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Abstract

Joseph Nzabanita (2015). Bilinear and Trilinear Regression Models with
Structured Covariance Matrices

Doctoral dissertation. ISBN 978-91-7519-070-9 . ISSN 0345-7524.

This thesis focuses on the problem of estimating parametersin bilinear and trilinear re-
gression models in which random errors are normally distributed. In these models the
covariance matrix has a Kronecker product structure and some factor matrices may be
linearly structured. Most of techniques in statistical modeling rely on the assumption that
data were generated from the normal distribution. Whereas real data may not be exactly
normal, the normal distributions serve as a useful approximation to the true distribution.
The modeling of normally distributed data relies heavily onthe estimation of the mean
and the covariance matrix. The interest of considering various structures for the covari-
ance matrices in different statistical models is partly driven by the idea that altering the
covariance structure of a parametric model alters the variances of the model’s estimated
mean parameters.

Firstly, we consider the extended growth curve model with a linearly structured co-
variance matrix. In general there is no problem to estimate the covariance matrix when
it is completely unknown. However, problems arise when one has to take into account
that there exists a structure generated by a few number of parameters. An estimation pro-
cedure that handles linear structured covariance matricesis proposed. The idea is first
to estimate the covariance matrix when it may be used to definean inner product in a
regression space and thereafter re-estimate it when it should be interpreted as a dispersion
matrix. This idea is exploited by decomposing the residual space, the orthogonal comple-
ment to the design space, into orthogonal subspaces. Studying residuals obtained from
projections of observations on these subspaces yields explicit consistent estimators of the
covariance matrix. An explicit consistent estimator of themean is also proposed.

Secondly, we study a bilinear regression model with matrix normally distributed ran-
dom errors. For those models, the dispersion matrix followsa Kronecker product structure
and it can be used, for example, to model data with spatio-temporal relationships. The
aim is to estimate the parameters of the model when, in addition, one covariance matrix
is assumed to be linearly structured. On the basis ofn independent observations from a
matrix normal distribution, estimating equations, a flip-flop relation, are established.

At last, the models based on normally distributed random third order tensors are stud-
ied. These models are useful in analyzing 3-dimensional data arrays. The 3-dimensional
data arrays may be obtained when, for example, a single response is sampled in a 3-D
space or in a 2-D space and time, multiple responses are recorded in a 2-D space or in a
1-D space and time. In some studies the analysis is done usingthe tensor normal model,
where the focus is on the estimation of the variance-covariance matrix which has a Kro-
necker structure. Little attention is paid to the structureof the mean, however, there is a
potential to improve the analysis by assuming a structured mean. We formally introduce
a 2-fold growth curve model by assuming a trilinear structure for the mean in the tensor
normal model and propose an estimation algorithm for parameters. Also some extensions
are discussed.
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Populärvetenskaplig sammanfattning

Många statistiska modeller bygger på antagandet om normalfördelad data. Verklig data
kanske inte är exakt normalfördelad men det är i många fall enbra approximation. Nor-
malfördelad data kan modelleras enbart genom dess väntevärde och kovariansmatris och
det är därför ett problem av stort intresse att skatta dessa parametrar. Ofta kan det ock-
så vara intressant eller nödvändigt att anta någon strukturpå både väntevärdet och/eller
kovariansmatrisen.

Den här avhandlingen fokuserar på problemet att skatta parametrarna i multivaria-
ta linjära modeller, speciellt den utökade tillväxtkurvemodellen med en linjär struktur
för någon kovariansmatris. I allmänhet är det inget problematt skatta kovariansmatriser-
na när de är helt okända. Problem uppstår emellertid när man måste ta hänsyn till att
det finns en struktur som genereras av ett färre antal parametrar. I många exempel kan
maximum-likelihoodskattningar inte erhållas explicit och måste därför beräknas med nå-
gon numerisk optimeringsalgoritm. Vi beräknar explicita skattningar som ett bra alternativ
till maximum-likelihoodskattningarna. En skattningsprocedur som skattar kovariansma-
triser med linjära strukturer föreslås. Tanken är att förstskatta en kovariansmatris som
används för att definiera en inre produkt, för att sedan skatta den slutliga kovariansmatri-
sen.

Även tillväxtkurvemodeller med tensornormalfördelning studeras i den här avhand-
lingen. För dessa modeller är kovariansmatrisen en Kroneckerprodukt och dessa modeller
kan användas exempelvis för att modellera data med spatio-temporala förhållande. Syftet
är att skatta parametrarna i modellen där möjligen även en avkovariansmatriserna antas
följa en linjär struktur.
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1
Introduction

THE goals of statistical sciences are about planning experiments, setting up models to
analyze experiments and to study properties of these models. Statistical applica-

tion is about connecting statistical models to data. Statistical models are essentially for
making predictions; they form the bridge between observed data and unobserved (future)
outcomes (Kattan and Gönen, 2008). The general statisticalparadigm constitutes of the
following steps: (i) set up a model, (ii) evaluate the model via simulations or comparisons
with data, (iii) if necessary refine the model and restart from step (ii), and (iv) accept and
interpret the model. From this paradigm it is clear that the concept of statistical model lies
in the heart of Statistics. In this thesis our focus is on linear models, a class of statistical
models that play a key role in statistics. If exact inferenceis not possible then at least a
linear approximate approach can often be carried out (Kolloand von Rosen, 2005). In
particular, we are concerned with the problem of estimatingparameters in multivariate
linear normal models with structured mean (bilinear and trilinear regression models) and
structured covariance matrices (Kronecker and linear structures).

