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Abstract

The main idea of the thesis is to develop new connections between the theory of
real interpolation and applications. Near and exact minimizers for E–, K– and L–
functionals of the theory of real interpolation are very important in applications
connected to regularization of inverse problems such as image processing. The
problem which appears is how to characterize and construct these minimizers.
These exact minimizers referred to as optimal decompositions in the thesis, have
certain extremal properties that we completely express and characterize in terms
of duality. Our characterization generalizes known characterization for a partic-
ular Banach couple. The characterization presented in the thesis also makes it
possible to understand the geometrical meaning of optimal decomposition for
some important particular cases and gives a possibility to construct them. One
of the most famous models in image processing is the total variation regulariza-
tion published by Rudin, Osher and Fatemi. We propose a new fast algorithm
to find the exact minimizer for this model. Optimal decompositions mentioned
have some connections to optimization problems which are also pointed out.
The thesis is based on results that have been presented in international confer-
ences and have been published in five papers.

In Paper 1, we characterize optimal decomposition for the E–, K– and Lp0,p1–
functional. We also present a geometrical interpretation of optimal decomposi-
tion for the Lp,1–functional for the couple (`p, X) on Rn. The characterization
presented is useful in the sense that it gives insights into the construction of
these minimizers.

The characterization mentioned in Paper 1 is based on optimal decompo-
sition for infimal convolution. The operation of infimal convolution is a very im-
portant and non–trivial tool in functional analysis and is also very well–known
within the context of convex analysis. The L–, K– and E– functionals can be re-
garded as an infimal convolution of two well–defined functions. Unfortunately
tools from convex analysis can not be applied in a straightforward way in this
context of couples of spaces. The most important requirement that an infimal
convolution would satisfy for a decomposition to be optimal is subdifferentia-
bility.
In Paper 2, we have used an approach based on the famous Attouch–Brezis the-
orem to prove subdifferentiability of infimal convolution on Banach couples.

In Paper 3, we apply result from Paper 1 to the well—known Rudin–Osher–
Fatemi (ROF) image denoising model on a general finite directed graph. We
define the space BV of functions of bounded variation on the graph and show
that the unit ball of its dual space can be described as the image of the unit ball
of the space `∞ on the graph by a divergence operator. Based on this result, we
propose a new fast algorithm to find the exact minimizer for the ROF model.
Proof of convergence of the algorithm is presented and its performance on im-
age denoising test examples is illustrated.
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vi Abstract

In Paper 4, we present some extensions of results presented in Paper 1 and
Paper 2. First we extend the results from Banach couples to Banach triples. Then
we prove that our approach can apply when complex spaces are considered in-
stead of real spaces. Finally we compare the performance of the algorithm that
was proposed in Paper 3 with the Split Bregman algorithm which is one of the
benchmark algorithms known for the ROF model. We find out that in most cases
both algorithms behave in a similar way and that in some cases our algorithm
decreases the error faster with the number of iterations.

In Paper 5, we point out some connections between optimal decompositions
mentioned in the thesis and optimization problems. We apply the approach used
in Paper 2 to two well–known optimization problems, namely convex and linear
programming to investigate connections with standard results in the framework
of these problems. It is shown that we can derive proofs for duality theorems
for these problems under the assumptions of our approach.
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Populärvetenskaplig sammanfattning
Avhandlingens övergripande idé är att undersöka och finna nya samband mellan
reell interpolationsteori och tillämpningar. Approximativa och exakta minime-
rare för E–, K– och L– funktionalerna från den reella interpolationsteorin är av
stor betydelse i tillämpningar där regularisering av inversa problem förekom-
mer. Ett naturligt problem som uppkommer är att karakterisera och konstruera
dessa minimerare. De exakta minimerarna, som benämns optimala uppdelning-
ar i avhandlingen, har särskilda extremalegenskaper. Vi erhåller en fullständig
karakterisering av dessa egenskaper genom dualitet. Vår karakterisering gene-
raliserar den tidigare kända karakterseringen för ett särskilt Banach–par. Den
erhållna karakteriseringen i avhandlingen möjliggör en geometrisk tolkning av
den optimala uppdelningen för några viktiga fall och ger även inblick i hur des-
sa optimala uppdelningar kan konstrueras. En av de mest berömda modellerna i
bildbehandling är den totala variationsregulariseringen som publicerades av Ru-
din, Osher och Fatemi. Vi föreslår en ny snabb algoritm för att konstruera den
exakta minimeraren för denna modell. De ovan nämnda optimala uppdelningar-
na har samband med optimeringsproblem vilket också beskrivs i avhandlingen.
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Background and Summary
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3

In this part, we will present the introductory background and summary of
the thesis.





0
Introduction

The main idea of the thesis is to develop new connections between the theory
of real interpolation and applications. Near and exact minimizers for E–,

K– and L– functionals of the theory of real interpolation are very important and
have recently appeared in important results in image processing. The extremal
problem which appears, is how to characterize and construct these minimizers.
By using the duality in convex analysis, we study the properties of the exact
minimizers, the possibility to construct them and investigate their usefulness for
concrete applications in regularization of inverse problems, specifically image
processing.

0.1 Background

Several functionals such as L–, K– and E– functionals are very important in the
theory of real interpolation. A more or less detailed theory on these functionals
can be found for example in the books [3, 4]. Another good reference is the book
[2]. Given a couple of Banach spaces (X0, X1), an element x ∈ X0 + X1 and a
positive parameter t, the K– functional is defined by the formula

K (t, x; X0, X1) = inf
w∈X1

(
‖x− w‖X0

+ t ‖w‖X1

)
.

The K– functional is at the center of the so–called K– method of real interpola-
tion that is basically concerned with the construction of suitable families of real
interpolation spaces between X0 and X1. The K– functional is a particular case

5



6 0 Introduction

of the more general L– functional which is defined by

Lp0,p1 (t, x; X0, X1) = inf
w∈X1

(
‖x− w‖p0

X0
+ t ‖w‖p1

X1

)
, (1)

for 1 ≤ p0, p1 < ∞.

