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Abstract

Joseph Nzabanita (2015). Bilinear and Trilinear RegresBodels with
Structured Covariance Matrices

Doctoral dissertation. ISBN 978-91-7519-070-9 . ISSN 03824.

This thesis focuses on the problem of estimating parametéblinear and trilinear re-
gression models in which random errors are normally disteid. In these models the
covariance matrix has a Kronecker product structure ancedastor matrices may be
linearly structured. Most of techniques in statistical relith rely on the assumption that
data were generated from the normal distribution. Whereslddaga may not be exactly
normal, the normal distributions serve as a useful appration to the true distribution.
The modeling of normally distributed data relies heavilytba estimation of the mean
and the covariance matrix. The interest of consideringouaristructures for the covari-
ance matrices in different statistical models is partlyehi by the idea that altering the
covariance structure of a parametric model alters the negis of the model’'s estimated
mean parameters.

Firstly, we consider the extended growth curve model witimedrly structured co-
variance matrix. In general there is no problem to estintagecbvariance matrix when
it is completely unknown. However, problems arise when oa to take into account
that there exists a structure generated by a few number afegers. An estimation pro-
cedure that handles linear structured covariance matiscpsoposed. The idea is first
to estimate the covariance matrix when it may be used to definianer product in a
regression space and thereafter re-estimate it when itdsbeunterpreted as a dispersion
matrix. This idea is exploited by decomposing the residpats, the orthogonal comple-
ment to the design space, into orthogonal subspaces. Studgsiduals obtained from
projections of observations on these subspaces yielde#xpuinsistent estimators of the
covariance matrix. An explicit consistent estimator of thean is also proposed.

Secondly, we study a bilinear regression model with matosorally distributed ran-
dom errors. For those models, the dispersion matrix follaksonecker product structure
and it can be used, for example, to model data with spatigpteah relationships. The
aim is to estimate the parameters of the model when, in addlitine covariance matrix
is assumed to be linearly structured. On the basis imidependent observations from a
matrix normal distribution, estimating equations, a fliggfrelation, are established.

At last, the models based on normally distributed randond thider tensors are stud-
ied. These models are useful in analyzing 3-dimensional a@atiys. The 3-dimensional
data arrays may be obtained when, for example, a single mespe sampled in a 3-D
space or in a 2-D space and time, multiple responses aredeztor a 2-D space or in a
1-D space and time. In some studies the analysis is done tisrtgnsor normal model,
where the focus is on the estimation of the variance-coneeianatrix which has a Kro-
necker structure. Little attention is paid to the structir¢he mean, however, there is a
potential to improve the analysis by assuming a structuredrmWe formally introduce
a 2-fold growth curve model by assuming a trilinear struetiar the mean in the tensor
normal model and propose an estimation algorithm for patarseAlso some extensions
are discussed.






Popularvetenskaplig sammanfattning

Manga statistiska modeller bygger pa antagandet om nosndalfad data. Verklig data
kanske inte ar exakt normalférdelad men det &ar i manga fairarapproximation. Nor-
malfoérdelad data kan modelleras enbart genom dess vadeewéh kovariansmatris och
det ar darfor ett problem av stort intresse att skatta dessanpetrar. Ofta kan det ock-
s& vara intressant eller nodvandigt att anta nagon stryiétirdde vantevardet och/eller
kovariansmatrisen.

Den har avhandlingen fokuserar pa problemet att skattangrarna i multivaria-
ta linjara modeller, speciellt den utdkade tillvaxtkunaaellen med en linjar struktur
for ndgon kovariansmatris. | allménhet &r det inget probdgnskatta kovariansmatriser-
na nar de ar helt okanda. Problem uppstar emellertid nar némtenta hansyn till att
det finns en struktur som genereras av ett farre antal paramemanga exempel kan
maximume-likelihoodskattningar inte erhallas explicihanaste darfor beraknas med né-
gon numerisk optimeringsalgoritm. Vi berédknar explickatsningar som ett bra alternativ
till maximum-likelihoodskattningarna. En skattningspedur som skattar kovariansma-
triser med linjara strukturer foreslas. Tanken ar att f@ksttta en kovariansmatris som
anvands for att definiera en inre produkt, for att sedan akih slutliga kovariansmatri-
sen.

Aven tillvaxtkurvemodeller med tensornormalférdelnirtgderas i den héar avhand-
lingen. For dessa modeller &r kovariansmatrisen en Krarpodukt och dessa modeller
kan anvandas exempelvis for att modellera data med spatipdrala forhallande. Syftet
ar att skatta parametrarna i modellen dar méjligen dven é&oeariansmatriserna antas
félja en linjar struktur.
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Introduction

HE goals of statistical sciences are about planning expetsneatting up models to
T analyze experiments and to study properties of these mod&ikistical applica-
tion is about connecting statistical models to data. Stedilsmodels are essentially for
making predictions; they form the bridge between obsenatd dnd unobserved (future)
outcomes (Kattan and Gonen, 2008). The general statigtézadigm constitutes of the
following steps: (i) set up a model, (ii) evaluate the modalsimulations or comparisons
with data, (iii) if necessary refine the model and restantnfsiep (ii), and (iv) accept and
interpret the model. From this paradigm it is clear that thecept of statistical model lies
in the heart of Statistics. In this thesis our focus is ondin@odels, a class of statistical
models that play a key role in statistics. If exact infereisceot possible then at least a
linear approximate approach can often be carried out (Katid von Rosen, 2005). In
particular, we are concerned with the problem of estimatiacgameters in multivariate
linear normal models with structured mean (bilinear arlthgar regression models) and
structured covariance matrices (Kronecker and lineacstras).

1.1 Background

Regression analysis includes several statistical tedesiépr investigating dependencies
among variables. It is used essentially when the focus istierstand the relationships
between a set of dependent variables and a set of indepevat@tiles. The regression
analysis appeared in earliest form as the method of leastregun the beginning of
the nineteenth-century, where Legendre and Gauss appkeaé¢thod to the problem of
determining orbits of comets and planets about the sun frstno@omical observations.
The term "regression” was introduced in late nineteentituryg by Francis Galton while
he was studying the inheritance problem (Allen, 1997).

Although regression methods are in use since the last twtuiges, there are still
interesting problems that makes regression analysis ta beea of active research nowa-
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days. The newest research directions include regressioiving correlated responses
such as time series and growth curves, and the focus of #ssstban be traced there.

In regression models often one assumes that the underlgimdpm errors follow a
Gaussian distribution. When the set up of the model is matrigrsor, it becomes natural
to model the covariance matrix with a Kronecker productcitree. For some other struc-
tures for the covariance matrix, there might be theoreticalind to justify a particular
choice of the covariance structure (Fitzmaurice et al.220th particular, the linear struc-
tures for the covariance matrices emerged naturally irssitatl applications and they are
in the statistical literature for some years ago. Thesettras are, for example, uniform
structure, also known as intraclass structure, compoummirstry structure, banded ma-
trix, Toeplitz or circular Toeplitz, etc. The uniform stituce, a linear covariance structure
which consists of equal diagonal elements and equal offedfial elements, emerged for
the first time in (Wilks, 1946) while dealing with measurertseonk psychological tests.
An extension of the uniform structure due to Votaw (1948his tompound symmetry
structure, which consists of blocks each having uniformditire. In (Votaw, 1948) one
can find examples of psychometric and medical researchemabivhere the compound
symmetry covariance structure is applicable. The blockmmmd symmetry covariance
structure was discussed by Szatrowski (1982) who appliedchibdel to the analysis of an
educational testing problem. Ohlson et al. (2011) propaseebcedure to obtain explicit
estimator of a banded covariance matrix. The Toeplitz autar Toeplitz discussed in
(Olkin and Press, 1969) is another generalizations of thiadtass structure. The interest
of considering various structures for the covariance roasrin different statistical models
is partly driven by the idea that altering the covariancactire of a parametric model
alters the variances of the model’s estimated mean paresr(e€gnge and Laird, 1989).

