
(

1 +
ns

kn − 1

)(
ζ2

n− kn + 1
− 1

)]
.

From Lemma 3(a) in Bodnar and Reiß (2016) and using the assumption (A1), we have

7



that

ζ1
kn − 1

− 1− ns

kn − 1

a.s.→ 0 and
ζ2

n− kn + 1
− 1

a.s.→ 0.

Consequently, it holds that

u− 1− ns

kn − 1

a.s.→ 0⇒ u
a.s.→ 1 +

s

c
.

Hence, we get √(
1 +

kn − 1

n− kn + 1
u

)
lTΣ−1l

a.s.→
√

1 + s

1− c
lTΣ−1l (6)

for kn/n→ c ∈ (0, 1) as n→∞.

We also have that

n− 1

ξ
=
n− 1

n− k
n− k
ξ

a.s.→ 1

1− c
(7)

for kn/n→ c ∈ (0, 1) as n→∞.

Taking into account (4), (5), (6) and (7), we get

√
n− kn

(
θ̂ − n− 1

n− kn
θ

)
=

n− 1

ξ
θ
√
n− kn

(
1− ξ

n− kn

)
+α−1

n− 1

ξ

√(
1 +

kn − 1

n− kn + 1
u

)
lTΣ−1l

√
n− kn

z0√
n

D→ 1

1− c
θz1 + α−1

1

1− c

√
1 + s

1− c
lTΣ−1lz2

where z1 ∼ N (0, 2) and z2 ∼ N (0, 1− c) and they are independently distributed.

Finally, the application of the properties of normal random variables leads to

√
n− kn

(
θ̂ − n− 1

n− kn
θ

)
D→ N (0, σ2),

where

σ2 =
2

(1− c)2
θ2 +

1

(1− c)2
α−2lTΣ−1l +

1

(1− c)2
α−2slTΣ−1l.
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Let us note that

s = (µ− rf1k)TRl(µ− rf1k)
= (µ− rf1k)TΣ−1(µ− rf1k)− (µ− rf1k)TΣ−1llTΣ−1(µ− rf1k)/lTΣ−1l

and, therefore, we get that

α−2slTΣ−1l = α−2lTΣ−1l(µ− rf1k)TΣ−1(µ− rf1k)− θ2.

Hence, we obtain that

σ2 =
α−2

(1− c)2
[
lTΣ−1l + (αθ)2 + lTΣ−1l(µ− rf1k)TΣ−1(µ− rf1k)

]
.

The statement of the theorem is proved.

From Theorem 1, we can observe that the sample estimator of θ is biased and, there-

fore, bias correction can be applied. In Corollary 1, we construct an unbiased estimator

of θ and deliver its central limit theorem in the high-dimensional setting. The statement

of the corollary follows immediately from Theorem 1.

Corollary 1. Let θ̃ = n−kn
n−1 θ̂. Under the assumptions of Theorem 1, θ̃ is asymptotically

unbiased with asymptotic distribution√
n− kn

(
θ̃ − θ

)
D→ N (0, σ̆2)

where

σ̆2 = α−2lTΣ−1l + θ2 + α−2lTΣ−1l(µ− rf1k)TΣ−1(µ− rf1k).

Having established the asymptotic distribution we next consider testing the hypothesis

H0 : lTwTP = 0 against H1 : lTwTP = ρ 6= 0. (8)

in a high dimensional setting. Bodnar and Okhrin (2011) suggested the following test

statistics for (8)

T =

√
n(n− kn)

n− 1

αθ̂√
lTS−1l

√
1 + n

n−1 ŝ
,

where ŝ = (x − rf1k)T R̂l(x − rf1k) and R̂l = S−1 − S−1llTS−1/lTS−1l. Moreover, they

delivered the distribution of T both under the null and under alternative hypotheses (see

9



Bodnar and Okhrin (2011, Theorem 6)). We note that the density function of the statistic

T depends on the two parameters µ and Σ only over the quantities λ = αρ/
√

lTΣ−1l and

s = (µ− rf1k)TRl(µ− rf1k). λ can be viewed as a non-centrality parameter, while s can

be treated as the true value of the slope coefficient of the efficient frontier.

It also remarkable that the quantities s and λ relate in the following way

s = (µ− rf1k)TRl(µ− rf1k)
= (µ− rf1k)TΣ−1(µ− rf1k)− ((µ− rf1k)TΣ−1l)2/(lTΣ−1l)

= (µ− rf1k)TΣ−1(µ− rf1k)− (αρ/
√

lTΣ−1l)2

= (µ− rf1k)TΣ−1(µ− rf1k)− λ2.

Based on the relation between s and λ, one can see that under the null hypothesis λ = 0,

hence s = (µ−rf1k)TΣ−1(µ−rf1k). By construction of the test, value of ρ is defined for

technical purposes only, namely to be able to present the power of the test which depends

on what is specified under the alternative hypothesis. The quantity λ appears as a part

of the non-centrality parameter of the non-central t-distribution and it is proportional to

ρ. Both values are important if one would like to assess the values of the power function

when the null hypothesis is rejected. To this end, the power of the test based on the

statistic T can be considered as a function of two parameters λ and s, that is,

GT,ψ(λ, s) = 1− n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

(
Ftn−k,v(λ,y)(tn−k;1−ψ/2)− Ftn−k,v(λ,y)(tn−k;ψ/2)

)
×fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy,

where ψ denotes the size of the test, tn−k,v(λ,y) stands for a non-central t-distribution with

n − k degrees of freedom and non-centrality parameter v(λ, y) = λ/
√

1/n+ y/(n− 1),

while tn−k,ψ denotes the ψ-quantile of the central t-distribution with n − k degrees of

freedom.

In Figure 2, we illustrate the behaviour of the power of the test statistic T as a function

of λ for fixed values of s ∈ {1/2, 1, 2}. We consider the sample size to be n = 100 and

portfolio size to be k ∈ {10, 90}. We observe that the power of the test increase as s

decreases. We also note that the test rejects the null hypothesis for small values of λ.

The theorem below gives us the distribution of the test statistics T in a high dimen-

sional setting.

Theorem 2. Let x1, . . . ,xn be identically and independently distributed random vectors

with x1 ∼ Nk(µ,Σ), k < n. Let cn := kn/n → c ∈ (0, 1) as n → ∞. Also, let l

be a k-dimensional vector of constants. Then, under (A1), it holds that the asymptotic

distribution of T is given by
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Figure 2: Power of the test statistic T as a function of λ for s ∈ {1/2, 1, 2}, n = 100 and
k ∈ {10, 90}.

(a) T − √
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))
 D→ N (0, σ2

T )

where

σ2
T = 1 +

(αρ)2

lTΣ−1l(1 + s)

(
1

2
+
s2 + c+ 2s

2(1 + s)2

)
with s = (µ− rf1k)TRl(µ− rf1k) and Rl = Σ−1 −Σ−1llTΣ−1/lTΣ−1l;

(b) under the null hypothesis it holds that T
D→ N (0, 1).