1.1 Background

Regression analysis includes several statistical techniques for investigating dependencies
among variables. It is used essentially when the focus is to understand the relationships
between a set of dependent variables and a set of independentvariables. The regression
analysis appeared in earliest form as the method of least squares in the beginning of
the nineteenth-century, where Legendre and Gauss applied the method to the problem of
determining orbits of comets and planets about the sun from astronomical observations.
The term "regression" was introduced in late nineteenth-century by Francis Galton while
he was studying the inheritance problem (Allen, 1997).

Although regression methods are in use since the last two centuries, there are still
interesting problems that makes regression analysis to be an area of active research nowa-
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2 1 Introduction

days. The newest research directions include regression involving correlated responses
such as time series and growth curves, and the focus of this thesis can be traced there.

In regression models often one assumes that the underlying random errors follow a
Gaussian distribution. When the set up of the model is matrix or tensor, it becomes natural
to model the covariance matrix with a Kronecker product structure. For some other struc-
tures for the covariance matrix, there might be theoreticalground to justify a particular
choice of the covariance structure (Fitzmaurice et al., 2012). In particular, the linear struc-
tures for the covariance matrices emerged naturally in statistical applications and they are
in the statistical literature for some years ago. These structures are, for example, uniform
structure, also known as intraclass structure, compound symmetry structure, banded ma-
trix, Toeplitz or circular Toeplitz, etc. The uniform structure, a linear covariance structure
which consists of equal diagonal elements and equal off-diagonal elements, emerged for
the first time in (Wilks, 1946) while dealing with measurements onk psychological tests.
An extension of the uniform structure due to Votaw (1948) is the compound symmetry
structure, which consists of blocks each having uniform structure. In (Votaw, 1948) one
can find examples of psychometric and medical research problems where the compound
symmetry covariance structure is applicable. The block compound symmetry covariance
structure was discussed by Szatrowski (1982) who applied the model to the analysis of an
educational testing problem. Ohlson et al. (2011) proposeda procedure to obtain explicit
estimator of a banded covariance matrix. The Toeplitz or circular Toeplitz discussed in
(Olkin and Press, 1969) is another generalizations of the intraclass structure. The interest
of considering various structures for the covariance matrices in different statistical models
is partly driven by the idea that altering the covariance structure of a parametric model
alters the variances of the model’s estimated mean parameters (Lange and Laird, 1989).

1.2 Aims

The main theme of this thesis is to study the problem of estimation of parameters in
the bilinear and trilinear regression models with structured covariance matrices. Specific
objectives are (i) to derive explicit estimators of parameters in the extended growth curve
model when the covariance matrix is linearly structured, (ii) to propose an algorithm
for estimating parameters in the bilinear regression modelwhere the random errors are
assumed to be matrix normally distributed with one linearlystructured covariance matrix,
and (iii) to extend the classical growth curve model by Pothoff and Roy (1964) to a tensor
version and to propose an algorithm for estimating model parameters.

1.3 Outline

This thesis consists of two parts and the outline is as follows.

1.3.1 Outline of Part I

In Part I the background and relevant results that are neededfor an easy reading of this
thesis are presented. Part I starts with Chapter 2 which gives a brief review on the multi-
variate distributions. The main focus is to define the matrixnormal distribution, the tensor
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normal distribution and the Wishart distribution. The maximum likelihood estimators in
the multivariate normal model, the matrix normal model and the tensor normal model, for
the unstructured cases, are given. In Chapter 3 the bilinearand trilinear regression models
are defined. These models include the growth curve model and the extended growth curve
model, which are refereed to as bilinear regression models,and the third order tensor nor-
mal model with a structured mean refereed to as the trilinearregression model. Some
results on the estimation of parameters in the extended growth curve model are given
for unstructured covariance matrix and the procedure to getexplicit estimators when the
covariance matrix is linearly structured is illustrated. Also, an algorithm for estimating
parameters in the trilinear regression model is given. PartI ends with Chapter 4, which
gives a summary of contributions and suggestions for further work.

1.3.2 Outline of Part II

Part II consists of four papers. Hereafter a short summary for the papers is presented.

Paper A: Estimation of parameters in the extended growth curve
model with a linearly structured covariance matrix

Nzabanita, J., Singull, M., and von Rosen, D. (2012). Estimation of parame-
ters in the extended growth curve model with a linearly structured covariance
matrix. Acta et Commentationes Universitatis Tartuensis de Mathematica,
16(1):13–32.

In Paper A, the extended growth curve model with two terms anda linearly structured
covariance matrix is considered. We propose an estimation procedure that handles linear
structured covariance matrices. The idea is first to estimate the covariance matrix when it
should be used to define an inner product in a regression spaceand thereafter re-estimate
it when it should be interpreted as a dispersion matrix. Thisidea is exploited by de-
composing the residual space, the orthogonal complement tothe design space, into three
orthogonal subspaces. Studying residuals obtained from projections of observations on
these subspaces yields explicit consistent estimators of the covariance matrix. An explicit
consistent estimator of the mean is also proposed and numerical examples are given.