1.2 Aims

The main theme of this thesis is to study the problem of estimaof parameters in
the bilinear and trilinear regression models with struetlicovariance matrices. Specific
objectives are (i) to derive explicit estimators of paraenein the extended growth curve
model when the covariance matrix is linearly structured,t¢ propose an algorithm
for estimating parameters in the bilinear regression muodre the random errors are
assumed to be matrix normally distributed with one lineattyctured covariance matrix,
and (iii) to extend the classical growth curve model by Pffthod Roy (1964) to a tensor
version and to propose an algorithm for estimating modedipaters.

1.3 Outline

This thesis consists of two parts and the outline is as fallow

1.3.1 Outline of Part |

In Part | the background and relevant results that are nefedexh easy reading of this
thesis are presented. Part | starts with Chapter 2 whicls givarief review on the multi-
variate distributions. The main focus is to define the matasmal distribution, the tensor
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normal distribution and the Wishart distribution. The nmaxim likelihood estimators in

the multivariate normal model, the matrix normal model aratensor normal model, for
the unstructured cases, are given. In Chapter 3 the bilarehtrilinear regression models
are defined. These models include the growth curve modehanektended growth curve
model, which are refereed to as bilinear regression modetsthe third order tensor nor-
mal model with a structured mean refereed to as the trilinegwession model. Some
results on the estimation of parameters in the extendedtlyrourve model are given

for unstructured covariance matrix and the procedure t@gticit estimators when the
covariance matrix is linearly structured is illustratedis@ an algorithm for estimating
parameters in the trilinear regression model is given. Pamtds with Chapter 4, which

gives a summary of contributions and suggestions for fustfeek.

1.3.2 Outline of Part I

Part Il consists of four papers. Hereafter a short summarthiopapers is presented.

Paper A: Estimation of parameters in the extended growth curve
model with a linearly structured covariance matrix

Nzabanita, J., Singull, M., and von Rosen, D. (2012). Edionaof parame-
ters in the extended growth curve model with a linearly $tred covariance
matrix. Acta et Commentationes Universitatis Tartuensis de Madtiean
16(1):13-32.

In Paper A, the extended growth curve model with two terms atidearly structured
covariance matrix is considered. We propose an estimatimredure that handles linear
structured covariance matrices. The idea is first to eséirtiet covariance matrix when it
should be used to define an inner product in a regression gpalcinereafter re-estimate
it when it should be interpreted as a dispersion matrix. Tdém is exploited by de-
composing the residual space, the orthogonal compleméhetdesign space, into three
orthogonal subspaces. Studying residuals obtained frajeqiions of observations on
these subspaces yields explicit consistent estimatoteafdvariance matrix. An explicit
consistent estimator of the mean is also proposed and ncethekamples are given.

Paper B: Extended GMANOVA model with a linearly structured
covariance matrix

Nzabanita, J., von Rosen, D., and Singull, M. (2015a). E¢erGMANOVA
model with a linearly structured covariance matrikinképing University
Electronic Press, LiTH-MAT-R-2015/07-SE

Paper B generalizes results in Paper A to the extended GMAN@WYdel with an ar-
bitrary number of profiles, say.. We show how to decompose the residual space, the
orthogonal complement to the mean space, inte- 1 orthogonal subspaces and how
to derive explicit consistent estimators of the covariamedrix and an explicit unbiased
estimator of the mean.



4 1 Introduction

Paper C: Bilinear regression model with Kronecker and linear
structures for the covariance matrix

Nzabanita, J. (2013). Multivariate linear models with keoker product and
linear structures on the covariance matricesPtaceedings, JSM 2013-IMS
pp. 1582-1588. Alexandria, VA: American Statistical Adation.(A pre-
liminary versiot).

This paper deals with models based on normally distribugg@tlam matrices. More
specifically the model considered ¥ ~ N, ,(M, X, ¥) with meanM, ap x ¢ ma-
trix, assumed to follow a bilinear structure, i.&[X] = M = ABC, whereA andC

are known design matrice® is unkown parameter matrix, and the dispersion matrix of
X has a Kronecker product structure, i.B[X] = ¥ @ X, where both® andX are
unknown positive definite matrices. The model may be use@xXample to model data
with spatio-temporal relationships. The aim is to estinthgeparameters of the model
when, in addition X is assumed to be linearly structured. In the paper, on this bés

n independent observations on the random maXixestimation equations in a flip-flop
relation are presented and the consistency of estimatetsdged.

Paper D: Maximum likelihood estimation in the tensor normal
model with a structured mean

Nzabanita, J., von Rosen, D., and Singull, M. (2015b). Maxmiikelihood
estimation in the tensor normal model with a structured mdankdping
University Electronic Press, LiTH-MAT-R-2015/08-SE

In this paper, we introduce a 2-fold growth curve model byiasag a trilinear structure
for the mean in the tensor normal model. More specifically,ttodel considered may be
written as

2 =% x{A,C,D}+6&,

whereZ : p x ¢ X ris the data tensogZ : s x t x u is the parameter given as a tensor
of order three,A : p x s, C : ¢ x tand D : r x u are known design matrices, and
x denotes the Tucker product. The random errors follow a tensomal distribution
with mean zero, i.e§ ~ N, (0,3, ®,1,), andd is a tensor of zeros. An algorithm
for estimating parameters is proposed and some direct giezations of the model are
presented.
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Bilinear and Trilinear
Regression Models






Multivariate Distributions

HIS chapter focuses on the normal distribution which is verydngmt in statistical
T analysis. In particular, our interest here is to define thérimand tensor normal
distributions which will play a central role in this thesi$he Wishart distribution will
also be looked at for easy reading of papers.

2.1 Normal distributions

The well known univariate normal distribution has been usestatistics for about two
hundreds years and the multivariate normal distributieeustood as a distribution of a
vector, has been also used for a long time (Kollo and von RaX#b). Due to the com-
plexity of data from various field of applied research, ita&ie extensions of the multi-
variate normal distribution to the matrix normal distrilout or even more generalization
to multilinear (tensor) normal distribution have been ¢desed. The normal distributions
we present here exclude the degenerate cases and thussthsty dunctions exist.

Definition 2.1 (Univariate normal distribution). A random variabler is a univariate
normal distribution with meap € R and variance? > 0, denoted ag: ~ N (p, o) if
its density is

In particular whenu = 0 ando = 1, we get the standard univariate normal dis-
tribution, i.e.,u ~ N (0,1). A more general characterization of the univariate normal
distribution is

Jciu—&-au,ueR,aZO,

whereu ~ N (0,1) and the notation=" means "has the same distribution as".