Proof. From the proof of Proposition 1 of Bodnar and Schmid (2009), we know that the

conditional distribution of T is given by

T |ŝ = y ∼ tn−kn,υ(y)
n(n− kn + 1)

(kn − 1)(n− 1)
ŝ ∼ Fkn−1,n−kn+1,ns

with υ(y) =
√
nαρ√

lTΣ−1l(1+ n
n−1

y)
.
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Using the stochastic representation of a non-central t-distribution, we obtain

T |ŝ = y
d
=

√
nαρ√

lTΣ−1l(1+ n
n−1

y)
+ z0√

ξ
n−kn

=

√
n− kn
ξ

 √
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

u
) + z0


where z0 ∼ N (0, 1), ξ ∼ χ2

n−kn and u = n(n−kn+1)
(kn−1)(n−1) ŝ ∼ Fkn−1,n−kn+1,ns; moreover, z0, ξ

and u are independent.

We then have

T −
√
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))

=

√
n− kn
ξ

 √
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

u
) + z0

− √
nαρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))

=

√
n− kn
ξ

z0 +
αρ√

lTΣ−1l
(

1 + kn−1
n−kn+1

u
)

×

√n
(√

n− kn
ξ
− 1

)
+
√
n

1−

√
1 + kn−1

n−kn+1
u√(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))

 .

Putting the third term on a common denominator, we get

1−

√
1 + kn−1

n−kn+1
u√

1 + kn−1
n−kn+1

(
1 + n

kn−1s
) =

√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
)
−
√

1 + kn−1
n−kn+1

u√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
) .

Multiplying the numerator of the last expression by its conjugate, we obtain

1−

√
1 + kn−1

n−kn+1u√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
) =

kn−1
n−kn+1

(
1 + n

kn−1s− u
)

√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
)

+
√

1 + kn−1
n−kn+1u

× 1√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
) .
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Applying results from the proof of Theorem 1, we have that

u
a.s.→ 1 +

s

c
⇒
√

1 +
kn − 1

n− kn + 1
u

a.s.→
√

1 + s

1− c
(9)

and √
1 +

kn − 1

n− kn + 1

(
1 +

n

kn − 1
s

)
a.s.→

√
1 + s

1− c
. (10)

Using (9) and (10), the denominator becomes√
1 +

kn − 1

n− kn + 1

(
1 +

n

kn − 1
s

)
+

√
1 +

kn − 1

n− kn + 1
u

1√
1 + kn−1

n−kn+1

(
1 + n

kn−1s
)

a.s.→ 2
1 + s

1− c
(11)

for kn/n→ c ∈ (0, 1) as n→∞.

Using the stochastic representation of a non-central F distribution

u
d
=

η1/(kn − 1)

η2/(n− kn + 1)

with independent random variables η1 ∼ χ2
kn−1,ns and η2 ∼ χ2

n−kn+1, we have that

1 +
ns

kn − 1
− u d

= 1 +
ns

kn − 1
− η1/(kn − 1)

η2/(n− kn + 1)

=
1

η2/(n− kn + 1)

[(
η2

n− kn + 1
− 1

)(
1 +

ns

kn − 1

)
−
(

η1
kn − 1

− 1− ns

kn − 1

)]
.

Applying Lemma 3 in Bodnar and Reiß (2016), we obtain

η2
n− kn + 1

a.s.→ 1 and
η1

kn − 1
− 1− n

kn − 1
s
a.s.→ 0;

moreover, it holds that

√
n

(
η2

n− kn + 1
− 1

)
D→ N

(
0,

2

1− c

)
,

√
n

(
η1

kn − 1
− 1− ns

kn − 1

)
D→ N

(
0,

2

c

(
1 + 2

s

c

))
,
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for kn/n→ c ∈ (0, 1) as n→∞.

The application of Slutsky’s lemma leads to

√
n

(
1 +

ns

kn − 1
− u
)
D→ N

(
0,

2

c

(
1 + 2

s

c

)
+

2

1− c

(
1 +

s

c

)2)
. (12)

Hence, since ξ ∼ χ2
n−kn and the usage of (4) we have that

√
n

(√
n− kn
ξ
− 1

)
=

√
n
(
1− ξ

n−k

)
n−k
ξ√

n−k
ξ

+ 1

D→ 1

2
z̃1 (13)

where z̃1 ∼ N (0, 2
1−c).

Using (11) and (12), we obtain

√
n

1−

√
1 + kn−1

n−kn+1
u√(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
))
 D→

c
1−c

21+s
1−c

z̃2 (14)

where z̃2 ∼ N (0, σ2
0) with σ2

0 = 2
c

(
1 + 2 s

c

)
+ 2

1−c

(
1 + s

c

)2
.

Putting everything together and taking into account (6), (13) and (14) we obtain

T −
√
nαρ√

lTΣ+l
(

1 + kn−1
n−kn+1

(
1 + n

kn−1s
)) D→ z̃0 +

αρ√
lTΣ−1l1+s

1−c

(
1

2
z̃1 +

c
1−c

21+s
1−c

z̃2

)

where z̃0 ∼ N (0, 1) and z̃1 and z̃2 are defined in (13) and (14), respectively. Moreover,

z̃0, z̃1 and z̃2 are independent.

Finally, the application of the properties of normal random variables leads to

T − √
nαρ√

lTΣ−1l
(
1 + k−1

n−k+1

(
1 + n

k−1s
))
 D→ N (0, σ2

T )

with

σ2
T = 1 +

(αρ)2

lTΣ−1l(1 + s)
(1− c)

(
1

2(1− c)
+

c2

4(1 + s)2
σ2
u

)
= 1 +

(αρ)2

lTΣ−1l(1 + s)

(
1

2
+
s2 + 2s+ c

2(1 + s)2

)
.
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The statement of Theorem 2(b) follows by setting ρ = 0 under the null hypothesis. The

theorem is proved.

3 Simulation and Empirical Studies

3.1 Simulation Study

In this subsection we present the results of a Monte Carlo simulation study. We investigate

the performance of the high-dimensional asymptotic distribution of a linear combination

of the TP weights derived in Theorem 1, and the power function of the high-dimensional

asymptotic test that is obtained in Theorem 2.

We set α = 3, rf = 0.005, and l = (1, 0, . . . , 0)T . Each element of µ is generated

from the uniform distribution on [−0.1, 0.1]. The population covariance matrix is drawn

as follow:

• k non-zero eigenvalues of Σ are generated from the uniform distribution on (0,1);

• the eigenvectors are generated from the Haar distribution by simulating a Wishart

matrix with 30 degrees of freedom and identity covariance, and calculating its eigen-

vectors.

Both the mean vector and the population covariance matrix obtained in this manner

satisfy assumption (A1), they are then used in all simulation runs.