Definition 0.1 (Exact and near minimizers). We say that the element (which
depends on x and t) wt ∈ X1 is a near minimizer for the functional (1) if there
exists C > 0 independent of x and t such that

‖x− wt‖p0
X0

+ t ‖wt‖p1
X1
≤ CLp0,p1 (t, x; X0, X1) .

If C = 1, then wt is called exact minimizer. If wt ∈ X1 is an exact minimizer, then
we will call

x = wt + (x− wt) , (2)

optimal decomposition for (1) corresponding to x.

The E– functional is basically seen as a distance functional and is defined by
the expression

E (t, x; X0, X1) = inf
‖w‖X1

≤t
‖x− w‖X0

.

Remark 0.1. It is important to note that the optimal decomposition does not
always exist. See the following counter example.

Counter example. Let f be the function defined by f (x) = 2 for 0 ≤ x < 1
2 and

f (x) = −2 for 1
2 ≤ x ≤ 1, and consider the functional

E
(

1, f ; L2, C[0, 1]
)
= inf
‖g‖C[0,1]≤1

‖ f − g‖L2 . (3)

There is no g1 ∈ C[0, 1] such that

E
(

1, f ; L2, C[0, 1]
)
= ‖ f − g1‖L2 . (4)

Let (X0, X1) be a regular Banach couple, i.e., X0 and X1 are both Banach
spaces which are linearly and continuously embedded in the same Hausdorff
topological vector space and moreover the intersection X0 ∩ X1 is dense in both
X0 and X1. Given an element x in X0 + X1 and some parameter t > 0, we
consider the following L– functional

Lp0,p1 (t, x; X0, X1) = inf
x=x0+x1

(
1
p0
‖x0‖

p0
X0

+
t

p1
‖x1‖

p1
X1

)
, (5)

for 1 ≤ p0, p1 < ∞.
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Problem 1. Suppose that the optimal decomposition x = x0,opt + x1,opt for K– func-
tional (respectively for L– and E– functionals) corresponding to the element x exists.
Give a characterization of this decomposition. In other words, what are the mathematical
properties of x0,opt and x1,opt. For example, in the case of the L– functional (5), we want
the mathematical properties of the decomposition x = x0,opt + x1,opt such that

Lp0,p1 (t, x; X0, X1) =
1
p0

∥∥x0,opt
∥∥p0

X0
+

t
p1

∥∥x1,opt
∥∥p1

X1
.

The L– functional is deeply connected to the well–known Rudin–Osher–
Fatemi (ROF) image denoising model. Denoising is the problem of removing
noise from an image. The most commonly studied case is with additive white
Gaussian noise, where the observed noisy image f ∈ L2 is related to the under-
lying true image f∗ by

f = f∗ + η,

where the noise η ∈ L2.
The ROF model, also known as Total Variation (TV) regularization technique,

proposes to approximate the true image f∗ by the function ft ∈ BV which mini-
mizes the L2,1– functional for the couple

(
L2, BV

)
:

L2,1

(
t, f ; L2, BV

)
= inf

g∈BV

(
‖ f − g‖2

L2 + t ‖g‖BV

)
, (6)

where L2 and BV stand for the space of square integrable functions and the space
of functions with bounded variation on a rectangular domain respectively. Since
its appearance in 1992, the ROF model [14] has been successful and popular
and it has since been applied to a multitude of other imaging problems (see
for example the book [5]). The problem of constructing exact minimizer for the
functional (6) is difficult. Let us mention that when the following estimate of the
noise is known

‖η‖L2 ≤ ε,

the so–called Morozov discrepancy principle (see [8]) suggests choosing t > 0
such that

‖ f − ft‖L2 = ε.

The underlying idea of the Morozov principle can be explained from the point
of view of interpolation theory. This has been done in the paper [6] by F. Cobos
and N. Kruglyak who provided an algorithm that constructs an exact minimizer
for the E–functional

E (t, f ; L∞, BV) = inf
‖g‖L∞≤t

‖ f − g‖BV , (7)

where L∞ and BV are spaces of bounded functions and functions with bounded
variation on an interval [a, b], respectively. They have also discussed connections
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of their results with the Rudin–Osher–Fatemi denoising model.
Different approaches such as PDE and wavelet–based approaches have been pro-
posed (see for example the books [5, 15] and the paper [7]) for approximately
constructing ft. Recently Kislyakov and Kruglyak in their book [9] considered
a similar problem for the couple of Sobolev spaces

(
Lp, Ẇq,k

)
, however their

approach gives only near minimizer, not exact minimizers. But for applications
in image processing it it crucial to have axact minimizers (see discussion in the
Paper [6]).
In 2010, I. Asekritova and N. Kruglyak also presented an algorithm for the con-
struction of a near minimizer for the couple

(
L2, BV

)
based on piecewise con-

stant approximation and the Besicovitch covering theorem [1]. In 2002, in his
book [10], Yves Meyer obtained a characterization of optimal decomposition for
the ROF functional by using duality.

It is clear that the ROF model is a particular case of the L– functional (5) for
p0 = 2, p1 = 1 and for the spaces X0 = L2 (D) and X1 = BV (D) for some
rectangular domain D. Thus it is an interesting problem to study the properties
of exact minimizer for L– functional in its general formulation on regular Banach
couples.

0.2 Summary of the thesis
This thesis consists of two parts and the outline is as follows.

0.2.1 Summary of Part I
In Part I the background and summary are given.

0.2.2 Summary of Part II
Part II consists of five papers. We then proceed to give a short summary for each
of the papers below.