Paper B: Extended GMANOVA model with a linearly structured
covariance matrix

Nzabanita, J., von Rosen, D., and Singull, M. (2015a). Extended GMANOVA
model with a linearly structured covariance matrix.Linköping University
Electronic Press, LiTH-MAT-R-2015/07-SE.

Paper B generalizes results in Paper A to the extended GMANOVA model with an ar-
bitrary number of profiles, saym. We show how to decompose the residual space, the
orthogonal complement to the mean space, intom + 1 orthogonal subspaces and how
to derive explicit consistent estimators of the covariancematrix and an explicit unbiased
estimator of the mean.
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Paper C: Bilinear regression model with Kronecker and linear
structures for the covariance matrix

Nzabanita, J. (2013). Multivariate linear models with kronecker product and
linear structures on the covariance matrices. InProceedings, JSM 2013-IMS,
pp. 1582–1588. Alexandria, VA: American Statistical Association.(A pre-
liminary version).

This paper deals with models based on normally distributed random matrices. More
specifically the model considered isX ∼ Np,q(M ,Σ,Ψ) with meanM , a p × q ma-
trix, assumed to follow a bilinear structure, i.e.,E[X] = M = ABC, whereA andC
are known design matrices,B is unkown parameter matrix, and the dispersion matrix of
X has a Kronecker product structure, i.e.,D[X] = Ψ ⊗ Σ, where bothΨ andΣ are
unknown positive definite matrices. The model may be used forexample to model data
with spatio-temporal relationships. The aim is to estimatethe parameters of the model
when, in addition,Σ is assumed to be linearly structured. In the paper, on the basis of
n independent observations on the random matrixX, estimation equations in a flip-flop
relation are presented and the consistency of estimators isstudied.

Paper D: Maximum likelihood estimation in the tensor normal
model with a structured mean

Nzabanita, J., von Rosen, D., and Singull, M. (2015b). Maximum likelihood
estimation in the tensor normal model with a structured mean. Linköping
University Electronic Press, LiTH-MAT-R-2015/08-SE.

In this paper, we introduce a 2-fold growth curve model by assuming a trilinear structure
for the mean in the tensor normal model. More specifically, the model considered may be
written as

X = B × {A,C,D}+ E ,

whereX : p× q × r is the data tensor,B : s× t× u is the parameter given as a tensor
of order three,A : p × s, C : q × t andD : r × u are known design matrices, and
× denotes the Tucker product. The random errors follow a tensor normal distribution
with mean zero, i.e.,E ∼ Np,q,r(O,Σ,Ψ, Ir), andO is a tensor of zeros. An algorithm
for estimating parameters is proposed and some direct generalizations of the model are
presented.



Part I

Bilinear and Trilinear
Regression Models
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2
Multivariate Distributions

THIS chapter focuses on the normal distribution which is very important in statistical
analysis. In particular, our interest here is to define the matrix and tensor normal

distributions which will play a central role in this thesis.The Wishart distribution will
also be looked at for easy reading of papers.

2.1 Normal distributions

The well known univariate normal distribution has been usedin statistics for about two
hundreds years and the multivariate normal distribution, understood as a distribution of a
vector, has been also used for a long time (Kollo and von Rosen, 2005). Due to the com-
plexity of data from various field of applied research, inevitable extensions of the multi-
variate normal distribution to the matrix normal distribution or even more generalization
to multilinear (tensor) normal distribution have been considered. The normal distributions
we present here exclude the degenerate cases and thus their density functions exist.

Definition 2.1 (Univariate normal distribution). A random variablex is a univariate
normal distribution with meanµ ∈ R and varianceσ2 > 0, denoted asx ∼ N

(
µ, σ2

)
if

its density is

f(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 , (−∞ < x <∞) .

In particular whenµ = 0 andσ = 1, we get the standard univariate normal dis-
tribution, i.e.,u ∼ N (0, 1). A more general characterization of the univariate normal
distribution is

x
d
= µ+ σu, µ ∈ R, σ ≥ 0,

whereu ∼ N (0, 1) and the notation "
d
=" means "has the same distribution as".

7



8 2 Multivariate Distributions

Definition 2.2 (Multivariate normal distribution). A random vectorx : p× 1 is mul-
tivariate normally distributed with mean vectorµ : p× 1 and positive definite covariance
matrixΣ : p× p if its density is

f(x) = (2π)
− p

2 |Σ|− 1
2 e−

1
2 tr{Σ

−1(x−µ)(x−µ)′},

where| · | andtr denote the determinant and the trace of a matrix, respectively. We usually
use the notationx ∼ Np(µ,Σ).