7



8 2 Multivariate Distributions

Definition 2.2 (Multivariate normal distribution). A random vectotr : p x 1 is mul-
tivariate normally distributed with mean vectar: p x 1 and positive definite covariance
matrix X : p x p if its density is

flz) = (2m)" % ‘2‘—%e—%tr{E”(ﬂc—u)(w—u)’}’

where| - | andtr denote the determinant and the trace of a matrix, respgctilie usually
use the notatio ~ N, (i, X).

The multivariate normal modet ~ N,(u,3), wherep and X are unknown pa-
rameters, is used in the statistical literature for a longeti To find estimators of the
parameters, the method of maximum likelihood is often useda random sample of
observation vectorg,, s, . .., x, come from the multivariate normal distribution, i.e.,
x; ~ Np(p, X). Thea,’s constitute a random sample and the likelihood functiagivien
by the product of the densities evaluated at each obsenvatictor

=

L(xl7w2a"'7wn7“’? E) = f(wi7l'l” E)

-
Il
—

2n) % B e 2t (BT @i (@imm)'}

|

Il
-

(2

The maximum likelihood estimators (MLEs) pfandX resulting from the maximization
of this likelihood function, for more details see for exampbhnson and Wichern (2007),
are respectively

n

N 1 1
Bo= - x=—-X1,,
n n
=1
PN 1
> = =S,
where
- 1
S = i— )z —n) =X, - -1,1)X,
;(w 1) (; — ) (In = —1,17)
X = (x1,x2,...,T,), 1, is then—dimensional vector of 1's, andl,, is then x n

identity matrix.

Definition 2.3 (Matrix normal distribution). A random matrixX : p x ¢ is matrix
normally distributed with meaM : p x ¢ and positive definite covariance matrices
3 :pxpandW¥: g x qifits density is

f(X) = (zﬁ)*%" |§;|f%|\p|f%e*%tr{2‘1<XfM)‘IJ‘1(XfM)’}'
The model based on the matrix normally distributed is ugwdghoted as

X ~ Np (M, X2, W), (2.1)
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and it can be shown th& ~ N, ,(M, %, ¥) means the same as
vecX ~ Npg(veeM, ¥ @ 3), (2.2)

where® denotes the Kronecker product. Since by definition of thpatision matrix of
X is D[X] = DvecX], we getD[X ]| = ¥ ® 3. For the interpretation we note tht
describes the covariances between the colum3.ofhese covariances will be the same
for each row ofX. The other covariance matriX describes the covariances between
the rows of X which will be the same for each column &f. The product¥ ® X takes
into account the covariances between columns as well asotlaiances between rows.
Therefore, ® 3 indicates that the overall covariance consists of the mtsdaf the
covariances ink and inX, respectively, i.e.Cov(z;;, zri] = oixt;1, WhereX = (z;5),
Y= (Uik) and¥ = (’(/le).

The following example shows one possibility of how a matiaxmal distribution may
arise.

—— Example 2.1 |

Let xq,...,x, be an independent sample @fobservation vectors from a multivariate
normal distributionN,, (i, ) and let the observation vectoss be the columns in a
matrix X = (x1, o, ..., x,). The distribution of the vectorization of the sample obser-

vation matrixvec X is given by
veceX = (@), ab,...,x) ~ Ny, (1, @ u, Q),

whereQ2 = I,, ® 3, 1,, is then—dimensional vector of 1s, anfl, is then x n identity
matrix. This is written as

X~N,,(M,%1,),

whereM = pl/,.

The models (2.1) and (2.2) have been considered in thetstakifterature. For exam-
ple Dutilleul (1999), Roy and Khattree (2005) and Lu and Zienman (2005) considered
the model (2.2), and to obtain MLEs these authors solvedtitely the usual likelihood
equations, one obtained by assuming ¥rat given and the other obtained by assuming
thatX is given, by what was called the flip-flop algorithm in Lu andnfinerman (2005).

Let a random sample of observation matriceX;, X, ..., X,, be drawn from the
matrix normal distribution, i.e X; ~ N,(M,%, ¥). The likelihood function is given
by the product of the densities evaluated at each obsenvatgtrix as it was for the
multivariate case. The log-likelihood, ignoring the nofiziag factor, is given by

InL(X,M,S,¥) = —% In|2| - %mm

—% zn:tr{El(X,- - M)® (X, - M)'}.
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The likelihood equations are given by Dutilleul (1999)

— 1 & _
M ﬁ;Xi:X;

~ 1 n o~ ~—1 —~
by N (X, - MY (X, - M);
X )& (X - MY

~ 1 <& —~ a1 —
T = —S(x,-M)S (X, - M).
LS wys T on -

There is no explicit solutions to these equations and ond melyson an iterative algo-
rithm like the flip-flop algorithm (Dutilleul, 1999). Srivémva et al. (2008) pointed out
that the estimators found in this way are not uniquely deieech Srivastava et al. (2008)
showed that solving these equations with additional edtiliyaconditions, using the flip-
flop algorithm, the estimates in the algorithm converge ¢éouthique maximum likelihood
estimators of the parameters.

The model (2.1), where the mean has a bilinear structure earasdered by Srivastava
et al. (2008). Nzabanita (2013) considered the problem tiheing the parameters in
the model (2.1) where the mean has a bilinear structure aratjdition, the covariance
matrix 3 is assumed to be linearly structured.

A matrix normal model may be thought as a two-array normalehadd can be ex-
tended to & -array normal model (also known as tensor normal model)ogefve give
a formal definition of ai(-array normal model, we first introduce few notations and op-
erations onK -arrays to be used later. K-array or K-way or Kth-order tensor is an
element of the tensor product &f vector spaces, each of which has its own coordinate
system (Hoff, 2011, Kolda and Bader, 2009, De Lathauwer.eP@0D0). For example, a
vectorz € RP! is a one-array with dimensigw, . A matrix X € RP1*P2 s a two-array
with dimension(py,p2). An array 2" € RPr*P2xXPx s g K-array with dimension
(p1,...,px) and has elementSe;, . ;. ik € {1,...,pc},k = 1,..., K}. A matri-
cization or unfolding or flattening of a tensor is the procafs®ordering its elements into
a matrix. This can be done in several ways. In this thesis wethes so called mode-
matricization and the notatioX (,,) is used to denote-mode matrix from the tenso#”.
For some details about matricization and decompositioemddrs refer to (Hoff, 2011,
Kolda and Bader, 2009, De Lathauwer et al., 2000). A vecition of 2" is defined with
help of usuakec operator for matrices agc2™ = vecX (1.

Definition 2.4 (Tensor normal distribution). A randomk'th order tensoZ” € RP1 XP2XXPxK
is said to be normally distributed if

%'i,//ﬂr% XA{T1,T2,..., Tk},

for some.# € RPr*P2x"XPK non-singular matrices;, € RP+*Pr | =1,..., K and
arandom tensot/ ¢ RP1*pP2XXPx with i.i.d. standard normal entries.