Paper 1: Characterization of optimal decompositions in real interpolation

Problem statement

Let (X0, X1) be a Banach couple. The theory of real interpolation is based on
Peetre’s K– functional

K(t, x; X0, X1) = inf
x=x0+x1

(
‖x0‖X0

+ t ‖x1‖X1

)
,

where t > 0 and x ∈ X0 + X1. As its calculation is a difficult extremal problem,
J. Peetre [13] suggested another approach to real interpolation based on a more
general Lp0,p1– functional

Lp0,p1(t, x; X0, X1) = inf
x=x0+x1

(
1
p0
‖x0‖

p0
X0

+
t

p1
‖x1‖

p1
X1

)
, (8)
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where t > 0 is a parameter and 1 ≤ p0, p1 < ∞.
It leads to the same set of interpolation spaces (see [4]) and is easier to cal-

culate in the important cases of couples (Lp, Lq), and (Lp, Wk,q) (see [3] and [9]).
Moreover, starting with the famous in image processing Rudin–Osher–Fatemi
(ROF) denoising model (see [14] and [5]), the Lp0,p1– functional appeared in reg-
ularization of inverse problems, where the second term in the expression (8) is
called a regularization or penalty term.

In connection with these applied problems (see, for example, the discussion
in the paper [6]), the following question arises.

Problem 1. Suppose that for a given element x ∈ X0 + X1 and t > 0 there exists an
optimal decomposition for the Lp0,p1– functional, i.e. a decomposition x = x0,opt + x1,opt
such that

Lp0,p1(t, x; X0, X1) = infx=x0+x1

(
1
p0
‖x0‖

p0
X0

+ t
p1
‖x1‖

p1
X1

)
=

1
p0

∥∥x0,opt
∥∥p0

X0
+ t

p1

∥∥x1,opt
∥∥p1

X1
.

How can this optimal decomposition be characterized (constructed)?

Main contributions and outcomes

This paper consists of two parts. In the first part we use some well–known
results in convex analysis to characterize the optimal decomposition for the
Lp0,p1–functional. In the second part of the paper we use one result from the
first part to obtain a geometrical interpretation of the optimal decomposition for
the Lp,1–functional for the couple (`p, X) on Rn, where X is any Banach space.
An interesting feature of this result is the appearance of the set

Ωt =

{
u ∈ Rn : ∇

(
1
p
‖u‖p

`p

)
∈ tBX∗

}
,

which contains the element x0,opt (BX∗ is the unit ball of the dual space X∗). We
demonstrate by example that for p 6= 2 the set Ωt could be non–convex.

Let (X0, X1) be a compatible Banach couple. i.e., X0 and X1 are Banach spaces
such that X0 and X1 are linearly and continuously embedded in some Banach
space X . Furthemore, we assume that (X0, X1) be a regular couple, i.e., X0 ∩ X1
is dense in both X0 and X1. Let x ∈ X0 + X1, let 1 ≤ p < +∞ and t > 0. We
consider the L– functional

Lp,1 (t, x; X0, X1) = inf
x=x0+x1

(
1
p
‖x0‖

p
X0

+ t ‖x1‖X1

)
. (9)

We need to find a characterization of optimal decomposition for this L– functional.
i.e., x = x0,opt + x1,opt such that

Lp,1 (t, x; X0, X1) =
1
p
∥∥x0,opt

∥∥p
X0

+ t
∥∥x1,opt

∥∥
X1

.
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It is known in interpolation theory that
(
X∗0 , X∗1

)
also form a Banach couple and

(X0 ∩ X1)
∗ = X∗0 + X∗1 . The norm of the dual spaces is defined by:

‖y‖X∗j
= sup

{
〈y, x〉 : x ∈ Xj, ‖x‖Xj

≤ 1
}

, j = 0, 1.

The spaces X0 + X1 and X0 ∩X1 are Banach spaces with respect to the following
norms

‖x‖X0+X1
= inf

x=x0+x1

{
‖x0‖X0

+ ‖x1‖X1

}
,

where the infimum extends over all representations x = x0 + x1 of x with x0 in
X0 and x1 in X1, and

‖x‖X0∩X1
= max

{
‖x‖X0

, ‖x‖X1

}
.

Theorem 0.1. Let 1 < p < +∞. The decomposition x = x0,opt + x1,opt is optimal for
Lp,1 (t, x; X0, X1) if and only if there exists y∗ ∈ X∗0 ∩ X∗1 such that ‖y∗‖X∗1

≤ t and{
1
p

∥∥x0,opt
∥∥p

X0
= 〈y∗, x0,opt〉 − 1

p′ ‖y∗‖
p′

X∗0
;

t
∥∥x1,opt

∥∥
X1

= 〈y∗, x1,opt〉,

where 1
p + 1

p′ = 1.

In order to illustrate the geometry, let us consider the particular case of cou-
ple (`p, X) on Rn, where X is any Banach couple. We have the L– functional

Lp,1
(
t, x; `p, X

)
= inf

x=x0+x1

(
1
p
‖x0‖

p
`p
+ t ‖x1‖X

)
,

where 1 < p < +∞. Consider the following function F0 and its gradient:

F0 (u) =
1
p
‖u‖p

`p
, ∇F0 (v) =

{
|v|p−1 sgn (v)

}
.

Let us define the set Ωt by

Ωt = {v ∈ Rn : ∇F0(v) ∈ tBX∗} .

We need to consider two cases:

(Case 1) x ∈ Ω.

In this case, the optimal decomposition for Lp,1
(
t, x; `p, X

)
is given by

x0,opt = x and x1,opt = 0.

(Case 2) x /∈ Ω.

In this case, the optimal decomposition for Lp,1
(
t, x; `p, X

)
is characterized

by the following theorem:
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Theorem 0.2. Let x be such that ‖∇F0(x)‖X∗ > t. Then decomposition x =
x0,opt + x1,opt is optimal for Lp,1

(
t, x; `p, X

)
if and only if

(a)
∥∥∇F0

(
x0,opt

)∥∥
X∗ = t

(b)
〈

x1,opt,∇F0
(
x0,opt

)〉
= t

∥∥x1,opt
∥∥

X .