First, we evaluate the high-asymptotic distribution of θ̂ = lT ŵTP with the corre-

sponding finite-sample one obtained by applying the stochastic representation obtained

in Proposition 1. We consider different sample size n ∈ {50, 120, 250, 500} which roughly

corresponds to the length of one-year, two-years, five-years and ten-years of weekly fi-

nancial data. The results are compared for different values of concentration coefficients

c ∈ {0.1, 0.4, 0.7, 0.9} and it is based on N = 105 independent realisations of θ̂ generated

from the finite-sample distribution. Lastly, the corresponding kernel density estimator of

the finite sample density is computed with Epanechnikov kernel. The following algorithm

is used in drawing the finite-sample density

a) generate θ̂ by using the stochastic representation given in Proposition 1

θ̂
d
=
n− 1

ξ

(
θ + α−1

√(
1

n
+

kn − 1

n(n− kn + 1)
u

)
lTΣ−1lz0

)

where ξ ∼ χ2
n−kn , z0 ∼ N (0, 1) and u ∼ F(kn − 1, n − kn + 1, ns) with s =

(µ−rf1k)TRl(µ−rf1k) and Rl = Σ−1−Σ−1llTΣ−1/lTΣ−1l; moreover, the random

variables ξ, z0 and u are mutually independently distributed;
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b) compute

√
n− knσ−1

(
θ̂ − n− 1

n− kn
θ

)
(15)

with

σ2 =
α−2

(1− cn)2
[
lTΣ−1l + (αθ)2 + lTΣ−1l(µ− rf1k)TΣ−1(µ− rf1k)

]
;

c) repeat a)-b) N times.

In Figures 3-6, we present the results of the simulation study for c ∈ {0.1, 0.4, 0.7, 0.9},
respectively. The finite-sample distribution of (15) is shown as dashed black lines, while

the asymptotic distribution (standard normal) is shown as solid black lines. We observe

that all obtained results show a good performance of the asymptotic approximation except

for c = 0.9 and n = 50 where the approximation performs badly. It is noticed that even

for n = 50 and c ∈ {0.1, 0.4, 0.7} our asymptotic results seem to provide a reasonable

approximation.

From Theorem 1, we have noticed that the sample estimator θ̂ is biased estimate of θ.

In Table 1, we study behaviour of the relative bias for different values of the sample size

n ∈ {50, 120, 250, 500} and concentration ratio c ∈ {0.1, 0.4, 0.7, 0.9}. It can be observed

that the relative bias of the sample estimator of θ grows as the concentration coefficient

c get larger and is also independent of n. The simulations suggest that the relative bias

converges to c/(1− c) as it should be.

n c = 0.1 c = 0.4 c = 0.7 c = 0.9

50 0.1472 0.7377 2.7638 14.7060

120 0.1240 0.6933 2.5012 11.1048

250 0.1173 0.6849 2.4068 9.8687

500 0.1140 0.6746 2.3723 9.3402

Table 1: Relative bias of θ̂ for different values of the sample size n ∈ {50, 120, 250, 500}
and concentration ratio c ∈ {0.1, 0.4, 0.7, 0.9}.

The second part of our simulation study compares the exact test with the high-

dimensional asymptotic test thatis derived in Theorem 2.

In Figures 7-10, we summarize the results of that comparison for c ∈ {0.1, 0.4, 0.7, 0.9},
respectively, with s = 1 and ψ = 5%.The dashed black line shows the power function of

the exact test, while the power function of the high-dimensional test is plotted as a solid

black line. In a similar way to the asymptotic distribution of the linear combination of the

estimated TP weights, the power of the asymptotic test is indistinguishable from the power

16



obtained for the finite-sample test. But for lower sample size and large concentration

coefficient, i.e. n = 50 and c = 0.9, the power of the asymptotic test does not show a

good performance.

n 50 120 250 500
c 0.1 0.4 0.7 0.9 0.1 0.4 0.7 0.9 0.1 0.4 0.7 0.9 0.1 0.4 0.7 0.9

Exact 0.0512 0.0504 0.0508 0.0505 0.0503 0.0502 0.0502 0.0496 0.0504 0.0505 0.0503 0.0508 0.0497 0.0506 0.0510 0.0504
Asymptotic 0.0576 0.0596 0.0700 0.1083 0.0531 0.0540 0.0580 0.0734 0.0517 0.0524 0.054 0.0618 0.0503 0.0514 0.0529 0.0556

Table 2: Empirical size of the exact and asymptotic tests for n ∈ {50, 120, 250, 500} and
different values of concentration ratio c ∈ {0.1, 04, 0.7, 0.9}.

Table 2 reports the empirical size of the exact and asymptotic tests for considered

values of n and different values of the concentration coefficient c. We observe that the

asymptotic test is oversized for large c and small n. Otherwise the results are quite similar.

3.2 Empirical study

In this part, we present the results of an empirical study in which we show how the

theoretical results obtained in Section 2 can be applied to real data. We consider the

weekly averages of the daily log returns data from S&P 500 of 270 stocks for the period

from January 3, 2007, to December 27, 2017, making a total of 574 observations. We

use the weekly returns of the three-moths US treasury bill as the risk free-rate, and the

risk aversion coefficient is chosen to be 3. We choose to use weekly logarithmic returns

because they can be well approximated by Gaussian distribution (see Fama (1976), Tu

and Zhou (2004)).

In Figures 11-14, we present the dynamic behaviour of the p-values obtained from the

exact and the asymptotic tests on the hypotheses (8), specifically testing the hypothesis

that the weight of one stock is zero with l a vector of zeros except for one element set to one,

by using a rolling window estimator with an estimation window of 300 weeks, i.e. n = 300.

We analyze portfolios with different number of assets such that c ∈ {0.1, 0.4, 0.7, 0.9},
i.e. k ∈ {30, 120, 210, 270}. The figures present the results for four stocks: Abbott

Laboratories, Affiliated Managers Group Inc, Alphabet Inc Class A, and 3M Company.

First of all, we would note that the p-values obtained from both tests are indistinguishable

indicating that the high-dimensional asymptotic test performs well. Next, we can observe

that in most cases the obtained p-values are relatively large resulting in the conclusion

that the null hypothesis (8) cannot be rejected. However, the TP weights are significantly

different from zero for all considered stocks from the end of 2012 until the middle of 2014

for the small portfolio size k = 30. For Abbott Laboratories and Affiliated Managers

Group Inc the TP weights are also significant well into 2017 and 2016, respectively. For

larger k and hence larger investment universes we find few occasions with significant TP

weights. This is hardly surprising for two reasons. With larger k and fixed sample size c
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increases and we can expect lower power. In addition as the investment universe increases

the true TP weights will, on average across stocks, be smaller.

4 Conclusion

This paper discussed the statistical properties of the TP weights in high dimension. In

particular, we delivered the high-dimensional asymptotic distribution of the weights as

well as the high-dimensional asymptotic test on the weights. All theoretical results are

obtained under the assumption of normality and they can be extended to the more general

case which deserves a separate study. In particular, we are planning to develop new

techniques in random matrix theory that will be used for delivering a high-dimensional

theory on the weights with more general distributional assumptions. In future research,

we would also extend our results to the case when c > 1. This case is more complicated