The multivariate normal modelx ∼ Np(µ,Σ), whereµ andΣ are unknown pa-
rameters, is used in the statistical literature for a long time. To find estimators of the
parameters, the method of maximum likelihood is often used.Let a random sample ofn
observation vectorsx1,x2, . . . ,xn come from the multivariate normal distribution, i.e.,
xi ∼ Np(µ,Σ). Thexi’s constitute a random sample and the likelihood function isgiven
by the product of the densities evaluated at each observation vector

L(x1,x2, . . . ,xn,µ,Σ) =
n∏

i=1

f(xi,µ,Σ)

=

n∏

i=1

(2π)
− p

2 |Σ|− 1
2 e−

1
2 tr{Σ

−1(xi−µ)(xi−µ)′}.

The maximum likelihood estimators (MLEs) ofµ andΣ resulting from the maximization
of this likelihood function, for more details see for example Johnson and Wichern (2007),
are respectively

µ̂ =
1

n

n∑

i=1

xi =
1

n
X1n,

Σ̂ =
1

n
S,

where

S =
n∑

i=1

(xi − µ̂)(xi − µ̂)′ = X(In − 1

n
1n1

′
n)X

′,

X = (x1,x2, . . . ,xn), 1n is then−dimensional vector of 1’s, andIn is then × n
identity matrix.

Definition 2.3 (Matrix normal distribution). A random matrixX : p × q is matrix
normally distributed with meanM : p × q and positive definite covariance matrices
Σ : p× p andΨ : q × q if its density is

f(X) = (2π)
− pq

2 |Σ|− q
2 |Ψ|− p

2 e−
1
2 tr{Σ

−1(X−M)Ψ−1(X−M)′}.

The model based on the matrix normally distributed is usually denoted as

X ∼ Np,q(M ,Σ,Ψ), (2.1)
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and it can be shown thatX ∼ Np,q(M ,Σ,Ψ) means the same as

vecX ∼ Npq(vecM ,Ψ⊗Σ), (2.2)

where⊗ denotes the Kronecker product. Since by definition of the dispersion matrix of
X isD[X] = D[vecX], we getD[X] = Ψ ⊗Σ. For the interpretation we note thatΨ

describes the covariances between the columns ofX. These covariances will be the same
for each row ofX. The other covariance matrixΣ describes the covariances between
the rows ofX which will be the same for each column ofX. The productΨ ⊗Σ takes
into account the covariances between columns as well as the covariances between rows.
Therefore,Ψ ⊗ Σ indicates that the overall covariance consists of the products of the
covariances inΨ and inΣ, respectively, i.e.,Cov[xij , xkl] = σikψjl, whereX = (xij),
Σ = (σik) andΨ = (ψjl).

The following example shows one possibility of how a matrix normal distribution may
arise.

Example 2.1

Let x1, . . . ,xn be an independent sample ofn observation vectors from a multivariate
normal distributionNp (µ,Σ) and let the observation vectorsxi be the columns in a
matrixX = (x1,x2, . . . ,xn). The distribution of the vectorization of the sample obser-
vation matrixvecX is given by

vecX = (x′
1, x

′
2, . . . ,x

′
n)

′ ∼ Npn (1n ⊗ µ,Ω) ,

whereΩ = In ⊗Σ, 1n is then−dimensional vector of 1s, andIn is then × n identity
matrix. This is written as

X ∼ Np,n (M ,Σ, In) ,

whereM = µ1′
n.

The models (2.1) and (2.2) have been considered in the statistical literature. For exam-
ple Dutilleul (1999), Roy and Khattree (2005) and Lu and Zimmerman (2005) considered
the model (2.2), and to obtain MLEs these authors solved iteratively the usual likelihood
equations, one obtained by assuming thatΨ is given and the other obtained by assuming
thatΣ is given, by what was called the flip-flop algorithm in Lu and Zimmerman (2005).

Let a random sample ofn observation matricesX1,X2, . . . ,Xn be drawn from the
matrix normal distribution, i.e.,Xi ∼ Np(M ,Σ,Ψ). The likelihood function is given
by the product of the densities evaluated at each observation matrix as it was for the
multivariate case. The log-likelihood, ignoring the normalizing factor, is given by

lnL(X,M ,Σ,Ψ) = −qn
2

ln |Σ| − pn

2
ln |Ψ|

−1

2

n∑

i=1

tr{Σ−1(Xi −M)Ψ−1(Xi −M)′}.
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The likelihood equations are given by Dutilleul (1999)

M̂ =
1

n

n∑

i=1

Xi = X;

Σ̂ =
1

nq

n∑

i=1

(Xi − M̂)Ψ̂
−1

(Xi − M̂)′;

Ψ̂ =
1

np

n∑

i=1

(Xi − M̂)′Σ̂
−1

(Xi − M̂).

There is no explicit solutions to these equations and one must rely on an iterative algo-
rithm like the flip-flop algorithm (Dutilleul, 1999). Srivastava et al. (2008) pointed out
that the estimators found in this way are not uniquely determined. Srivastava et al. (2008)
showed that solving these equations with additional estimability conditions, using the flip-
flop algorithm, the estimates in the algorithm converge to the unique maximum likelihood
estimators of the parameters.

The model (2.1), where the mean has a bilinear structure was considered by Srivastava
et al. (2008). Nzabanita (2013) considered the problem of estimating the parameters in
the model (2.1) where the mean has a bilinear structure and, in addition, the covariance
matrixΣ is assumed to be linearly structured.