The Figure 1 gives the geometry of optimal decomposition for couple (`p, X).
The element x1,opt is orthogonal to the supporting hyperplane to tBX∗ at y∗ =
∇F0

(
x0,opt

)
.

Figure 1: A geometry of the optimal decomposition.

Remark 0.2. For the case p = 2, the sets Ωt and tBX∗ coincide. This particular
case was separately treated in [11] by using a different approach.

It is noted that in a general situation the set Ωt could be non–convex and of
rather complicated structure as illustrated by the following example:

Example 0.1
We present an example of illustration in R2. Consider the couple

(
`3, X

)
in the

plane where space X is such that its unit ball is the rotated ball of `1 by the
rotation matrix

Rθ =

[
cos θ sin θ
− sin θ cos θ

]
,

for θ = 30◦. We have that

‖x‖X =
∥∥∥R−1

θ x
∥∥∥
`1
=

∣∣∣∣∣
√

3
2

x1 −
1
2

x2

∣∣∣∣∣+
∣∣∣∣∣12 x1 +

√
3

2
x2

∣∣∣∣∣ ,

and
∇F0 (u) =

[
|u1|2 sgn(u1), |u2|2 sgn(u2)

]T
.
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The set Ωt can then be written as

Ωt =

{
v ∈ R2 :

∥∥∥∥[|v1|2 sgn(v1), |v2|2 sgn(v2)
]T
∥∥∥∥

X∗
≤ t
}

,

where the norm in X∗ is given by

‖y‖X∗ =
∥∥∥R−1

θ y
∥∥∥
`∞

= max

{∣∣∣∣∣
√

3
2

y1 −
1
2

y2

∣∣∣∣∣ ,

∣∣∣∣∣12 y1 +

√
3

2
y2

∣∣∣∣∣
}

.

The Theorem 0.2 is illustrated in Figure 2. So we see that in this situation the
set Ω is not convex.
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Figure 2: Geometry of Optimal Decomposition for the Couple (`p, X) for p = 3,
t = 2, X = Rθ

(
`1) and θ = 30◦. The set Ωt is illustrated on the left and tBX∗

on the right. The unit ball of X∗ is Rθ (B`∞), where B`∞ is the unit ball of `∞. If
x belongs to the blue area on the left, then x0,opt is the corresponding corner point
of Ωt and y∗ is the corresponding corner point of tBX∗ . The same holds for areas
1, 3 and 4. In other situations, x0,opt belongs to the boundary of Ωt such that the
direction of x1,opt is the direction perpendicular to the tangent line to tBX∗ which
goes through y∗ = ∇F0

(
x0,opt

)
. This is illustrated by the two bold parallel lines.

We have also obtained the results concerning optimal decomposition for K–,
L– and E– functionals in general cases. For example the L– functional (9) is a
particular case of the following general L– functional:

Lp0,p1 (t, x; X0, X1) = inf
x=x0+x1

(
1
p0
‖x0‖

p0
X0

+
t

p1
‖x1‖

p1
X1

)
, (10)

where 1 ≤ p0, p1 < ∞.

Theorem 0.3. Let x ∈ X0 + X1, 1 < p0, p1 < ∞ and let t > 0 be a fixed parameter.
The decomposition x = x0,opt + x1,opt is optimal for

Lp0,p1 (t, x; X0, X1) = inf
x=x0+x1

(
1
p0
‖x0‖

p0
X0

+
t

p1
‖x1‖

p1
X1

)
,
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if and only if there exists y∗ ∈ X∗0 ∩ X∗1 such that
1
p0

∥∥x0,opt
∥∥p0

X0
= 〈y∗, x0,opt〉 − 1

p′0
‖y∗‖

p′0
X∗0

;
t

p1

∥∥x1,opt
∥∥p1

X1
= 〈y∗, x1,opt〉 − t

p′1

∥∥ y∗
t

∥∥p′1
X∗1

.

where 1
p + 1

p′ = 1.

Remark 0.3. Results of Paper 1 for the couple
(
`2, X

)
are of special importance.

We refer the reader to [11], where we have investigated the geometry of optimal
decomposition for the L2,1–functional for the couple

(
`2, X

)
on Rn, where space

`2 is defined by the standard Euclidean norm and where X is any Banach space
on Rn. Our proof is based on some geometrical considerations and Yves Meyer’s
duality approach which was considered for the couple

(
L2, BV

)
in connection

with the ROF model (see [10]). One of the goals here was also to investigate
possibility to extend Meyer’s approach to more general couples than

(
L2, BV

)
.

The result therein can hence be obtained as a particular case from a result in
Paper 1, but the proof uses a different and independent approach which was
considered before the writing of Paper 1.

Paper 2: Subdifferentiability of Infimal Convolution on Banach Couples

Problem statement

Let (X0, X1) be a regular Banach couple, i.e. X0 ∩ X1 is dense in both X0 and X1,
and let ϕ0 : X0 −→ R∪ {+∞} and ϕ1 : X1 −→ R∪ {+∞} be convex and proper
functions and let

ϕi (u) =
{

ϕi (u) if u ∈ Xi
+∞ if u ∈ (X0 + X1) \Xi

i = 0, 1 (11)

be functions defined on the sum X0 + X1. Then the K–, L– and E– functionals
(see [3, 13]) are particular cases of infimal convolution of functions ϕ0 and ϕ1
defined as follows:

(ϕ0 ⊕ ϕ1)(x) = inf
x=x0+x1

(ϕ0(x0) + ϕ1(x1)). (12)