Here, the symbol X" denotes the Tucker product (Tucker, 1964, Kolda and Bader,
2009) defined by the identity

vee(% x {T1,T2,...,Tk}) = (Tk OTK_1® ... T1)vec¥.
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It follows that
E[Z|=#,D[Z]=DlvecZ | =TkTx ®Txk-1T) 1 @ ... @ T17T].

Thus, the tensor normal distribution corresponds to thdivawiate normal distribution
with separable (Kronecker product structure) covarianagim LettingX, = 7,7/, we
write

px(‘ﬂ7217"~72K)7 (23)

7777

which is equivalent torec. 2™ ~ Ny, ...p, (Vecl , Xk ® - - - ® Xy ). The density function
is given by

fl@) = (2m) 7" (H |zk|—p/<2pk>> exp {5~ W=k (e -}

k=1

whereX; . x =¥ ® - ® Xk, x = vecZ , p = vec.Z andp = Hle D+

The model (2.3) is often used to model variation among enbfehe multi-way data,
a problem which is of great importance in many research fid¢tds example Basser and
Pajevic (2003) argued on the need to go from the vectoriafrirent of some complex data
sets to tensor treatment in order to avoid wrong or ineffitod@mclusions. The Bayesian
and the likelihood based approaches are the most used deelsrio obtain estimators of
unknown parameters in the tensor normal model, see for eeafhipff, 2011, Ohlson
et al., 2013). For the third order tensor normal distributibe estimators can be found
using the MLE-3D algorithm by Manceur and Dutilleul (2013)similar algorithms like
one proposed by Singull et al. (2012). L&t, i = 1,...,n, be a random sample from
the tensor normal distribution

2~ NP171727173(=//!;21722723)~ (2.4)
Then, the maximum likelihood estimator of is given by
— 1< .
%252%—%

The respective maximum likelihood estimat(ﬁs, flg, flg of X1, X9 and X3 are ob-
tained by solving iteratively the following likelihood egtions

~ 1 n __ ~ ~ _

s = Zi— D) 1y(Zz @) H(Zi — X)y)s
1 p— 7;( )1 (s @ Za) ™ (( )

_— - — e S —

3y = PP ; Zi )(2)(23 ®3) (4 %)(2)) ;

~ 1 n _ ~ __

S, = Zi— X )5 (B @3) (% — Z)s) -
3 T Z )(3)(Z2 @ 31) 7 (( )(3))

Most studies on the third order tensor normal model focusethe estimation of pa-
rameters with unstructured mean. Nzabanita et al. (201d&tgidered a trilinear structure
for the mean in model (2.4) and proposed an algorithm fomegtng the parameters.
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2.2 Wishart distribution

In this section we present the definition and some propesfiesnother important distri-
bution which belongs to the class of matrix distributiote Wishart distribution. First
derived by Wishart (1928), the Wishart distribution is usueegarded as a multivari-
ate analogue of the chi-square distribution. There are mays to define the Wishart
distribution and here we adopt the definition by Kollo and Ruosen (2005).

Definition 2.5 (Wishart distribution). The matrixW : p x p is said to be Wishart
distributed if and only ifiW" = X X’ for some matrixX, whereX ~ N, ,(M, %, I),
andX is positive definite. IfM = 0, we have a central Wishart distribution which will
be denotedV ~ W,(X,n), and if M # 0, we have a non-central Wishart distribution
which will be denotedV, (X, n, A), whereA = M M'.

The first parametek is usually supposed to be unknown. The second parameter
which stands for the degrees of freedom is usually considerdoe known. The third
parameterA, which is used in the non-central Wishart distribution, @&led the non-
centrality parameter.

Some important properties of the Wishart distribution avergin the following the-
orem.

Theorem 2.1

(i) LetW; ~ W,(X,n, A;) be independent 3V 5 ~ W, (32, m, Az). Then

Wi+ Wao~ Wy (S, n+m, Ay + Ay).

(i) Let X ~ N, ,(M,X, ®), whereC(M') C C(¥). PutW = X¥~1X’. Then
W ~ W, (3, rank(¥), A),
whereA = M&~1M’.
(iii) Let W ~ W,(%,n,A)and A € R?*P. Then

AW A’ ~ W,(AS A’ n, AAA').

(iv) Let X ~ N, ,,(M,%,I)andQ : n x n be symmetric. TheX QX' is Wishart
distributed if and only iiQ is idempotent.

(v) LetX ~ N, ,(M,X,I)and@ : n x n be symmetric and idempotent, so that
MQ = 0. ThenX QX' ~ W,(X, rank(Q)).

(vi) LetX ~ N, ,,(M,%,1),Q, : nxnandQ, : n xn be symmetric. TheX Q1 X’
and X Q, X’ are independent if and only @, Q. = 0.

The proofs of these results can be found, for example, indkaoild von Rosen (2005).
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—— Example 2.2 |

In Section 2.1, the MLEs oft and3 in the multivariate normal modet ~ N,(p, %)
were given. These are respectively

1

ﬁ' = 7X1n7
n

PN 1

s = -8,
n

where
S=XQX/,

whereQ =1,, — 11,1/
It is easy to show that the matr@ is idempotent andank(Q) = n — 1. Thus,

S~ Wy(2,n—-1).

Moreover, we note tha® is a projector on the spacé1,,)~, the orthogonal complement
to the spacé€(1,). HenceQ1,, = 0 so thati and.S (or X) are independent.







Regression Models

HE goal of this chapter is to give definitions and some resultsnattivariate linear
models. It starts with the general linear regression madskh includes well known
models like the univariate linear regression model, théyarsof variance model and the
analysis of covariance model. The multivariate countdripatudes the multivarate linear
regression model, the multivariate analysis of varianad the multivariate analysis of
covariance model. Then, the growth curve model and the dgtegrowth curve model,
which are refereed to as the bilinear regression modelqrasented. At last, we define
the trilinear regression model and give an example to iatstits construction.

3.1 General linear regression model

In the general linear model (GLM) setup, a random set abrrelated observations, an
observation vectox’ = (x1,x2,...,x,), is related to a vector of parametersp3’ =
(B1, B2, .-, Br), through a known nonrandom design matfix: k£ x n plus a random
vector of errorse : n x 1, with mean zeroE(e) = 0, and covariance matricov(e) = X.
Thus, the general linear model (GLM) is represented as

' =p3'C+¢€,E(e)=0,covie) =3, (3.1)

where@ andX are unkown parameters.

The vector of parametergl, can be fixed, random or both (mixed model). In this
thesis parameters are assumed to be fixed. The matlicasd 3 may have different
forms and depending on these forms model (3.1) includes kmelivn models like the
univariate (linear) regression (UR) model, the analysigasfance (ANOVA) model and
the analysis of covariance (ANCOVA) model.

Different techniques to estimate model parameters andthgpis testing exist. For
example, when there is no assumption on the distributian ohe can use the generalized

15
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least squares (GLS) theory and minimum quadratic norm geHdiastimation (MINQUE)
theory (Rao and Toutenburg, 1995) to estimai@nd: .

In many statistical analysis, one assumes that the vactars a multivariate normal
distribution and model (3.1) becomes

that is a multivariate normal model with mean veo®i3 and covariance matri¥. In
this case the maximum likelihood theory for estimation aggdthesis testing may be
used.