A matrix normal model may be thought as a two-array normal model and can be ex-
tended to aK-array normal model (also known as tensor normal model). Before we give
a formal definition of aK-array normal model, we first introduce few notations and op-
erations onK-arrays to be used later. AK-array orK-way orKth-order tensor is an
element of the tensor product ofK vector spaces, each of which has its own coordinate
system (Hoff, 2011, Kolda and Bader, 2009, De Lathauwer et al., 2000). For example, a
vectorx ∈ Rp1 is a one-array with dimensionp1. A matrix X ∈ Rp1×p2 is a two-array
with dimension(p1, p2). An arrayX ∈ Rp1×p2×···×pK is aK-array with dimension
(p1, . . . , pK) and has elements{xi1,...,iK : ik ∈ {1, . . . , pk}, k = 1, . . . ,K}. A matri-
cization or unfolding or flattening of a tensor is the processof reordering its elements into
a matrix. This can be done in several ways. In this thesis we use the so called mode-n
matricization and the notationX(n) is used to denoten-mode matrix from the tensorX .
For some details about matricization and decomposition of tensors refer to (Hoff, 2011,
Kolda and Bader, 2009, De Lathauwer et al., 2000). A vectorization ofX is defined with
help of usualvec operator for matrices asvecX = vecX(1).

Definition 2.4 (Tensor normal distribution). A randomKth order tensorX ∈ Rp1×p2×···×pK

is said to be normally distributed if

X
d
= M + U × {τ 1, τ 2, . . . , τK},

for someM ∈ Rp1×p2×···×pK , non-singular matricesτ k ∈ Rpk×pk , k = 1, . . . ,K and
a random tensorU ∈ Rp1×p2×···×pK with i.i.d. standard normal entries.

Here, the symbol "×" denotes the Tucker product (Tucker, 1964, Kolda and Bader,
2009) defined by the identity

vec(U × {τ 1, τ 2, . . . , τK}) = (τK ⊗ τK−1 ⊗ . . .⊗ τ 1)vecU .
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It follows that

E[X ] = M , D[X ] = D[vecX ] = τKτ ′
K ⊗ τK−1τ

′
K−1 ⊗ . . .⊗ τ 1τ

′
1.

Thus, the tensor normal distribution corresponds to the multivariate normal distribution
with separable (Kronecker product structure) covariance matrix. LettingΣk = τ kτ

′
k, we

write

X ∼ Np1,...,pK
(M ,Σ1, . . . ,ΣK), (2.3)

which is equivalent tovecX ∼ Np1···pK
(vecM ,ΣK ⊗ · · · ⊗Σ1). The density function

is given by

f(x) = (2π)−p/2

(
K∏

k=1

|Σk|−p/(2pk)

)
exp

{
−1

2
(x− µ)′Σ−1

1:K(x− µ)

}
,

whereΣ1:K = Σ1 ⊗ · · · ⊗ΣK , x = vecX , µ = vecM andp =
∏K

k=1 pk.
The model (2.3) is often used to model variation among entries of the multi-way data,

a problem which is of great importance in many research fields. For example Basser and
Pajevic (2003) argued on the need to go from the vectorial treatment of some complex data
sets to tensor treatment in order to avoid wrong or inefficient conclusions. The Bayesian
and the likelihood based approaches are the most used techniques to obtain estimators of
unknown parameters in the tensor normal model, see for example (Hoff, 2011, Ohlson
et al., 2013). For the third order tensor normal distribution the estimators can be found
using the MLE-3D algorithm by Manceur and Dutilleul (2013) or similar algorithms like
one proposed by Singull et al. (2012). LetXi, i = 1, . . . , n, be a random sample from
the tensor normal distribution

X ∼ Np1,p2,p3
(M ,Σ1,Σ2,Σ3). (2.4)

Then, the maximum likelihood estimator ofM is given by

M̂ =
1

n

n∑

i=1

Xi = X .

The respective maximum likelihood estimatorsΣ̂1, Σ̂2, Σ̂3 of Σ1, Σ2 andΣ3 are ob-
tained by solving iteratively the following likelihood equations

Σ̂1 =
1

np2p3

n∑

i=1

(Xi − X )(1)(Σ̂3 ⊗ Σ̂2)
−1((Xi − X )(1))

′;

Σ̂2 =
1

np1p3

n∑

i=1

(Xi − X )(2)(Σ̂3 ⊗ Σ̂1)
−1((Xi − X )(2))

′;

Σ̂3 =
1

np1p2

n∑

i=1

(Xi − X )(3)(Σ̂2 ⊗ Σ̂1)
−1((Xi − X )(3))

′.

Most studies on the third order tensor normal model focused on the estimation of pa-
rameters with unstructured mean. Nzabanita et al. (2015b) considered a trilinear structure
for the mean in model (2.4) and proposed an algorithm for estimating the parameters.
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2.2 Wishart distribution

In this section we present the definition and some propertiesof another important distri-
bution which belongs to the class of matrix distributions, the Wishart distribution. First
derived by Wishart (1928), the Wishart distribution is usually regarded as a multivari-
ate analogue of the chi-square distribution. There are manyways to define the Wishart
distribution and here we adopt the definition by Kollo and vonRosen (2005).