The infimal convolution (12) is called exact at a point x ∈ X0 + X1 if the infi-
mum is achieved, i.e., (ϕ0 ⊕ ϕ1) (x) = min

x=x0+x1
(ϕ0 (x0) + ϕ1 (x1)). Suppose that

(ϕ0 ⊕ ϕ1)(x) is finite and exact. Then the decomposition x = x0 + x1, on which
the infimum is attained is called optimal and denoted as x = x0,opt + x1,opt. Usu-
ally, calculation of optimal decomposition is a difficult extremal problem and
only near–optimal decomposition can be constructed (see [9]). However for ap-
plications, for example in image processing (see [10], [6] and [12]), exact optimal
decomposition is required. In Paper 1 the following dual characterization of
optimal decomposition was obtained:
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Theorem 0.4. Let ϕ0 : X0 −→ R ∪ {+∞} and ϕ1 : X1 −→ R ∪ {+∞} be convex
proper functions. Suppose also that ϕ0 ⊕ ϕ1 is subdifferentiable for a given element
x ∈ dom(ϕ0 ⊕ ϕ1). Then the decomposition x = x0,opt + x1,opt is optimal for ϕ0 ⊕ ϕ1
if and only if there exists y∗ ∈ X∗0 ∩X∗1 such that it is dual to both x0,opt and x1,opt with
respect to ϕ0 and ϕ1, respectively, i.e.{

ϕ0
(
x0,opt

)
= 〈y∗, x0,opt〉 − ϕ∗0 (y∗)

ϕ1
(
x1,opt

)
= 〈y∗, x1,opt〉 − ϕ∗1(y∗).

(13)

Here dom F is the set of points on which the functions takes finite values.
Note that to use Theorem 0.4 we need to check subdifferentiability of the func-
tion ϕ0 ⊕ ϕ1 for a given x ∈ dom(ϕ0 ⊕ ϕ1), which is often not trivial problem.

Main contributions and outcomes

In this paper we develop an approach based on Attouch–Brezis theorem that
provides sufficient conditions for subdifferentiability of infimal convolution de-
fined on a Banach couple. Important feature of this result is that it works also
for boundary points of the set dom(ϕ0 ⊕ ϕ1). Moreover, we show how these
conditions can be verified for the K–, L– and E– functionals.
For a regular Banach couple (X0, X1), there exist two specific convex, lower
semicontinuous and proper functions ϕ0 : X0 −→ R ∪ {+∞} and ϕ1 : X1 −→
R∪{+∞} for each of the K–, L– and E– functionals such that they can be written
as a function F : X0 + X1 −→ R∪ {+∞} defined by

F (x) = (ϕ0 ⊕ ϕ1) (x) = inf
x=x0+x1

(ϕ0(x0) + ϕ1(x1)) , (14)

where the infimum extends over all representations x = x0 + x1 of x with x0 and
x1 in X0 + X1 and where ϕ0 : X0 + X1 −→ R ∪ {+∞} and ϕ1 : X0 + X1 −→
R ∪ {+∞} are respective extensions of ϕ0 and ϕ1 on X0 + X1 in the following
way

ϕ0 (u) =
{

ϕ0 (u) if u ∈ X0;
+∞ if u ∈ (X0 + X1) \X0. (15)

and

ϕ1 (u) =
{

ϕ1 (u) if u ∈ X1;
+∞ if u ∈ (X0 + X1) \X1. (16)

For example, the L– functional can be written as the infimal convolution

Lp0,p1 (t, x; X0, X1) = (ϕ0 ⊕ ϕ1) (x) , (17)

where

ϕ0 (u) =

{
1
p0
‖u‖p0

X0
if u ∈ X0;

+∞ if u ∈ (X0 + X1) \X0.
(18)

and

ϕ1 (u) =

{
t

p1
‖u‖p1

X1
if u ∈ X1;

+∞ if u ∈ (X0 + X1) \X1.
(19)
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In this case the functions ϕ0 : X0 −→ R∪ {+∞} and ϕ1 : X1 −→ R∪ {+∞} are
defined by

ϕ0 (u) =
1
p0
‖u‖p0

X0
and ϕ1 (u) =

t
p1
‖u‖p1

X1
. (20)

However, it is important to notice that the extended functions ϕ0 and ϕ1 could
stop to be lower semicontinuous even if ϕ0 and ϕ1 are. Since two different
Banach spaces are involved, some technical difficulties appear when you would
like to apply known results in convex analysis. In this regard, we reconsider the
infimal convolution F (x) = (ϕ0 ⊕ ϕ1) (x) as follows:

F (x) = (ϕ0 ⊕ ϕ1) (x) = inf
y∈X0∩X1

(S(y) + R(y)) , (21)

where S and R are functions defined on X0 ∩ X1 with values in R∪ {+∞} by

S (y) = ϕ0 (a0 − y) and R (y) = ϕ1 (a1 + y) , (22)

where a0 ∈ X0 and a1 ∈ X1 are fixed elements such that x = a0 + a1. The
following theorem establishes conditions for which the function F = ϕ0 ⊕ ϕ1 is
subdifferentiable on its domain in X0 + X1.

Theorem 0.5 (Subdifferentiability of infimal convolution). Let the functions S
and R be defined as in (22) and be convex, lower semicontinuous and proper. Let ϕ∗0 and
ϕ∗1 be the respective conjugate functions of ϕ0 and ϕ1. Suppose that

(1) the sets dom S and dom R satisfy⋃
λ≥0

λ (dom S− dom R) = X0 ∩ X1 (23)

(2) The conjugate function S∗ of S is given by

S∗ (z) =
{

ϕ∗0 (−z) + 〈z, a0〉 if z ∈ X∗0 ;
+∞ if z ∈

(
X∗0 + X∗1

)
\X∗0 . (24)

(3) The conjugate function R∗ of R is given by

R∗ (z) =
{

ϕ∗1 (z) + 〈−z, a1〉 if z ∈ X∗1 ;
+∞ if z ∈

(
X∗0 + X∗1

)
\X∗1 . (25)

Then the function (ϕ0 ⊕ ϕ1) is subdifferentiable on its domain in X0 + X1.