Model (3.2) corresponds te observations on a single dependent response variable.
When one has independent observation vectats,= (z1,, 2, .. ., Tpi), i =1,...,n,
onyp correlated dependent response variables, model (3.2)a&zas to the model

X =BC+E, (3.3)

whereX :pxn,B:pxk,C:kxn, E~ N,,(0,%,I). The matrixC is a known
design matrix, and3 and the positive definite matriX are unknown parameter matrices.

Again, depending on the forms @ and X, model (3.3) includes known models
like the multivarate (linear) regression (MR) model, theltimariate analysis of variance
(MANOVA) model (Roy, 1957, Anderson, 1958) and the multisse analysis of covari-
ance (MANCOVA) model.

3.2 Bilinear regression models. Growth curve models

The growth curve analysis is a topic with many important eggplons within medicine,

natural sciences, social sciences, etc. Growth curve sigdias a long history and two
classical papers are Box (1950) and Rao (1958). In 1964 thé&mmvn paper by Pothoff

and Roy (1964) extended the MANOVA model (3.3) to the moddtWwhwas later termed

the growth curve model or the general MANOVA (GMANOVA).

Definition 3.1 (Growth curve model). Let X :pxn, A:pxq,q <p, B :qxk,
C :k xn,r(C)+p <n,wherer(-) represents the rank of a matrix. The growth curve
model is given by

X = ABC + E, (3.4)

where columns off are assumed to be independently distributed as a multiganiar-
mal distribution with mean zero and a positive definite disjgg matrixX; i.e., £ ~
Npn(0,%,1,).

The matricesA and C, often called respectively within-individuals and betwee
individuals design matrices, are known matrices wheredgeeaB andX are unknown
parameter matrices.

The paper by Pothoff and Roy (1964) is often considered tchbditst where the
model was presented. The GMANOVA model was introduced tdyaeagrowth in bal-
anced repeated measures data. Several prominent authaiesfellow-up papers, e.g.,
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Rao (1965) and Khatri (1966). Notice that the growth curveleids a special case of the
matrix normal model where the mean has a bilinear struciithierefore, we may use the
notation

X ~ N, (ABC,%,1).

Also, it is worth noting that the MANOVA model with restrictns

X = BC+E, (3.5)
GB = 0
is equivalent to the growth curve mod€kB = 0 is equivalent taB = (G')°©, where

(G')° is any matrix spanning the orthogonal complement to theesgaaerated by the
columns ofG’. Plugging(G’)°® in (3.5) gives

X =(G")OC +E,
which is identical to the growth curve model (3.4).

—— Example 3.1: Potthoff & Roy (1964) dental data |

Dental measurements on eleven girls and sixteen boys atlifiberent agest| = 8, t; =

10, t3 = 12, andt, = 14) were taken. Each measurement is the distance, in millinete
from the center of pituitary to pteryo-maxillary fissure.€Be data are presented in Table
3.1 and plotted in Figure 3.1. Suppose linear growth curessiibe the mean growth for

Table 3.1: Dental data

gender ¢ to t3 ta id gender t; to t3 ta

id
1 F 21.0 200 215 23.012 M 26.0 250 29.0 31.0
2 F 21.0 215 240 25513 M 215 225 230 26.0
3 F 205 240 245 26.014 M 23.0 225 240 27.0
4 F 235 245 250 26.%15 M 255 275 265 27.0
5 F 215 230 225 23516 M 200 235 225 26.0
6 F 200 210 21.0 22%17 M 245 255 27.0 285
7 F 215 225 230 25.018 M 220 220 245 265
8 F 23.0 23.0 235 24.019 M 240 215 245 255
9 F 200 210 220 21520 M 23.0 205 31.0 26.0
10 F 16,5 19.0 19.0 19521 M 275 280 310 315
11 F 245 250 280 28.022 M 23.0 23.0 235 250
23 M 215 235 240 280
24 M 170 245 26.0 295
25 M 225 255 255 26.0
26 M 23.0 245 26.0 30.0
27 M 220 215 235 250

both girls and boy. Then we may use the growth curve model

X ~ N,.(ABC, %, 1)
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Figure 3.1: Growth profiles plot (means at each time point joined withigint lines)
of Potthoff and Roy (1964) dental data.

to analysis this data set. In this model, the observatiomixiatX = (x1,x1,...,x27),
in which eleven first columns correspond to measurementglgragd sixteen last columns
correspond to measurements on boys. The design matrices are

, (1 1 1 1 - N 0
A‘(s 10 12 14)’ C_<111®(0>'116®<1 ’

andB is the unknown parameter matrix abs the unknown positive definite covariance

matrix.
]

One limitation of the growth curve model is that differendividuals should follow
the same growth profile. If this does not hold there is a wayteral the model. A natural
extension of the growth curve model, introduced by von R¢$689), is the following

Definition 3.2 (Extended growth curve model). Let X : pxn, A; : pxq;, B; : q; X ki,
Ci;:kixn,r(Cy)+p<n,i=12,...,m,C(C;) CC(C;_),i=2,3,...,m, where
r(-)andC(-) represent the rank and column space of a matrix respectieéyextended
growth curve model is given by

X =Y AB,C;+E, (3.6)

i=1

where columns off are assumed to be independently distributed as a multiganiar-
mal distribution with mean zero and a positive definite disjgg matrixX; i.e., E ~
Npn(0,%,1,).
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The matricesA; and C;, often called design matrices, are known matrices whereas
matricesB; andX are unknown parameter matrices. As for the growth curve itbde
notation

i=1

X ~Npn (i A;B,C;. %, I)

may be used for the extended growth curve model. The onlgrdiffce with the growth
curve model in Definition 3.1 is the presence of a more gemaedn structure. When
m = 1, the model reduces to the growth curve model. The model witsabspace
conditions was considered before by Verbyla and Venabl@88)Lunder the name of
sum of profiles modelAlso observe that the subspace conditiGt€";) C C(C;_,),
i=2,3,...,m may be replaced b¢(A;) C C(A;—1),7 = 2,3,...,m. This problem
was considered for example by Filipiak and von Rosen (20d2)f = 3.

—— Example 3.2 |
Consider again Potthoff & Roy (1964) classical dental d&@m Figure 3.1, it is rea-
sonable to assume that for both girls and boys we have a lgrearth component but
additionally for the boys there also exists a second ordmpmial structure. Then we
may use the extended growth curve model with two terms

X ~ Npn(A1B1Cy + A3 B,C,, %, 1),

, (11 1 1 e IR 0
SR Y N G ORI )

AL = (8% 10% 122 142 ), C,= (0} : 1),

Bi11 P2
Ba1 Ba2

¥ is the same as in Example 3.1.
| |

where

are design matrices arfg; = ( ) and B, = (f32) are parameter matrices and

3.3 Trilinear regression model

The classical growth curve model (3.4) by Pothoff and Roys#Tomprises two design
matrices; one models the within-individuals structure kglas the other one models the
between-individuals structure. More specifically, thehivitindividuals design matrixd
contains time regressors and models growth curves, andetiebn-individuals design
matrix C' is comprised of group separation indicators. It is suitablanalyze, for ex-
ample, "one directional" repeated measures data. Nzabanél. (2015b) extended the
classical growth curve model with an additional withindiriduals design matrix which
can be used to analyze "two directional" repeated measattes WMore specifically, the
model considered is the third order tensor normal model

X~ Npgr( M Z,0,Q),
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with mean structure of the form

s t u
Hijk = Z Z Zb@mnaifcjmdk'na i=1,...,p,5=1,...,q, k=1,...,m

=1 m=1n=1

This mean structure can be written
M =B x{A C, D},

whereZ = (bymn) : s X t X u is the parameter given as a tensor of order thrkes
(aig) : px s, C = (¢cjm) : g xtandD = (dg,) : r x u are known design matrices,
and x denotes the Tucker product, see Kolda and Bader (2009)tandeéfined by the
identity

vec(B x {A,C,D}) = (D®C ® A)vecH.