Definition 2.5 (Wishart distribution). The matrixW : p × p is said to be Wishart
distributed if and only ifW = XX′ for some matrixX, whereX ∼ Np,n(M ,Σ, I),
andΣ is positive definite. IfM = 0, we have a central Wishart distribution which will
be denotedW ∼ Wp(Σ, n), and ifM 6= 0, we have a non-central Wishart distribution
which will be denotedWp(Σ, n,∆), where∆ = MM ′.

The first parameterΣ is usually supposed to be unknown. The second parametern,
which stands for the degrees of freedom is usually considered to be known. The third
parameter∆, which is used in the non-central Wishart distribution, is called the non-
centrality parameter.

Some important properties of the Wishart distribution are given in the following the-
orem.

Theorem 2.1

(i) LetW 1 ∼Wp(Σ, n,∆1) be independent ofW 2 ∼Wp(Σ,m,∆2). Then

W 1 +W 2 ∼Wp(Σ, n+m,∆1 +∆2).

(ii) Let X ∼ Np,n(M ,Σ,Ψ), whereC(M ′) ⊆ C(Ψ). PutW = XΨ
−1X′. Then

W ∼Wp(Σ, rank(Ψ),∆),

where∆ = MΨ
−1M ′.

(iii) Let W ∼Wp(Σ, n,∆) andA ∈ Rq×p. Then

AWA′ ∼Wp(AΣA′, n,A∆A′).

(iv) LetX ∼ Np,n(M ,Σ, I) andQ : n × n be symmetric. ThenXQX′ is Wishart
distributed if and only ifQ is idempotent.

(v) LetX ∼ Np,n(M ,Σ, I) andQ : n × n be symmetric and idempotent, so that
MQ = 0. ThenXQX′ ∼Wp(Σ, rank(Q)).

(vi) LetX ∼ Np,n(M ,Σ, I),Q1 : n×n andQ2 : n×n be symmetric. ThenXQ1X
′

andXQ2X
′ are independent if and only ifQ1Q2 = 0.

The proofs of these results can be found, for example, in Kollo and von Rosen (2005).
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Example 2.2

In Section 2.1, the MLEs ofµ andΣ in the multivariate normal modelx ∼ Np(µ,Σ)
were given. These are respectively

µ̂ =
1

n
X1n,

Σ̂ =
1

n
S,

where

S = XQX ′,

whereQ = In − 1
n1n1

′
n.

It is easy to show that the matrixQ is idempotent andrank(Q) = n− 1. Thus,

S ∼Wp(Σ, n− 1).

Moreover, we note thatQ is a projector on the spaceC(1n)
⊥, the orthogonal complement

to the spaceC(1n). HenceQ1n = 0 so thatµ̂ andS (or Σ̂) are independent.





3
Regression Models

THE goal of this chapter is to give definitions and some results onmultivariate linear
models. It starts with the general linear regression model,which includes well known

models like the univariate linear regression model, the analysis of variance model and the
analysis of covariance model. The multivariate counterpart includes the multivarate linear
regression model, the multivariate analysis of variance and the multivariate analysis of
covariance model. Then, the growth curve model and the extended growth curve model,
which are refereed to as the bilinear regression models, arepresented. At last, we define
the trilinear regression model and give an example to illustrate its construction.

3.1 General linear regression model

In the general linear model (GLM) setup, a random set ofn correlated observations, an
observation vectorx′ = (x1, x2, . . . , xn), is related to a vector ofk parameters,β′ =
(β1, β2, . . . , βk), through a known nonrandom design matrixC : k × n plus a random
vector of errorse : n×1, with mean zero,E(e) = 0, and covariance matrixcov(e) = Σ.
Thus, the general linear model (GLM) is represented as

x′ = β′C + e′, E(e) = 0, cov(e) = Σ, (3.1)

whereβ andΣ are unkown parameters.
The vector of parameters,β, can be fixed, random or both (mixed model). In this

thesis parameters are assumed to be fixed. The matricesC andΣ may have different
forms and depending on these forms model (3.1) includes wellknown models like the
univariate (linear) regression (UR) model, the analysis ofvariance (ANOVA) model and
the analysis of covariance (ANCOVA) model.

Different techniques to estimate model parameters and hypothesis testing exist. For
example, when there is no assumption on the distribution ofx, one can use the generalized

15
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least squares (GLS) theory and minimum quadratic norm unbiased estimation (MINQUE)
theory (Rao and Toutenburg, 1995) to estimateβ andΣ .

In many statistical analysis, one assumes that the vectorx has a multivariate normal
distribution and model (3.1) becomes

x ∼ Nn(C
′β,Σ), (3.2)

that is a multivariate normal model with mean vectorC ′β and covariance matrixΣ. In
this case the maximum likelihood theory for estimation and hypothesis testing may be
used.