By using this result, subdifferentiability of K–, L– and E– functionals was
also proved.
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Paper 3: A new reiterative algorithm for the Rudin–Osher–Fatemi denoising
model on the graph

Problem statement

Let us suppose that we observed noisy image fob ∈ L2 defined on a square
domain Ω = [0, 1]2 in R2,

fob = f∗ + η,

where f∗ ∈ BV is the original image and η ∈ L2 is the noise. Denoising is one
of the problems which appear in image processing: "How to recover the im-
age f∗ from the noisy image fob?". Variational methods using the total variation
minimization are often employed to solve this problem. The total variation reg-
ularization technique was introduced by Rudin, Osher and Fatemi in [14] and is
called the ROF model. It suggests to take as an approximation to the original
image f∗ the function fopt,t ∈ BV, which is the exact minimizer for the L2,1–
functional for the couple

(
L2, BV

)
:

L2,1

(
t, fob; L2, BV

)
= inf

g∈BV

(
1
2
‖ fob − g‖2

L2 + t ‖g‖BV

)
, for some t > 0, (26)

i.e., fopt,t ∈ BV is such that

L2,1

(
t, fob; L2, BV

)
=

1
2

∥∥ fob − fopt,t
∥∥2

L2 + t
∥∥ fopt,t

∥∥
BV . (27)

However the problem of actual calculation of the function fopt,t (see (26) and
(27)) is non–trivial. Standard approach is connected with discretization of the
functional (26), i.e. we divide Ω into N×N square cells and instead of the space
L2(Ω) consider its finite dimensional subspace SN which consists of functions
that are constant on each cell.

Consider the graph G = (V, E), where the set of vertices V corresponds
to cells and the set of edges E corresponds to set of pairs of cells which have
common faces. Denote by SV and SE the set of real-valued functions on V and
E respectively and consider the analogue of the gradient operator on the graph,
i.e., grad : SV −→ SE which maps function f ∈ SV to function grad f ∈ SE
defined as

(grad f ) (e) = f (vj)− f (vi) if e = (vi, vj).

The observed image fob ∈ SN can be considered as an element of SV and the
ROF functional can be written as

L2,1

(
t, fob; `2(SV), BV(SV)

)
= inf

g∈SV

(
1

2N2 ‖ fob − g‖2
`2(SV)

+
t
N
‖grad g‖`1(SE)

)
.

(28)
Notice that exact minimizer of (28) coincides with exact minimizer of

L2,1

(
s, fob; `2(SV), BV(SV)

)
= inf

g∈SV

(
1
2
‖ fob − g‖2

`2(SV)
+ s ‖grad g‖`1(SE)

)
,

with s = Nt.
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Problem 2. Suppose that we know function fob ∈ SV . For given s > 0, find exact
minimizer of the functional

L2,1

(
s, fob; `2(SV), BV(SV)

)
= inf

g∈BV(SV)

(
1
2
‖ fob − g‖2

`2(SV)
+ s ‖g‖BV(SV)

)
,

where

‖ f ‖`2(SV)
=

(
∑

v∈V
( f (v))2

) 1
2

; ‖ f ‖BV(SV)
= ‖grad f ‖`1(SE)

;

and
‖h‖`1(SE)

= ∑
e∈E
|h(e)| ,

and operator grad : SV −→ SE is defined by the formula

(grad f ) (e) = f (vj)− f (vi) if e = (vi, vj)

Main contributions and outcomes

We consider an analogue of (26) on a general finite directed and connected
graph. We consider the space BV on the graph and show that the unit ball
of its dual space can be described as the image of the unit ball of the space `∞ on
the graph by a divergence operator. Based on this result, we propose a new fast
algorithm to find the exact minimizer for the ROF model. Convergence of the
algorithm is proved and its performance illustrated on some image denoising
test examples. It is known (see Paper 1) that the exact minimizer for the L2,1–
functional for the couple

(
`2, X

)
on Rn,

L2,1

(
t, fob; `2, X

)
= inf

g∈X

(
1
2
‖ fob − g‖2

`2 + t ‖g‖X

)
,

i.e. the function fopt,t such that

L2,1

(
t, fob; `2, X

)
=

1
2

∥∥ fob − fopt,t
∥∥2
`2 + t

∥∥ fopt,t
∥∥

X ,

is equal to the difference between fob and the nearest element to fob of the ball
of radius t > 0 of the space X∗ (see Figure 3 for illustartion). Therefore we first
need to describe the ball of radius s > 0 of the space BV∗(SV) with norm defined
by

‖h‖BV∗(SV)
= sup
‖ f ‖BV(SV )≤1

〈h, f 〉SV
, where 〈h, f 〉SV

= ∑
v∈V

h(v) f (v).

To this end, we consider divergence operator on the graph, i.e. the operator
div : SE → SV defined by

(div g)(v) = ∑
i:(vi ,v)∈E

g ((vi, v))− ∑
j:(v,vj)∈E

g
(
(v, vj)

)
.

We obtain the following result
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Figure 3: Illustrating the geometry of Optimal decomposition for the couple(
`2, X

)
on Rn.

Theorem 0.6. The unit ball of the space BV∗(SV) is equal to the image of the unit ball
of the space `∞(SE) under the operator div, i.e.,

BBV∗(SV)
= div

(
B`∞(SE)

)
.

Therefore the exact minimizer fopt,t for the L2,1– functional

L2,1

(
s, fob; `2(SV), BV(SV)

)
= inf

g∈BV(SV)

(
1
2
‖ fob − g‖2

`2(SV)
+ s ‖g‖BV(SV)

)
is given by

fopt,t = fob − h̃,

where h̃ is such that

E
(

s, fob; `2 (SV) , BV∗(SV)
)
= inf

h∈sBBV∗(SV )

‖ fob − h‖`2(SV)
=
∥∥∥ fob − h̃

∥∥∥
`2(SV)

,

(29)
where, from Theorem 0.6,

sBBV∗(SV)
= s div

(
B`∞(SE)

)
for Nt = s > 0.