The artificial example below illustrates how this kind of nebchay arise.

—— Example 3.3

Assume that one has measured pht lakes fromu regions at levels of depth and fap
time points. The aim is to investigate how pH varies with tegotd/or time and how pH
differs across regions. Thus, we have spatio-temporal unea®nts. Data form a random
tensorZ” : p x ¢ x r, wherer = ry + ro + --- + r, andr,, is the number of lakes in
then'" region. It is assumed that measurements of each lake (afslite in the tensor
Z") is distributed as a matrix normal distribution with coarte matriceX : p x p, and
W : ¢ x ¢, and that the measurements of different lakes are indepéntfehe firstr
frontal slices ofZ" represent region one, the nextfrontal slices represent region two,
and so on, we get the between-individuals design mad®ix= blockdiag(1, ,...,1;. ).

It is also assumed that the expected trend in time is a poliaiahorders — 1 and that
the expected trend in depth is a polynomial of ortler 1. Thus, we have two within-
individuals design matrices

1 ¢t - t‘i_l 1 dy --- dtl_1

1 ty - t‘2971 1 dy --- dé*l
A=|. . . andC = .

1 t, - t;_l 1 d, - df}—l

Hence, the model for the data tens®r is
X =%x{AC,D}+ &, (3.7)

whereé ~ N, , -(0,%,%¥,1,), andd is a tensor of zeros.

In this thesis the model (3.7) is refereed to as 2H®ld Growth Curve Modeand
serves as an example of a trilinear regression model.
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3.4 Estimation in bilinear regression models

The problem of estimating parameters in the (extended) tirowrve model has been
studied by several authors. The book by Kollo and von Rose@xR[Chapter 4] con-
tains useful detailed information about uniqueness, edtility conditions, moments and
approximative distributions of the maximum likelihoodiestors in the model given in
Definition 3.2. Recently other authors considered the muail#l slightly different con-
ditions. For example in Filipiak and von Rosen (2012), thgliek MLEs are presented
with the nested subspace conditions on the within designieeatinstead. In (Hu, 2010,
Hu et al., 2011), the extended growth curve model withoutetesubspace conditions
but with orthogonal design matrices is considered and géimed least-squares estima-
tors and their properties are studied.

3.4.1 Maximum likelihood estimators

To find estimators of parameters, when the covariance matrix not structured, very
often the maximum likelihood method is used. The maximuraliifood estimators of
parameters in the growth curve model have been studied by mnathors, see for in-
stance Srivastava and Khatri (1979) and von Rosen (1989).theoextended growth
curve model with nested subspace conditions as in Defingidnvon Rosen (1989) de-
rived explicit maximum likelihood estimators (MLEs). Thallbwing theorem gives the
MLEs of parameters in the extended growth curve model.

Theorem 3.1

Consider the extended growth curve model as in Definitionl32
P,- = T,,n_lTr_g><"'XTo,TOZI,TZI,Q,...,m—FL
T, = I-P;A(AP,S;'P,A)"AP.S;", i=1,2,....,m,

K2
Si = > K;i=12...,m,
j=1

K, = PjXch_il(I — Pc;)Pc;.le/P;, Cy=1,
Pc, = C}(CJ-C})‘CJ-.
Assume thaF, is positive definite.

(i) The representations of maximum likelihood estimatérBp, r = 1,2, ..., m and
3 are
B, = (A\P,S,'P,A,)"A/P,S;'(X - ) A;B,C))C,(C.C;)
i=r+1
+(ALP.)Z, + A.P.Z,,C°,

=1 =1
= Sm + Pm+1XC;n(CmC;n)_CmX/Pm+1,
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whereZ,; and Z ., are arbitrary matrices an(Ez’;m 11 AiR-Ci =0.

(i) For the estimatorsB;,

P, zm: A;B,C; = i([ —T,)XC'(C;C})~C..

i=r i=r

The notationC? stands for any matrix of full rank spannifC)~+, andG~ denotes an
arbitrary generalized inverse in the sense ti6z~ G = G.

For the proof of this theorem, see for example von Rosen (188%ollo and von
Rosen (2005).

A useful results is the corollary of this theorem whes 1, which gives the estimated
mean structure.

Corollary 3.1

E[X] = ZLAiRCi =Y (I -T)XCl(CiC) C..

i=1

—— Example 3.4 |

Setm = 2 in the extended growth curve model of Definition 3.2. Thempfdheorem
3.1, the maximum likelihood estimators for the parametetrices B, and B, are given

by

By, = (AYP,S;'PyAs)” AyPLS; X CH(C2Ch) ™ + (AyP2)° Zoy + Ay Z2CY
By = (A1S7'A)"A\STY (X — AyB,Co)C)(C1CY)™ + AP Zyy + A} Z1,CF
where

S, = X(I-cyc.cy)c)X,

P, = I—A;(A,S]'A)"A\S,

Sy = 81+ PyXC(C.1C))~Cy (I — CH(C2CY)~C3) C(C1C)~C1 X' P),

Z, are arbitrary matrices.
Assuming that matriced;’s, C;’s are of full rank and tha€(A;,) N C(Az) = {0},
the unique maximum likelihood estimators are

B, = (ALP,S;'P,A,) 'A,P,S; ' XCL(CyCh)™",
By = (AS7'A) 1A STHX — AB,Cy)CH(C1CY) L
Obviously, under general settings, the maximum likelihestimatorsB; andB, are
not unique due to the arbitrariness of matriégs. However, it is worth noting that the
estimated mean

—

E[X] = A1.§1C1 + AQEQCQ
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is always unique and therefole given by
nS = (X — A\B,C, — A2§2C2)(X - A B,C, — Azﬁzcz)/

is also unique.
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Figure 3.2: Estimated mean growth curves for Potthoff and Roy (1964)alelata.

—— Example 3.5: Example 3.2 continued ,

Consider again Potthoff & Roy (1964) classical dental daid the model of Example
3.2. Then, the maximum likelihood estimates of parameters a

= 20.2836  21.9599\ =

Bi = (0.9527 0.5740)’32_(0'2006)’
5.0272 25066 3.6410 2.5099

s _ |25066 3.8810 2.6961 3.0712

3.6410 2.6961 6.0104 3.8253
2.5099 3.0712 3.8253 4.6164

The estimated mean growth curves, plotted in Figure 3.2gifts and boys are respec-
tively

20.2836 + 0.9527 ¢,
ip(t) = 21.9599 + 0.5740¢ + 0.2006 ¢°.