since the weights will depend on the inverse of the singular sample covariance matrix.
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Figure 3: Asymptotic distribution and the kernel density estimator of the finite sample
distribution of standardized θ̂ for c = 0.1.
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Figure 4: Asymptotic distribution and the kernel density estimator of the finite sample
distribution of standardized θ̂ for c = 0.4.
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Figure 5: Asymptotic distribution and the kernel density estimator of the finite sample
distribution of standardized θ̂ for c = 0.7.
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Figure 6: Asymptotic distribution and the kernel density estimator of the finite sample
distribution of standardized θ̂ for c = 0.9.
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Figure 7: Powers of the exact test and of the high-dimensional asymptotic test based on
the statistic T for c = 0.1 with s = 1 and ψ = 5%.
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Figure 8: Powers of the exact test and of the high-dimensional asymptotic test based on
the statistic T for c = 0.4 with s = 1 and ψ = 5%.
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Figure 9: Powers of the exact test and of the high-dimensional asymptotic test based on
the statistic T for c = 0.7 with s = 1 and ψ = 5%.
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Figure 10: Powers of the exact test and of the high-dimensional asymptotic test based on
the statistic T for c = 0.9 with s = 1 and ψ = 5%.
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Figure 11: p-values of the exact and the asymptotic tests on the tangency portfolio weights
of Abbott Laboratories.
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Figure 12: p-values of the exact and the asymptotic tests on the tangency portfolio weights
of Affiliated Managers Group Inc.
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Figure 13: p-values of the exact and the asymptotic tests on the tangency portfolio weights
for Alphabet Inc Class A.
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Figure 14: p-values of the exact and the asymptotic tests on the tangency portfolio weights
of 3M Company.
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Abstract. In this paper we consider the product of a singular Wishart random matrix and a singular

normal random vector. A very useful stochastic representation of this product is derived, using which its
characteristic function and asymptotic distribution under the double asymptotic regime are established.

We further document a good finite sample performance of the obtained high-dimensional asymptotic

distribution via an extensive Monte Carlo study.
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1. Introduction

The multivariate normal distribution is one of the basic distributions in probabil-
ity theory and a building block in multivariate statistical analysis. It is also used as
a standard assumption in many applications where the normal distribution is usually
accompanied by the Wishart distribution. For instance, when we consider a sample of
size n from a k-dimensional normal distribution, then the unbiased estimators for the
mean vector and covariance matrix have a k-dimensional normal distribution and a k-
dimensional Wishart distribution, respectively. Moreover, they are independent (see e. g.
[16, Chapter 3]).

A number of papers deal either with the properties of the sample mean vector or with
the properties of the sample covariance matrix, although these two random objects often
appear together in the expressions of statistics. Consequently, a question arises how the
distributions of functions involving both a Wishart matrix and a normal vector can be
characterised. Recently, this topic has attracted a lot of attention in the literature from
both the theoretical perspectives (cf. [3, 6]) and the applications (see e. g. [2, 12, 13]).
While [6, 15] derived the exact distribution and the approximative distribution of the
product of an inverse Wishart matrix and a normal vector, [3] presented similar results
for the product of a Wishart matrix and a normal vector. The product of an inverse
Wishart matrix and a normal vector has direct applications in discriminant analysis (cf.
[19]) and in portfolio theory (see e. g. [7]), whereas the product of a Wishart matrix and a
normal vector arises in Bayesian statistics when the aim is to infer the coefficients of the
discriminant function or the optimal portfolio weights by employing the inverse Wishart
- normal prior which is a conjugate prior for the mean vector and the covariance matrix
under normality (see e. g. [1]).

Singular covariance matrix is present in practical applications as well, especially when
data generating process is large-dimensional. For example, the construction of an optimal
portfolio with a singular covariance matrix has become an important topic in finance (see
e. g. [4, 17]). While the normal distribution with the singular covariance matrix is known
as the singular normal distribution in statistical literature, there is no unique definition
in the case of the Wishart distribution. The singular Wishart distribution introduced by
[14] and [20] deals with the case when the number of degrees of freedom is smaller than the



38 T. BODNAR, S. MAZUR, S. MUHINYUZA, N. PAROLYA

process dimension. Its practical relevance was discussed in [22], while some theoretical
findings were derived in [5, 21]. Another type of the singular Wishart distributions, the
so-called pseudo-Wishart distribution, was defined in [8] where a model with a singular
covariance matrix was proposed. The latter stochastic model is considered in the present
paper.

We contribute to the existent literature by deriving a stochastic representation for the
product of a singular Wishart matrix and a normal vector, which provides an elegant
way of characterising the finite sample distribution of the product. Also, it appears to be
very useful in the derivation of the asymptotic distribution under the high-dimensional
asymptotic regime, i.e. when both the sample size and the process dimension become
very large.

The rest of the paper is structured as follows. Section 2 contains several distributional
properties of the singular Wishart distribution which are used as a tool to prove the
main results of the paper presented in Section 3. Here, the distribution of the product
of a singular Wishart matrix and a singular normal random vector is derived in terms
of a stochastic representation from which we also obtain the characteristic function of
the product. Furthermore, we prove the asymptotic normality of the product under
the high-dimensional asymptotic regime. The finite sample performance of the obtained
asymptotic results is discussed in Section 4, while Section 5 presents the summary.

2. Preliminary results

We start this section with the formal definition of the singular normal distribution
and singular Wishart distribution.

Definition 1. A random vector z is said to have a singular normal distribution with
mean vector µ and covariance matrix Σ if its characteristic function is given by

ϕz(u) = exp

(
iµTu− 1

2
uTΣu

)
,

where Σ is a positive semi-definite matrix with rank(Σ) = r < k. We denote this
distribution by z ∼ Nk(µ,Σ).

Definition 2. Let z1, ..., zn be independent and identically distributed where zi is sin-
gular normal with zero mean vector and covariance matrix Σ, rank(Σ) = r < k, and let
Z = [z1, ..., zn]. Then the random matrix A = ZZT has a singular Wishart distribution
with n degrees of freedom and covariance matrix Σ. We denote this distribution by
A ∼ Wk(n,Σ).

Throughout the paper, no assumption is made about the relationship between the
degrees of freedom n and the dimension k. The results are valid in both cases n ≥ k (the
Wishart distribution with positive semi-definite covariance matrix Σ) and k < n (the
singular Wishart distribution with positive semi-definite covariance matrix Σ). Also, we
use the symbol Ik to denote the k × k identity matrix, ⊗ is the Kronecker product, and

the symbol
d
= stands for the equality in distribution.

Next, we present several distributional properties of the singular Wishart distribution
which are used in proving the main results of the paper. In Proposition 1, we derive
the distribution of a linear symmetric transformation of the singular Wishart random
matrix.

Proposition 1. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let M : p× k be a matrix
of constants with rank(M) = p such that MΣ 6= 0. Then

MAMT ∼ Wp(n,MΣMT ).

Moreover, if rank(MΣ) = p ≤ r, then MAMT and MΣMT are of the full rank p.
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Proof. From Theorem 5.2 of [21], we have that the stochastic representation of A is given
by

A
d
= XXT with X ∼ Nk,n(0,Σ⊗ In).

Then, using Theorem 2.4.2 of [10], we get

MAMT d
= MXXTMT d

= YYT ,

where Y ∼ Np,n(0, (MΣMT )⊗ In). This completes the proof of the proposition. �

An application of Proposition 1 leads to the following result summarized in Proposi-
tion 2.

Proposition 2. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let W : p×k be a random
matrix which is independent of A such that rank(WΣ) = p ≤ r ≤ n with probability one.
Then

(WΣWT )−1/2(WAWT )(WΣWT )−1/2 ∼ Wp(n, Ip)

and is independent of W.

Proof. Using the fact that W and A are independently distributed, we obtain that the
conditional distribution of WAWT |(W = W0) is equal to the distribution of W0AWT

0 .
Then, applying Proposition 1, we obtain

(W0ΣWT
0 )−1/2(W0AWT

0 )(W0ΣWT
0 )−1/2 ∼ Wp(n, Ip).