The proposed algorithm constructs h̃ through a sequence of elements gn ∈
sB`∞(SE) such that div(gn) −→ h̃ as n → +∞ in the metric of `2 (SV). It consists
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of several steps outlined below: Let G = (V = {v1, . . . , vN} , E = {e1, . . . , eM}),
fob ∈ SV , and t be given. Set

ek =
(
vi, vj

)
∈ E, k = 1, 2, . . . , M; for some i, j ∈ {1, 2, . . . , N} .

Define the operator T as follows:

T = TMTM−1TM−2 . . . T2T1,

where for k = 1, 2, . . . , M, Tk : sB`∞(SE) −→ sB`∞(SE) is defined as follows:

(Tkg) (e) =



 Kg (ek) ,if Kg (ek) ∈ [−s,+s] ;
−s ,if Kg (ek) < −s;
+s ,if Kg (ek) > +s.

,if e = ek;

g (e) ,if e 6= ek.

where

Kg (ek) =

[
fob(vj)−

(
div \ek g

)
(vj)

]
−
[

fob(vi)−
(
div \ek g

)
(vi)

]
2

.

and 
(
div \ek g

)
(vi) = (div g) (vi) + g (ek) ;(

div \ek g
) (

vj
)
= (div g)

(
vj
)
− g (ek) ;

and(
div \ek g

)
(v`) = (div g) (v`) , ∀` 6= i, j.

Step 1. Take g0 = 0, or choose any g0 ∈ sB`∞(SE)

Step 2. Calculate g = Tg0. i.e., calculate (Tg0) (ek) for k = 1, 2, . . . , M. If g = g0

then take h̃ = div(g0), otherwise go to Step 3.

Step 3. Put g0 = g and go to Step 2.

We continue this process applying the operator T to the new element g ∈
sB`∞(SE) generating the sequence of elements g0, g1 = Tg0, g2 = Tg1, . . . , gn =
Tgn−1 with gn ∈ sB`∞(SE), n = 0, 1, 2, . . . until a maximum number of iterations
is reached. It is shown in Theorem 0.7 below, that

div (gn) −→ h̃ as n→ +∞ in the metric of `2 (SV) .

The proof uses the following proposition

Proposition 0.1. Let h̃ be the minimizer defined as in (29). The operator T is continuous
and satisfies the following two conditions

(a) For any g ∈ sB`∞(SE), div g = h̃ if and only if Tg = g;
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(b) For any g ∈ sB`∞(SE), if div g 6= h̃ then

‖ fob − div (Tg)‖`2(SV)
< ‖ fob − div g‖`2(SV)

. (30)

Finally

Theorem 0.7. Let h̃ be the minimizer defined as in (29), g ∈ sB`∞(SE) and let T be the
operator constructed in Algorithm. Then

div (Tng) −→ h̃ as n→ +∞ in the metric of `2 (SV) .

Paper 4: Exact Minimizers in Real Interpolation. Some additional results

Problem statement

In Paper 4, we consider several extensions of our previous results. In Paper 1 a
characterization of optimal decomposition for real Banach couples was obtained
by using duality in convex analysis. However a natural question arises as to
what will happen if we have more than 2 paces. Such type of situations are
important in image processing. Unfortunately for three spaces results start to
be more complicated. In particular the duality formula (X0 + X1)

∗ = X∗0 + X∗1
is not true even for regular triple. Another question which arises is how to
characterize optimal decomposition for complex spaces since real interpolation
is also used for complex spaces. In the last section of the paper we illustrate the
comparison in performance of our algorithm in Paper 3 with other algorithms.

Main contributions and outcomes

Assume that the triple (X0, X1, X2) is regular, i.e. X0 ∩ X1 ∩ X2 is dense in each
of Xj, j = 0, 1, 2. Let x ∈ X0 + X1 + X2 and let s, t > 0 be fixed parameters. The
L–functional for this triple is defined as follows:

Lp0,p1,p2 (s, t; x; X0, X1, X2) = inf
x=x0+x1+x2

(
1
p0
‖x0‖

p0
X0

+
s
p1
‖x1‖

p1
X1

+
t

p2
‖x2‖

p2
X2

)
,

(31)
where 1 ≤ p0 < ∞, 1 ≤ p1 < ∞ and 1 ≤ p2 < ∞.

We show that analogous results to Theorem 0.2 of Paper 1 are possible to
obtain (see Corollary 0.1 and Theorem 0.8 below). Let us consider a regular
triple (X0, X1, X2) and a special case when p1 = p2 = 1. We obtain the following
result

Corollary 0.1. Let 1 < p0 < +∞ and s, t > 0. Then the decomposition x =
x0,opt + x1,opt + x2,opt is optimal for the Lp0,1,1–functional if and only if there exists
y∗ ∈ (X0 + X1 + X2)

∗ ⊆ X∗0 ∩ X∗1 ∩ X∗2 such that ‖y∗‖X∗1
≤ s; ‖y∗‖X∗2

≤ t and
1
p0

∥∥x0,opt
∥∥p0

X0
= 〈y∗, x0,opt〉 − 1

p′0
‖y∗‖

p′0
X∗0

s
∥∥x1,opt

∥∥
X1

= 〈y∗, x1,opt〉
t
∥∥x2,opt

∥∥
X2

= 〈y∗, x2,opt〉
(32)
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where 1
p0

+ 1
p′0

= 1.

To understand the geometry of optimal decomposition, consider the triple
(`p, X1, X2) on Rn, where X1 and X2 are any Banach spaces. We consider the
Lp,1,1–functional for the triple (`p, X1, X2), i.e.