=
Q
—~
~
~—




24 3 Regression Models

3.4.2 Explicit estimators when the covariance matrix is linearly
structured

A covariance matri¥ = (o;;) is linearly structured if the only linear structure between
the elements is given bly;;| = |ox| # 0 and there exists at least ogj) # (k,{) so
that|o;;| = |ow| # 0. Examples of linear structures for the covariance matrex arg.,
uniform structure, compound symmetry structure, bandedtttre, Toeplitz structure,
etc.

In most of works on the extended growth curve model no pderattention has been
made on the structure of the covariance matrix. In fact theedew articles treating the
problem of structured covariance matrix although it mayrbpartant in the growth curve
analysis.

For the classical growth curve model, the most studied &traare the uniform co-
variance structure and the serial covariance structuesfaseexample, (Lee and Geisser,
1975, Lee, 1988, Khatri, 1973, Klein and ZeZula, 2009, Staea and Singull, 2015).
The paper by Ohlson and von Rosen (2010) was the first to peapossidual based pro-
cedure to obtain explicit estimators for an arbitrary lingtauctured covariance matrix in
the classical growth curve model as an alternative to iteratethods. The idea in Ohlson
and von Rosen (2010) was later on applied to the sum of twdg@safiodel by Nzabanita
et al. (2012). The results in Nzabanita et al. (2012) have geeeralized to the extended
GMANOVA model with an arbitrary number of profiles by Nzabi@nét al. (2015a). The
procedure relies on the decomposition of the residual sjpeicen + 1 subspaces, see
Theorem 3.3, and on the study of residuals obtained fromeptiojg observations onto
those subspaces. Hereafter we illustrate how it works.

If 3 would have been known, from least squares theory, the besrliunbiased
estimator (BLUE) of the mean structure in model (3.6) wouwddhiven by

E[X]=Y Pp 4 xXPc, (3.8)
=1
where Py , = P, A, (AP P A)-A\P;57", and P, is defined asP; in
Theorem 3.1 withS; replaced with>.
Applying the vec-operator on both sides of (3.8) we get
vec(E[X]) = (Pc: @ Pp 5 5)vecX.
=1
Noting that the matrix? = Pc: ® Pp s s is a projector, see Theorem 3.2, we see that
the estimator of the mean structure is based on a projectiohsgrvations on the space
generated by the design matrices. Naturally, the estimatbthe variance parameters
are based on a projection of observations on the residuaksplaat is the orthogonal
complement to the design space.

Theorem 3.2 B
LetP=3"", Pc' ® Pg 4 g andV; =Cxs(P;A;), i=1,2,...,m. Then,

(i) The subspaceg;’s are mutually orthogonal and
VIi®dVe®---®dV, =Cs(A1:Ay: -+ Ay),i=1,2,...,m;
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(i) The matrix P is a projection matrix;
(i) C(P) =X, C(CY) @ Vi
The proof of this theorem can be found in Nzabanita et al. $2p1
The space€ (P) is refereed to as the mean space and it is used to estimatestire m
parameters where&g P)+, the orthogonal complement to the mean space, is refereed to
as the residual space and it is used to create residuals.
WhenX is not known it should be estimated. The general idea is tdhesgariation
in the residuals. For our purposes we decompose the resigaeé intaon + 1 orthog-

onal subspaces and Theorem 3.3, proved in Nzabanita eDdb42, shows how such a
decomposition is made.

Theorem 3.3
LetC(P) andV; be given as in Theorem 3.2. Then

C(PYt=ILBLB-- B,
where
I = W2 @ (@[5 Vi)7, 1 =1,2,...,m+1,
W, = C(Ch,i1)NC(Ch o)t r=1,...,m+1,
in which by conveniencp!_,V;)* = 0+ =V, =R?,Cy = I andC,,;; = 0.
The residuals obtained by projecting data to these subspaee

r—1
H,=(I-) Py, 5)X(Pc

r—1
i=1

_PC,/,,)>

r=1,2,3,...,m+ 1, and here we use for convenienE??z1 Pp.a, s, =0.
For illustrative purposes, let. = 2. In this case the BLUE of the mean is

—_~—

E[X]= M, + M,,

where

M, = Pa, = XPcy,

M; = Pra,sXPo, Ti=1-Pa x=T,.
From here we see that the estimated mean is obtained by pngjebservations on some
subspaces. The matricésa, s and P, 4, s are projectors onto the subspadgs=
Cs(A;) andV, = Cxs(A; : Ay) NCxs(A;)*, respectively. Figure 3.3 shows the whole
space decomposed into mean and residual subspaces.

In practiceX is not known and should be estimated. A natural way to get timator

of ¥ is to use the sum of squared residual i not structured we estimate the residuals,
H,; i=1,2,3,in Figure 3.3 with

r—1
R, =(I- Z Pp,a,s,)X(Pc,_ —Pc),r =123,
=1
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Figure 3.3: Decomposition of the whole space according to the withinlzeta/een
individuals design matrices illustrating the mean andhheslispacesy; = Cx (A1),
VQ = Cz(Al : Ag) n Cz(Al)l, V3 == Cz(Al : AQ)L, Wl == C(CIQ), W2 ==
C(C) NC(Cy)*H, Wy =C(CY)

where P; and S; are given in Theorem 3.1. Thus a natural estimatoEdé obtained
from the sum of squared residuals, i.e.,

n% = R\R) + RyR), + R3R}, (3.9)

which is the maximum likelihood estimator.

WhenX is linearly structured, the estimator in (3.9) does not kithhe same struc-
ture although it may be desirable. One objective of thisith@as to propose an procedure
that produces an estimator of the covariance matrix withsirelé linear structure. The
idea is first to estimate the covariance matrix frghp = H, H and use it to define the
inner product in the spacég, and then estimat84,; and H , by projecting observations
onC(C’) ® V; and(C(C}) NC(C%)*L) ® Vi respectively.

By vecX(K) we mean the patterned vectorization of the linearly stmectumatrix
3}, that is the columnwise vectorization &f where all 0's and repeated elements (by
modulus) have been disregarded. Then there exists a traratfon matrixI” such that

vecX(K) = TvecX or vecE = T vecE(K),

whereT" denotes the Moore-Penrose generalized inverge. of
From results in Nzabanita et al. (2012), the first estimatdt s

£ = argmintr (@ — (n— )M’}

given by

vecs, =T ((T+)”’I\";'Y1T+)7 (T+)’?,1vecQ1,
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whereY; = (n — r;)I and the notatiofY")( )’ stands for Y )(Y')’.

Assuming thats; is positive definite (which always holds for largg, and using it
to define the inner product in the spakeg the estimator ofM/; and H, are given by

J\/Zfl =P, «-XPc, andﬁg ={I-P X(PC/1 — PCé)’ respectively.

A8 Al,fzﬁs))

A second estimator df is obtained using the sum 6}, andﬁgﬁ; in a similar way
and is given by

vecSl, = T ((T+)/?;'/I\"2T+)7 (T+)/?;V8C©2,
~ —_ ~/ o~ ~ ~ ~
whereQ, = Q + HoH,, Yo = (n—r1)I+(r1—r2)T1@T1andT1 =I-P, 5 .