Since this distribution does not depend on W, it is also the unconditional distribution
of (WΣWT )−1/2(WAWT )(WΣWT )−1/2. The proposition is proved. �

In the next corollary, we consider a special case of Proposition 2 with p = 1.

Corollary 1. Let A ∼ Wk(n,Σ) with rank(Σ) = r ≤ k and let w be a k-dimensional
vector which is independent of A with P (wTΣ = 0) = 0. Then

wTAw

wTΣw
∼ χ2n,

and is independent of w.

3. Main results

In this section, we present the main results of the paper which are complementary
to the ones obtained in [3] to the case of high-dimensional data and singular covariance
matrix.

3.1. Finite sample results. Let z be a k-dimensional singular normally distributed
random vector with mean vector µ and covariance matrix κΣ, κ > 0, such that rank(Σ) =
r < k, i. e. z ∼ Nk(µ, κΣ). Also, let M be a p× k matrix of constants with rank(M) =
p ≤ r ≤ min{n, k} such that MΣ 6= 0. We are interested in the distribution of MAz,
when A and z are independently distributed where A has a singular Wishart distribution
as defined in Section 2.

In Theorem 1, we derive a stochastic representation for MAz. The stochastic rep-
resentation is a tool in the theory of multivariate statistics and it is frequently used in
Monte Carlo simulations (cf. [9]). Its importance in the theory of elliptically contoured
distributions is well described by [11].
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Theorem 1. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ,κΣ), κ > 0.
We assume that A and z are independently distributed. Also, let M : p× k be a matrix
of constants of rank p < r ≤ n and denote Q = PTP with P = (MΣMT )−1/2MΣ1/2.
Then the stochastic representation of MAz is given by

MAz
d
= ζMΣ1/2t +

√
ζ(MΣMT )1/2

[
√

tT tIp −
√

tT t−
√

tT (Ik −Q)t

tTQt
PttTPT

]
z0,

where ζ ∼ χ2n, t ∼ Nk(Σ1/2µ, κΣ2), and z0 ∼ Np(0, Ip); ζ, t, and z0 are mutually
independent.

Proof. Since A and z are independently distributed, it holds that the conditional distri-
bution of MAz|(z = z∗) is equal to the distribution of MAz∗.

Let M̃ be the matrix which is obtained from M by adding a row vector z∗, i.e.

M̃ = (MT , z∗)T . Consider the following two partitioned matrices

Ã = M̃AM̃T =

(
MAMT MAz∗

z∗TAMT z∗TAz∗

)
=

(
Ã11 Ã12

Ã21 Ã22

)
and

Σ̃ = M̃ΣM̃T =

(
MΣMT MΣz∗

z∗TΣMT z∗TΣz∗

)
=

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
.

Since A ∼ Wk(n,Σ) and rank(M̃) = p + 1 ≤ r, following Proposition 1, it holds that

Ã ∼ Wp+1(n, Σ̃). Using Theorem 3.2.10 of [16], we get the conditional distribution of

Ã12 = MAz∗ given Ã22 can be expressed as

Ã12|Ã22 ∼ Np

(
Σ̃12Σ̃−122 Ã22, Σ̃11·2Ã22

)
with Σ̃11·2 = Σ̃11 − Σ̃12Σ̃−122 Σ̃21.

Let ζ = Ã22Σ̃−122 . Then, from Corollary 1, we get that ζ ∼ χ2n, and it is independent
of z. Hence,

MAz|ζ, z ∼ Np

(
ζMΣz, ζ(zTΣzMΣMT −MΣzzTΣMT )

)
,

which leads to the stochastic representation of MAz given by

MAz
d
= ζMΣz +

√
ζ(zTΣzMΣMT −MΣzzTΣMT )1/2z0, (1)

where ζ ∼ χ2n, z ∼ Nk(µ, κΣ), and z0 ∼ Np(0, Ip). Moreover, ζ, z, and z0 are mutually
independent.

Next, we calculate the square root of (zTΣzMΣMT −MΣzzTΣMT ) using the fol-
lowing equality

(D− bbT )1/2 = D1/2(Ip − cD−1/2bbTD−1/2)

with c =
1−
√

1−bTD−1b

bTD−1b
, b = MΣz, and D = zTΣzMΣMT that leads to

MAz
d
= ζMΣz +

√
ζ(MΣMT )1/2 ×

×

[
√

zTΣzIp −
√

zTΣz−
√

zT (Σ−Σ1/2QΣ1/2)z

zTΣ1/2QΣ1/2z
PΣ1/2zzTΣ1/2PT

]
z0,

where P = (MΣMT )−1/2MΣ1/2 and Q = PTP.
Finally, making the transformation t = Σ1/2z ∼ Nk(Σ1/2µ, κΣ2), we obtain the

statement of the theorem. �

Next, we consider the special case of Theorem 1 when p = 1 and M = mT .
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Corollary 2. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ), κ > 0.
We assume that A and z are independently distributed. Let m be a k-dimensional vector
of constants such that mTΣm > 0. Then the stochastic representation of mTAz is given
by

mTAz
d
= ζmTΣz +

√
ζ
[
zTΣz ·mTΣm− (mTΣz)2

]1/2
z0, (2)

where ζ ∼ χ2n and z0 ∼ N (0, 1); ζ, z0, and z are mutually independent.

The proof of Corollary 2 follows directly from (1). The result of the corollary is
very useful from the viewpoint of computational statistics. Namely, in order to get a
realization of mTAz it is sufficient to simulate two random variables from the standard
univariate distributions together with a random vector which has a singular multivariate
normal distribution. There is no need to generate a large-dimensional object A and, as
a result, the application of (2) speeds up the simulations where the product of A and z
is present.

Another application of Corollary 2 leads to the expression of the characteristic function
of Az presented in the following theorem.

Theorem 2. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ). We
assume that A and z are independently distributed. Then the characteristic function of
Az is given by

ϕAz(u) =
exp
(
−κ−1

2 µ
TRΛ−1RTµ

)
κr/2|Λ|1/2

∫ ∞

0

|Ω(ζ)|−1/2fχ2
n
(ζ)×

× exp

(
iζν(ζ)TΛRTu− ζ

2

2
uTRΛΩ(ζ)−1ΛRTu +

1

2
ν(ζ)TΩ(ζ)ν(ζ)

)
dζ,

where ν(ζ) = κ−1Ω(ζ)−1Λ−1RTµ,

Ω(ζ) = κ−1Λ−1 + ζ
[
Λ · uTΣu−ΛRTuuTRΛ

]
,

and Σ = RΛRT is the singular value decomposition of Σ with diagonal matrix Λ con-
sisting of all r non-zero eigenvalues of Σ and the k × r matrix R of the corresponding
eigenvectors; fχ2

n
denotes the density function of the χ2 distribution with n degrees of

freedom.