Model (3.2) corresponds ton observations on a single dependent response variable.
When one hasn independent observation vectors,xi = (x1i, x2i, . . . , xpi)

′, i = 1, . . . , n,
onp correlated dependent response variables, model (3.2) generalizes to the model

X = BC +E, (3.3)

whereX : p × n, B : p × k, C : k × n, E ∼ Np,n(0,Σ, I). The matrixC is a known
design matrix, andB and the positive definite matrixΣ are unknown parameter matrices.

Again, depending on the forms ofC andΣ, model (3.3) includes known models
like the multivarate (linear) regression (MR) model, the multivariate analysis of variance
(MANOVA) model (Roy, 1957, Anderson, 1958) and the multivariate analysis of covari-
ance (MANCOVA) model.

3.2 Bilinear regression models. Growth curve models

The growth curve analysis is a topic with many important applications within medicine,
natural sciences, social sciences, etc. Growth curve analysis has a long history and two
classical papers are Box (1950) and Rao (1958). In 1964 the well known paper by Pothoff
and Roy (1964) extended the MANOVA model (3.3) to the model which was later termed
the growth curve model or the general MANOVA (GMANOVA).

Definition 3.1 (Growth curve model). Let X : p × n, A : p × q, q ≤ p, B : q × k,
C : k × n, r(C) + p ≤ n, wherer( · ) represents the rank of a matrix. The growth curve
model is given by

X = ABC +E, (3.4)

where columns ofE are assumed to be independently distributed as a multivariate nor-
mal distribution with mean zero and a positive definite dispersion matrixΣ; i.e., E ∼
Np,n(0,Σ, In).

The matricesA andC, often called respectively within-individuals and between-
individuals design matrices, are known matrices whereas matricesB andΣ are unknown
parameter matrices.

The paper by Pothoff and Roy (1964) is often considered to be the first where the
model was presented. The GMANOVA model was introduced to analyze growth in bal-
anced repeated measures data. Several prominent authors wrote follow-up papers, e.g.,
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Rao (1965) and Khatri (1966). Notice that the growth curve model is a special case of the
matrix normal model where the mean has a bilinear structure.Therefore, we may use the
notation

X ∼ Np,n(ABC,Σ, I).

Also, it is worth noting that the MANOVA model with restrictions

X = BC +E, (3.5)

GB = 0

is equivalent to the growth curve model.GB = 0 is equivalent toB = (G′)oΘ, where
(G′)o is any matrix spanning the orthogonal complement to the space generated by the
columns ofG′. Plugging(G′)oΘ in (3.5) gives

X = (G′)oΘC +E,

which is identical to the growth curve model (3.4).

Example 3.1: Potthoff & Roy (1964) dental data

Dental measurements on eleven girls and sixteen boys at fourdifferent ages (t1 = 8, t2 =
10, t3 = 12, andt4 = 14) were taken. Each measurement is the distance, in millimeters,
from the center of pituitary to pteryo-maxillary fissure. These data are presented in Table
3.1 and plotted in Figure 3.1. Suppose linear growth curves describe the mean growth for

Table 3.1: Dental data

id gender t1 t2 t3 t4 id gender t1 t2 t3 t4
1 F 21.0 20.0 21.5 23.0 12 M 26.0 25.0 29.0 31.0
2 F 21.0 21.5 24.0 25.5 13 M 21.5 22.5 23.0 26.0
3 F 20.5 24.0 24.5 26.0 14 M 23.0 22.5 24.0 27.0
4 F 23.5 24.5 25.0 26.5 15 M 25.5 27.5 26.5 27.0
5 F 21.5 23.0 22.5 23.5 16 M 20.0 23.5 22.5 26.0
6 F 20.0 21.0 21.0 22.5 17 M 24.5 25.5 27.0 28.5
7 F 21.5 22.5 23.0 25.0 18 M 22.0 22.0 24.5 26.5
8 F 23.0 23.0 23.5 24.0 19 M 24.0 21.5 24.5 25.5
9 F 20.0 21.0 22.0 21.5 20 M 23.0 20.5 31.0 26.0
10 F 16.5 19.0 19.0 19.5 21 M 27.5 28.0 31.0 31.5
11 F 24.5 25.0 28.0 28.0 22 M 23.0 23.0 23.5 25.0

23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0

both girls and boy. Then we may use the growth curve model

X ∼ Np,n(ABC,Σ, I)
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Figure 3.1: Growth profiles plot (means at each time point joined with straight lines)
of Potthoff and Roy (1964) dental data.

to analysis this data set. In this model, the observation matrix is X = (x1,x1, . . . ,x27),
in which eleven first columns correspond to measurements on girls and sixteen last columns
correspond to measurements on boys. The design matrices are

A′ =

(
1 1 1 1
8 10 12 14

)
, C =

(
1
′
11 ⊗

(
1

0

)
: 1′

16 ⊗
(
0

1

))
,

andB is the unknown parameter matrix andΣ is the unknown positive definite covariance
matrix.