Lp,1,1 (s, t; x; `p, X1, X2) = inf
x=x0+x1+x2

(
1
p
‖x0‖

p
`p + s ‖x1‖X1

+ t ‖x2‖X2

)
,

where s, t > 0 and 1 < p < +∞. Let F0 , F1 and F2 be functions defined on Rn

by

F0 (u) =
1
p
‖u‖p

`p , F1 (u) = s ‖u‖X1
and F2 (u) = t ‖u‖X2

. (33)

It appears the consideration of two important sets Ωs,X1 and Ωt,X2 defined by

Ωs,X1 =
{

u ∈ Rn : ∇F0(u) ∈ sBX∗1

}
, Ωt,X2 =

{
u ∈ Rn : ∇F0(u) ∈ tBX∗2

}
,

(34)

where sBX∗1
(resp. tBX∗2

) is the ball of the dual space X∗1 (resp. X∗2 ) of radius s
(resp. t) with its center at the origin. There will then be four cases depending on
what set x0,opt belongs to.

Theorem 0.8. Let x ∈ Rn with optimal decomposition x = x0,opt + x1,opt + x2,opt for
Lp,1,1 (s, t; x; `p, X1, X2)–functional. Then

(1) If x0,opt ∈ int
(
Ωs,X1 ∩Ωt,X2

)
then the optimal decomposition for

Lp,1,1 (s, t; x; `p, X1, X2)–functional is given by x0,opt = x and x1,opt = x2,opt =
0.

(2) If x0,opt ∈ int
(
Ωs,X1

)
∩ bd

(
Ωt,X2

)
, then the optimal decomposition for

Lp,1,1 (s, t; x; `p, X1, X2)–functional is given by x = x0,opt + 0+ x2,opt and is such
that〈

x2,opt,∇F0
(
x0,opt

)〉
=
∥∥x2,opt

∥∥
X2

∥∥∇F0
(
x0,opt

)∥∥
X∗2

= t
∥∥x2,opt

∥∥
X2

. (35)

(3) If x0,opt ∈ int
(
Ωt,X2

)
∩ bd

(
Ωs,X1

)
then the optimal decomposition for

Lp,1,1 (s, t; x; `p, X1, X2)–functional is given by x = x0,opt + x1,opt + 0 and is such
that〈

x1,opt,∇F0
(
x0,opt

)〉
=
∥∥x1,opt

∥∥
X1

∥∥∇F0
(
x0,opt

)∥∥
X∗1

= s
∥∥x1,opt

∥∥
X1

. (36)

(4) If x0,opt ∈ bd
(
Ωs,X1

)
∩ bd

(
Ωt,X2

)
then the optimal decomposition for

Lp,1,1 (s, t; x; `p, X1, X2)–functional is given by x = x0,opt + x1,opt + x2,opt such
that{ 〈

x1,opt,∇F0
(
x0,opt

)〉
=
∥∥x1,opt

∥∥
X1

∥∥∇F0
(
x0,opt

)∥∥
X∗1

= s
∥∥x1,opt

∥∥
X1〈

x2,opt,∇F0
(
x0,opt

)〉
=
∥∥x2,opt

∥∥
X2

∥∥∇F0
(
x0,opt

)∥∥
X∗2

= t
∥∥x2,opt

∥∥
X2

.
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Next we use our approach when complex spaces are considered instead
of real spaces. In this case we need instead of standard conjugate functional
F∗ (y∗) = supx∈E {〈y∗, x〉 − F (x)}, to define it as
F∗ (y∗) = supx∈E {<e 〈y∗, x〉 − F (x)}. Let EC be a complex Banach space and let
ER be the same space with the same norm but considered real Banach space in
the sense that we restrict multiplication by scalars to real numbers only, instead
of complex numbers. Let (EC)

∗ (resp. (ER)
∗) be the dual space to EC (resp.

ER) consisting of complex (resp. real) valued linear and bounded functionals
f : EC → C (resp. g : ER → R). We illustrate that the spaces (EC)

∗ and (ER)
∗

are isometric in some sense. We then show that for a regular complex Banach
couple (X0, X1), we can use the same approach to obtain similar results as in the
real situation. For example, consider the L-functional

Lp0,1 (t, x; X0, X1) = inf
x=x0+x1

(
1
p0
‖x0‖

p0
X0

+ t ‖x1‖X1

)
,

where 1 < p0 < +∞.

Theorem 0.9. Let 1 < p0 < +∞. Then the decomposition x = x0,opt + x1,opt is
optimal for the Lp0,1-functional if and only if there exists y∗ ∈ X∗0 ∩ X∗1 such that
‖y∗‖X∗1

≤ t and  1
p0

∥∥x0,opt
∥∥p0

X0
= <e〈y∗, x0,opt〉 − 1

p′0
‖y∗‖

p′0
X∗0

t
∥∥x1,opt

∥∥
X1

= <e〈y∗, x1,opt〉.
(37)

Finally, we compare the performance of the algorithm wich was obtained in
Paper 3 with the Split Bregman algorithm. The Split Bregman algorithm is like a
benchmark algorithm known for the ROF model. We find out that in most cases
both algorithms behave in a similar way and that in some cases our algorithm
decreases the error faster with the number of iterations.

Paper 5: Optimal decomposition for infimal convolution on Banach Couples.
Some Connections to Linear and Convex Programming

Problem statement

The idea of this paper was to investigate connections between our approach and
two well–known optimization problems, namely (nonlinear) convex and linear
programming.

Main contributions and outcomes

The main outcome of the paper is that, based on our approach, it is possible,
under some additional assumptions to derive proofs for duality theorems which
are central for these problems. The approach is as follows: First we reformulate
the optimization problem at hand as an infimal convolution of two well–defined
functions. Secondly, we check subdifferentiability of the infimal convolution by
Theorem 0.5 and finally use Theorem 0.4.
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