Proof. From the stochastic representation derived in Corollary 2, we get that

ϕAz(u) = E
(
exp
(
iuTAz

))
=

= E
(

exp
(
iζuTΣz + i

√
ζ
[
zTΣz · uTΣu− (uTΣz)2

]1/2
z0

))
=

= E
(

exp
(
iζuTΣz

)
E
(

exp
(
i
√
ζ
[
zTΣz · uTΣu− (uTΣz)2

]1/2
z0

)
|ζ, z

))
=

= E
(

exp
(
iζuTΣz

)
exp

(
−1

2
ζ
[
zTΣz · uTΣu− (uTΣz)2

]))
=

= E
(
E
(

exp
(
iζuTΣz

)
exp

(
−1

2
ζ
[
zTΣz · uTΣu− (uTΣz)2

])
|ζ
))

=

= E
(
E
(

exp
(
iζvTΛy

)
exp

(
−1

2
ζ
[
yTΛy · vTΛv − (vTΛy)2

])
|ζ
))

,

where v = RTu; Σ = RΛRT is the singular value decomposition of Σ; y = RT z ∼
∼ Nr(RTµ, κΛ) has a non-singular multivariate normal distribution.

Hence,

E
(

exp
(
iζvTΛy

)
exp

(
−1

2
ζ
[
yTΛy · vTΛv − (vTΛy)2

])
|ζ
)

=



42 T. BODNAR, S. MAZUR, S. MUHINYUZA, N. PAROLYA

=
1

(2πκ)r/2|Λ|1/2
∫

Rr

exp
(
iζvTΛy

)
exp

(
−1

2
ζ
[
yTΛy · vTΛv − (vTΛy)2

])
×

× exp

(
−κ
−1

2
(y −RTµ)TΛ−1(y −RTµ)

)
dy

where

κ−1(y −RTµ)TΛ−1(y −RTµ) + ζ
[
yTΛy · vTΛv − (vTΛy)2

]
=

= (y − ν(ζ))TΩ(ζ)(y − ν(ζ)) + d

with

Ω(ζ) = κ−1Λ−1 + ζ
[
Λ · vTΛv −ΛvvTΛ

]
,

ν(ζ) = κ−1Ω(ζ)−1Λ−1RTµ,

d = κ−1µTRΛ−1RTµ− ν(ζ)TΩ(ζ)ν(ζ) = κ−1µTΣ+µ− ν(ζ)TΩ(ζ)ν(ζ),

and Σ+ the Moore–Penrose inverse.
As a result, we get

ϕAz(u) =
exp
(
−κ−1

2 µ
TΣ+µ

)
κr/2|Λ|1/2

∫ ∞

0

|Ω(ζ)|−1/2fχ2
n
(ζ)×

× exp

(
iζν(ζ)TΛv − ζ

2

2
vTΛΩ(ζ)−1Λv +

1

2
ν(ζ)TΩ(ζ)ν(ζ)

)
dζ.

This completes the proof of the theorem. �

3.2. Asymptotic distribution under double asymptotic regime. In this section
we derive the asymptotic distribution of MAz under double asymptotic regime, i.e. when
both r and n tend to infinity such that r/n → c ∈ [0,+∞). In the derivation of the
asymptotic distribution we rely on the results of Corollary 2.

The following conditions are needed to ensure the validity of the asymptotic results
presented in this section.

(A1) Let (λi,ui) denote the set of non-zero eigenvalues and eigenvectors of Σ. We
assume that there exist l1 and L1 such that

0 < l1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λr ≤ L1 <∞

uniformly on k.
(A2) There exists L2 such that

|uT
i µ| ≤ L2 for all i = 1, . . . , r uniformly on k.

It is noted that Assumptions (A1) and (A2) are valid uniformly on k, that is both
constants L1 and L2 should not depend on k. Later on we also assume that κ increases
with r. This condition is needed in order to ensure that the random vector z is well
concentrated around its mean vector in large dimension. For example, fulfilled in the
case, when z is the sample mean computed from the independent normal sample.

Theorem 3. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ),κ > 0.
Assume r

n = c + o(n−1/2), c ∈ [0,+∞) and κr = O(1) as n → ∞. Also, let m be

a k-dimensional vector of constants such that mTΣm > 0 and |uT
i m| ≤ L2 for all

i = 1, . . . , r uniformly on k. Assume that A and z are independently distributed. Then,
under (A1) and (A2), it holds that the asymptotic distribution of mTAz is given by

√
nσ−1

(
1

n
mTAz−mTΣµ

)
d−→ N (0, 1) for r/n→ c as n→∞,
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where

σ2 =
(
mTΣµ

)2
+ mTΣm

[
κtr(Σ2) + µTΣµ

]
+
κ

c
mTΣ3m.

Proof. From Corollary 2, the stochastic representation of mTAz is given by

mTAz
d
= ζmTΣz +

√
ζ
[
zTΣz ·mTΣm− (mTΣz)2

]1/2
z0,

with ζ ∼ χ2n, z0 ∼ N (0, 1) and z ∼ Nk(µ, κΣ),κ > 0; ζ, z0, and z are mutually indepen-
dent.

From the property of χ2-distribution, we immediately obtain the asymptotic distribu-
tion of ζ given by

√
n

(
ζ

n
− 1

)
d→ N (0, 2) as n→∞. (3)

Further, it holds that
√
n(z0/

√
n) ∼ N (0, 1) for all n, consequently it is its asymptotic

distribution.
We next show that mTΣz and zTΣz are jointly asymptotically normally distributed

under the high-dimensional asymptotic regime. For any a1 ∈ R and a2 ∈ R, we consider

a1z
TΣz + 2a2m

TΣz = a1

(
z +

a2
a1

m

)T

Σ

(
z +

a2
a1

m

)
− a22

a1
mTΣm =

= a1z̃
TΣz̃− a22

a1
mTΣm,

where z̃ ∼ Nk(µa,κΣ) with µa = µ + a2

a1
m. By [18] the random variable z̃TΣz̃ can be

expressed as

z̃TΣz̃
d
= κ

r∑
i=1

λ2i ζi with ζi
d∼ χ21(δ2i ), δ2i = κ−1λ−1i

(
uT
i µa

)2
,

where the symbol χ2d(δ) denotes the non-central chi-squared distribution with d degrees
of freedom and non-centrality parameter δ.

Next, we apply the Lindeberg central limit theorem to the i.i.d. random variables
Vi = κλ2i ζi. Let σ2i = V(Vi) and s2n = V(

∑r
i=1 Vi). It holds that

s2n = V

(
r∑

i=1

Vi

)
= κ2

r∑
i=1

λ4iV(ζi) = κ2
r∑

i=1

λ4i 2(1 + 2δ2i ) =

= κ2
r∑

i=1

(
2λ4i + 4κ−1λ3i (uT

i µa)2
)

= κ2
[
2tr(Σ4) + 4κ−1µTa Σ3µa

]
.

In order to verify the Lindeberg condition, we need to check if for any small ε > 0 it
holds that

lim
r→∞

1

s2n

r∑
i=1

E
[
(Vi − E(Vi))

21{|Vi−E(Vi)|>εsn}
]

= 0, (4)

where
r∑

i=1

E
[
(Vi − E(Vi))

21{|Vi−E(Vi)|>εsn}
] Cauchy–Schwarz

≤

Cauchy–Schwarz

≤
r∑

i=1

√
E[(Vi − E(Vi))4]

√
E
[
1{|Vi−E(Vi)|>εsn}

]
=

=

r∑
i=1

√
E[(Vi − E(Vi))4]

√
P[|Vi − E(Vi)| > εsn]

Chebychev

≤
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Chebychev

≤
r∑

i=1

√
E[(Vi − E(Vi))4]

σi

εsn
=

= 2
√

3
κ2

ε

r∑
i=1

λ4i

√
(1 + 2δ2i )2 + 4(1 + 4δ2i )

σi

sn
.