Assume thaﬁg is positive definite and use it to define the inner produc¥inthe
estimators of\M; and H 5 are given by

M, = PT1A2 22)(F’C/
H; = T2X(PC’2 - Pcy),
T: = I- PA17§1 - P'/7\'1A2-f§2'

At last, a third estimator oX, is obtained using the su(fz3 = @2 + ﬁgﬁ; and is given
by

vecS; = T+ ((TJF)"Y;'/I\'gTJF)_ (T*)"/I\';vec@g, (3.10)

whereY; = (n — 7’1)1 + (r1 — 7‘2)7’1 QT 1+712T2® To.
The estlmator§31, 22 andEg, are all consistent fok, however, a§]3 uses all in-
formation contained in all residuals, it can arguably benplteted asa d|sperS|on matrix.

The unbiased estimator of the mean structured is glveE[st] M, + M,.

—— Example 3.6: Example 3.5 continued |

Consider again Potthoff & Roy (1964) classical dental daia e model of Example
3.5. Assume that the covariance matrix has a Toeplitz strecte.,

o p1 P2 pP3
() — pPL 0  pP1 P2
P2 P10 pP1
pPs P2 p1 O

Then, the estimate of the structured covariance matricendiy (3.10) is

5.2128 3.2953 3.6017 2.7146
a 3.2953 ©5.2128 3.2953 3.6017
3.6017 3.2953 5.2128 3.2953
2.7146 3.6017 3.2953 5.2128
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For comparison, the MLE computed with Proc Mixed in SAGAS Institute Inc., 2008)

IS
4.9368 3.0747 3.4559 2.2916

3.0747 4.9368 3.0747 3.4559
3.4559 3.0747 4.9368 3.0747
2.2916 3.4559 3.0747 4.9368

as)
XL =

The procedures illustrated in this section were used tallupl a flip-flop algorithm
that can handle the linear structur®Edn the bilinear regression mod&! ~ N, ,(ABC, X, ¥),
see (Nzabanita, 2013).
3.5 Estimation in trilinear regression model

The model (3.7) can be written in matrix form using threeadi#it modes as

Xa ~ Npr(ABy(D®C). 21, ®¥), (3.11)
X@) ~ Ngpw(CBp(D®A),¥.1,2%), (3.12)
X ~ Nepo(DB)(C@A), I, ¥ aX). (3.13)

The maximum likelihood approach can be used to find estimdtor, 3 and¥. How-
ever, to find explicit estimators is not possible. Insteagl can establish estimating equa-
tions that can be solved iteratively using, for example,flipeflop algorithm. Observe
that the parameter® andX are defined up to a positive multiplicative constant because
for exampleJ, @ c¥ ® ¢~ ' = I,, ® ¥ ® X with ¢ > 0. This issue has been discussed
by some authors, among others (Dutilleul, 1999, Manceuartdleul, 2013, Srivastava
et al., 2008, Singull et al., 2012).

To find estimating equations for parameters we firstiin (3.11) and find estimating
equations fo: and B ;). Secondly, we fix2 in (3.12) and find estimating equations for
W¥. This procedure is justified by the fact that the models it {B(3.13) give the same
likelihood function (Nzabanita et al., 2015b). From restift Nzabanita et al. (2015b),
the estimating equations for parameters in model (3.7) @endy

By = (A'S7'A)'AST'X(D(D'D)'e¥ c(C'¥ o)), (314)
S = XuI,e®  —DD'D) D o¥ CC¥ C)'CE HX,,
- = ’ =—1 = I

oy = (Xq)—-ABy)(DeC))(I,9¥ )(Xu—-ABy(DeC)), (3.15)
I B ’ o1 D ING

pr¥ = (X2 —-CBp(DRA))I,@% )(X@2 —-CBp(DA)), (3.16)

whereS is assumed to be positive definite aﬁqg) is obtained fromf}(l) by a proper
rearrangement of elements.

These estimating equations are nested and cannot be saplégitly. To obtain max-
imum likelihood estimators o, ¥ and.% the following iterative algorithm is proposed.

Algorithm 3.1. 1. Choose initial solutiont = \TIO;
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2. Compute@m using (3.14);

3. Computef] using (3.15);

4, Computeil using (3.16);

5. Repeat steps 2—4 until the convergence criterion is met.

Usually, there is no prior information that may guide to cé®dhe initial solution.
Very often the identity matrix would be enough to get the sohs. The convergence
criterion may be based on the rate of chang@im X and not separately ofr andX.






Concluding Remarks

HIS chapter is reserved to the summary of contributions of tiésis and suggestions
for further research.

4.1 Summary of contributions

In this thesis, the problem of estimating parameters iméér and trilinear regression
models has been considered. The main theme has been to@aigosthms for estimat-
ing unkown parameters when the covariance matrices argisted. The main contribu-
tions of the thesis are as follows:

e In Paper A, we studied the extended growth curve model withtesms and a lin-
early structured covariance matrix. A simple proceduretas the decomposition
of the residual space into three orthogonal subspaces argiutly of the residuals
obtained from projections of observations on these sulespgielded explicit and
consistent estimators of the covariance matrix. An expliobiased estimator of
the mean was also proposed.

¢ In Paper B, the extended generalized multivariate anabfsimriance with a lin-
early structured covariance matrix was considered. We stdww to decompose
the residual space, the orthogonal complement to the mese sptom + 1 or-
thogonal subspaces and how to derive explicit consisteima®rs of the covari-
ance matrix from the sum of squared residuals obtained Lggiiog observations
on those subspaces. Also an explicit unbiased estimatdeaintean was derived.
Paper B generalizes results of Paper A.

e In Paper C, the bilinear regression models based on norrdetsibuted random
matrix was studied. For these models, the dispersion mhatasthe so called
Kronecker product structure and they can be used for exatopteodel data with
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4.2

spatio-temporal relationships. The aim was to estimatpanameters of the model
when, in addition, one covariance matrix is assumed to lealig structured. We
proposed a flip-flop like algorithm for estimating paramstend showed that the
resulting estimators are consistent.

In Paper D, the classical growth curve model was extendedtemsor version
by assuming a trilinear structure for the mean in the tensomal model. An
algorithm for estimating model parameters was proposed.

Further research

The algorithm proposed in Paper A & B yields estimators withd)properties like
unbiasedness and/or consistency. However, to be morel tiseffiuother properties
(e.g., their distributions) have to be studied. Also, magenous studies on the
positive definiteness of the estimates for the covariandexma of interest.

The techniques used in Paper C to show the consistency ofatetis can be used
to prove the consistency of other estimators based on th#dppalgorithm.

Paper D proposed an likelihood-based algorithm for estirgggarameters in the 2-
fold growth curve model. However, there is no warranty weethproduces global
solution nor the solution does not depend on the initial gudhese issues merit
a deep study. Validation and other model diagnostic tectasigcan be developed.
The model can be extended in various way, e.g., assumireyeiiff profiles (in one
or both of two growth directions) among groups. The probldmnesting on the
mean parameters or the covariance matrix structure is at greerest.

Finally, application of procedures developed in this thésiconcrete real data sets
and a comparison with the existing ones may be useful to sheinvmerits.
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