By using

(1 + 2δ2i )2 + 4(1 + 4δ2i ) = (5 + 2δ2i )2 − 20 ≤ (5 + 2δ2i )2,

for σmax = supi σi, we get the following inequality

1

s2n

r∑
i=1

E
[
(Vi − E(Vi))

21{|Vi−E(Vi)|>εsn}
]
≤ 2
√

3
κ2

ε

σmax

sn

1

s2n

r∑
i=1

λ4i (5 + 2δ2i ) =

=

√
3

ε

σmax

sn

5tr(Σ4) + 2κ−1µTa Σ3µa
tr(Σ4) + 2κ−1µTa Σ3µa

≤ 5
√

3

ε

σmax

sn
.

Using

(uT
i µa)2 =

(
uT
i µ+

a2
a1

uT
i m

)2

= 2(uT
i µ)2 + 2

(
a2
a1

uT
i m

)2

=

= 2L2
2

(
1 +

(
a2
a1

)2
)

<∞

and Assumptions (A1) and (A2), we get

σ2max

s2n
=

supi(λ
4
i (1 + 2δ2i ))

tr(Σ4) + 2κ−1µTa Σ3µa
=

supi(λ
4
i + 2κ−1λ3i (uT

i µa)2)

tr(Σ4) + 2κ−1µTa Σ3µa
→ 0,

which verifies the Lindeberg condition.
Since

r∑
i=1

E(Vi) = κ

r∑
i=1

λ2iE(ζi) = κ

r∑
i=1

λ2i
(
1 + δ2i

)
= κtr(Σ2) + µTa Σµa

we obtain by using the Lindeberg central limit theorem that√
1

κ

z̃TΣz̃− κtr(Σ2)− µTa Σµa√
2κtr(Σ4) + 4µTa Σ3µa

d−→ N (0, 1).

Let a = (a1, 2a2)T . Then the last identity leads to

√
n

[
aT

(
zTΣz
mTΣz

)
− aT

(
κtr(Σ2) + µTΣµ

mTΣµ

)]
d−→

d−→ N
(

0,aT κ

c

(
2κtr(Σ4) + 4µΣ3µ 2mTΣ3µ

2mTΣ3µ mTΣ3m

)
a

)
, (5)

which implies that the vector
(
zTΣz,mTΣz

)T
is asymptotically multivariate normally

distributed because a is an arbitrary fixed vector.
Taking into account (3),(5) and the fact that ζ, z0, and z are mutually independent,

we get the following asymptotic result

√
n




ζ
n

zTΣz
mTΣz

z0√
n

−


1
κtr(Σ2) + µTΣµ

mTΣµ
0


 d−→
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d−→ N

0,


2 0 0 0

0 2κ2

c tr(Σ4) + 4κ
cµ

TΣ3µ 2κ
c mTΣ3µ 0

0 2κ
c mTΣ3µ κ

c mTΣ3m 0
0 0 0 1


.

Finally, the application of the delta method leads to

√
nσ−1

(
1

n
mTAz−mTΣµ

)
d−→ N (0, 1),

where

σ2 =

(
mTΣµ 0 1

[[
κtr(Σ2) + µTΣµ

]
mTΣm−

(
mTΣµ

)2] 1
2

)
×

×


2 0 0 0

0 2κ2

c tr(Σ4) + 4κ
cµ

TΣ3µ 2κ
c mTΣ3µ 0

0 2κ
c mTΣ3µ κ

c mTΣ3m 0
0 0 0 1

×

×


mTΣµ

0
1[[

κtr(Σ2) + µTΣµ
]
mTΣm−

(
mTΣµ

)2] 1
2

 =

=
(
mTΣµ

)2
+ mTΣm

[
κtr(Σ2) + µTΣµ

]
+
κ

c
mTΣ3m. �

Finally, we extend the results of Theorem 3 to the case of finite number of linear
combinations of the elements of Az. The results are summarised in the following theorem.

Theorem 4. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ),
κ > 0. Assume r

n = c + o(n−1/2), c ∈ [0,+∞) and κr = O(1) as n → ∞. Let

M = (m1, . . . ,mp)T : p × k be a matrix of constants of rank p < r ≤ n with proba-
bility one and let |uT

i mj | ≤ L2 for all i = 1, . . . , r and j = 1, . . . , p uniformly on k.
Assume that A and z are independently distributed. Then under (A1) and (A2) the
asymptotic distribution of MAz under the double asymptotic regime is given by

√
nΩ−1/2

(
1

n
MAz−MΣz

)
d−→ Np(0, Ip) for r/n→ c as n→∞,

where

Ω = MΣµµTΣMT + MΣMT
[
κtr(Σ2) + µTΣµ

]
+
κ

c
MΣ3MT .

Proof. For all l ∈ Rp-fixed, we consider lTMAz. The rest of the proof follows from
Theorem 3 with m = MT l and the fact that l is an arbitrary vector. �

4. Finite sample performance

In this section, we present the results of a Monte Carlo simulation study where the
performance of the obtained asymptotic distribution for the product of a singular Wishart
matrix and a singular Gaussian vector is investigated.

In our simulation, we fix m = 1/k where 1 denotes the k-dimensional vector of ones
and generated each element of µ from the uniform distribution on [−1, 1]. The population
covariance matrix was drawn in the following way:

• r non-zero eigenvalues of Σ were generated from the uniform distribution on
(0, 1) and the rest were set to be zero;

• the eigenvectors were generated from the Haar distribution by simulating a
Wishart matrix with identity covariance matrix and calculating its eigenvectors.
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Both the mean vector and the population covariance matrix obtained by such setting
satisfy the assumptions (A1) and (A2).
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(a) n = 500, c = 0.1, k = 750
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(b) n = 500, c = 0.5, k = 750
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(c) n = 500, c = 0.8, k = 750
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(d) n = 500, c = 0.95, k = 750

Figure 1. Asymptotic distribution and the kernel density estimator of
the finite sample distribution calculated for the product of a singular
Wishart matrix and a singular normal vector (n = 500)

We compare the asymptotic density of the standardized random variable mTAz with
its finite sample one which is obtained by applying the stochastic representation of Corol-
lary 2. More precisely, we draw N = 104 independent realizations of the standardized
random variable mTAz by using the following algorithm.

a) Generate mTAz by using stochastic representation (2) of Corollary 2 expressed
as

mTAz
d
= ζmTΣz +

√
ζ
[
zTΣz ·mTΣm− (mTΣz)2

]1/2
z0,

where ζ ∼ χ2n, z0 ∼ N (0, 1), z ∼ Nk(µ,κΣ); ζ, z0, and z are mutually indepen-
dent.
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b) Compute
√
nσ−1

(
1

n
mTAz−mTΣµ

)
,

where

σ2 =
(
mTΣµ

)2
+ mTΣm

[
κtr(Σ2) + µTΣµ

]
+
κ

c
mTΣ3m.

c) Repeat a)–b) N times.

Then, the elements of the generated sample are used to construct a kernel density es-
timator which is compared to the asymptotic distribution, i.e. to the density of the
standard normal distribution. As a kernel, we make use of the Epanechnikov kernel with
the bandwidth chosen by applying Silverman’s rule of thumb.
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(a) n = 1000, c = 0.1, k = 750
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(b) n = 1000, c = 0.5, k = 750
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(c) n = 1000, c = 0.8, k = 990
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(d) n = 1000, c = 0.95, k = 990

Figure 2. Asymptotic distribution and the kernel density estimator of
the finite sample distribution calculated for the product of a singular
Wishart matrix and a singular normal vector (n = 1000)
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(a) n = 500, c = 2, k = 1200
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(b) n = 1000, c = 2, k = 2100

Figure 3. Asymptotic distribution and the kernel density estimator of
the finite sample distribution calculated for the product of a singular
Wishart matrix and a singular normal vector (n ∈ {500, 1000})

The results of the simulation study are summarized in Figure 1 for n = 500, in Figure 2
for n = 1000, and for n ∈ {500, 100} with c = 2 in Figure 3. In all cases we set κ = 1/n.
Finally, k = 750 is chosen for n = 500 and k ∈ {750, 990} for n = 1000. For c = 2,
k = 1200 is chosen for n = 500 and k = 2100 for n = 1000. Furthermore, several
values of r are considered such that c = {0.1, 0.5, 0.8, 0.95} in Figures 1 and 2, while
c = 2 in Figure 3. The finite sample distributions are shown as dashed lines, while the
asymptotic distributions are solid lines. All obtained results show a good performance of
the asymptotic approximation which is almost indistinguishable from the corresponding
finite sample density. This result remains true even for the values of c = 0.95 and c = 2.

5. Summary

The Wishart distribution and normal distribution are widely spread in both statistics
and probability theory with numerous and useful applications in finance, economics,
environmental sciences, biology, etc. Different functions involving a Wishart matrix and
a normal vector have been studied in statistical literature recently. However, to the
best of our knowledge, combinations of a singular Wishart matrix and a singular normal
vector have not been investigated up to now.

In this paper we analyse the product of a singular Wishart matrix and a singular
Gaussian vector. A very useful stochastic representation of this product is obtained,
which is later used to derive its characteristic function as well as to provide an efficient
way how to simulate the elements of the product in practice. With the use of the derived
stochastic representation, there is no need in generating a large dimensional Wishart
matrix. Its application speeds up simulation studies where the product of a singular
Wishart matrix and a singular normal vector is present. Furthermore, we prove the
asymptotic normality of the product under the double asymptotic regime. In a numerical
study, a good performance of the obtained asymptotic distribution is documented. It is
also noted that for the values c = 0.95 and c = 2, it produces a very good approximation of
the corresponding finite sample distribution obtained by applying the derived stochastic
representation.
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ÄÎÁÓÒÎÊ ÑÈÍÃÓËßÐÍÎ� ÂÈÏÀÄÊÎÂÎ� ÌÀÒÐÈÖI ÂIØÀÐÒÀ
ÒÀ ÑÈÍÃÓËßÐÍÎÃÎ ÍÎÐÌÀËÜÍÎÃÎ ÂÈÏÀÄÊÎÂÎÃÎ ÂÅÊÒÎÐÀ

Ó ÂÅËÈÊÈÕ ÐÎÇÌIÐÍÎÑÒßÕ

Ò. ÁÎÄÍÀÐ, Ñ. ÌÀÇÓÐ, Ñ. ÌÓÕIÍÞÇÀ, Í. ÏÀÐÎËß

Àíîòàöiÿ. Ó ñòàòòi ìè ðîçãëÿäà¹ìî äîáóòîê ñèíãóëÿðíî¨ âèïàäêîâî¨ ìàòðèöi Âiøàðòà òà ñèíãóëÿð-
íîãî íîðìàëüíîãî âèïàäêîâîãî âåêòîðà. Îòðèìàíî äóæå êîðèñíå ñòîõàñòè÷íå ïðåäñòàâëåííÿ öüîãî
äîáóòêó, çà äîïîìîãîþ ÿêîãî âèâîäèòüñÿ éîãî õàðàêòåðèñòè÷íà ôóíêöiÿ òà àñèìïòîòè÷íèé ðîçïîäië
ïðè ïîäâiéíîìó àñèìïòîòè÷íîìó ðåæèìi. Òàêîæ, iç âèêîðèñòàííÿì ìåòîäó Ìîíòå-Êàðëî, ïîêàçàíî
õîðîøi ðåçóëüòàòè àïðîêñèìàöi¨, îòðèìàíi çà äîïîìîãîþ âèâåäåíîãî áàãàòîâèìiðíîãî àñèìïòîòè-
÷íîãî ðîçïîäiëó â óìîâàõ ñêií÷åííî¨ âèáiðêè.

ÏÐÎÈÇÂÅÄÅÍÈÅ ÑÈÍÃÓËßÐÍÎÉ ÑËÓ×ÀÉÍÎÉ ÌÀÒÐÈÖÛ
ÂÈØÀÐÒA È ÑÈÍÃÓËßÐÍÎÃÎ ÍÎÐÌÀËÜÍÎÃÎ ÑËÓ×ÀÉÍÎÃÎ

ÂÅÊÒÎÐÀ Â ÁÎËÜØÎÉ ÐÀÇÌÅÐÍÎÑÒÈ

Ò. ÁÎÄÍÀÐ, Ñ. ÌÀÇÓÐ, Ñ. ÌÓÕÈÍÞÇÀ, Í. ÏÀÐÎËß

Àííîòàöèÿ. Â ñòàòüå ìû ðàññìàòðèâàåì ïðîèçâåäåíèå ñèíãóëÿðíîé ñëó÷àéíîé ìàòðèöû Âèøàðòa
è ñèíãóëÿðíîãî íîðìàëüíîãî ñëó÷àéíîãî âåêòîðà. Ïîëó÷åíî î÷åíü ïîëåçíîå ñòîõàñòè÷åñêîå ïðåä-
ñòàâëåíèå ýòîãî ïðîèçâåäåíèÿ, ñ ïîìîùüþ êîòîðîãî âûâîäèòñÿ åãî õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ
è àñèìïòîòè÷åñêîå ðàñïðåäåëåíèå ïðè äâîéíîì àñèìïòîòè÷åñêîì ðåæèìå. Òàêæå, ñ èñïîëüçîâàíè-
åì ìåòîäà Ìîíòå-Êàðëî, ïîêàçàíû õîðîøèå ðåçóëüòàòû àïïðîêñèìàöèè, ïîëó÷åííûå ñ ïîìîùüþ
âûâåäåííîãî ìíîãîìåðíîãî àñèìïòîòè÷åñêîãî ðàñïðåäåëåíèÿ â óñëîâèÿõ êîíå÷íîé âûáîðêè.



Statistical Inference
of Tangency Portfolio
in Small and Large Dimension
 
Stanislas Muhinyuza

Stanislas M
uhinyuza    Statistical In

feren
ce of Tan

gen
cy Portfolio in

 Sm
all an

d Large D
im

en
sion

Doctoral Thesis in Mathematical Statistics at Stockholm University, Sweden 2020

Department of Mathematics

ISBN 978-91-7911-112-0