One limitation of the growth curve model is that different individuals should follow
the same growth profile. If this does not hold there is a way to extend the model. A natural
extension of the growth curve model, introduced by von Rosen(1989), is the following

Definition 3.2 (Extended growth curve model). LetX : p×n,Ai : p×qi,Bi : qi×ki,
Ci : ki×n, r(C1)+ p ≤ n, i = 1, 2, . . . ,m, C(C ′

i) ⊆ C(C ′
i−1), i = 2, 3, . . . ,m, where

r( · ) andC( · ) represent the rank and column space of a matrix respectively. The extended
growth curve model is given by

X =
m∑

i=1

AiBiCi +E, (3.6)

where columns ofE are assumed to be independently distributed as a multivariate nor-
mal distribution with mean zero and a positive definite dispersion matrixΣ; i.e., E ∼
Np,n(0,Σ, In).
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The matricesAi andCi, often called design matrices, are known matrices whereas
matricesBi andΣ are unknown parameter matrices. As for the growth curve model the
notation

X ∼ Np,n

(
m∑

i=1

AiBiCi,Σ, I

)

may be used for the extended growth curve model. The only difference with the growth
curve model in Definition 3.1 is the presence of a more generalmean structure. When
m = 1, the model reduces to the growth curve model. The model without subspace
conditions was considered before by Verbyla and Venables (1988) under the name of
sum of profiles model. Also observe that the subspace conditionsC(C ′

i) ⊆ C(C ′
i−1),

i = 2, 3, . . . ,m may be replaced byC(Ai) ⊆ C(Ai−1), i = 2, 3, . . . ,m. This problem
was considered for example by Filipiak and von Rosen (2012) form = 3.

Example 3.2
Consider again Potthoff & Roy (1964) classical dental data.From Figure 3.1, it is rea-
sonable to assume that for both girls and boys we have a lineargrowth component but
additionally for the boys there also exists a second order polynomial structure. Then we
may use the extended growth curve model with two terms

X ∼ Np,n(A1B1C1 +A2B2C2,Σ, I),

where

A′
1 =

(
1 1 1 1
8 10 12 14

)
, C1 =

(
1
′
11 ⊗

(
1

0

)
: 1′

16 ⊗
(
0

1

))

A′
2 =

(
82 102 122 142

)
, C2 = (0′

11 : 1′
16),

are design matrices andB1 =

(
β11 β12
β21 β22

)
andB2 = (β32) are parameter matrices and

Σ is the same as in Example 3.1.

3.3 Trilinear regression model

The classical growth curve model (3.4) by Pothoff and Roy (1964) comprises two design
matrices; one models the within-individuals structure whereas the other one models the
between-individuals structure. More specifically, the within-individuals design matrixA
contains time regressors and models growth curves, and the between-individuals design
matrix C is comprised of group separation indicators. It is suitableto analyze, for ex-
ample, "one directional" repeated measures data. Nzabanita et al. (2015b) extended the
classical growth curve model with an additional within-individuals design matrix which
can be used to analyze "two directional" repeated measures data. More specifically, the
model considered is the third order tensor normal model

X ∼ Np,q,r(M ,Σ,Ψ,Ω),
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with mean structure of the form

µijk =

s∑

ℓ=1

t∑

m=1

u∑

n=1

bℓmnaiℓcjmdkn, i = 1, . . . , p, j = 1, . . . , q, k = 1, . . . , r.

This mean structure can be written

M = B × {A,C,D},

whereB = (bℓmn) : s × t × u is the parameter given as a tensor of order three,A =
(aiℓ) : p × s, C = (cjm) : q × t andD = (dkn) : r × u are known design matrices,
and× denotes the Tucker product, see Kolda and Bader (2009), and it is defined by the
identity

vec(B × {A,C,D}) = (D ⊗C ⊗A)vecB.

The artificial example below illustrates how this kind of model may arise.

Example 3.3

Assume that one has measured pH inr lakes fromu regions atq levels of depth and forp
time points. The aim is to investigate how pH varies with depth and/or time and how pH
differs across regions. Thus, we have spatio-temporal measurements. Data form a random
tensorX : p × q × r, wherer = r1 + r2 + · · · + ru andrn is the number of lakes in
thenth region. It is assumed that measurements of each lake (a frontal slice in the tensor
X ) is distributed as a matrix normal distribution with covariance matricesΣ : p× p, and
Ψ : q × q, and that the measurements of different lakes are independent. If the firstr1
frontal slices ofX represent region one, the nextr2 frontal slices represent region two,
and so on, we get the between-individuals design matrixD′ = blockdiag(1′

r1 , . . . ,1
′
ru).

It is also assumed that the expected trend in time is a polynomial of orders − 1 and that
the expected trend in depth is a polynomial of ordert − 1. Thus, we have two within-
individuals design matrices

A =




1 t1 · · · ts−1
1

1 t2 · · · ts−1
2

...
...

. . .
...

1 tp · · · ts−1
p


 andC =




1 d1 · · · dt−1
1

1 d2 · · · dt−1
2

...
...

. ..
...

1 dq · · · dt−1
q


 .

Hence, the model for the data tensorX is

X = B × {A,C,D}+ E , (3.7)

whereE ∼ Np,q,r(O,Σ,Ψ, Ir), andO is a tensor of zeros.

In this thesis the model (3.7) is refereed to as the2-fold Growth Curve Modeland
serves as an example of a trilinear regression model.
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3.4 Estimation in bilinear regression models

The problem of estimating parameters in the (extended) growth curve model has been
studied by several authors. The book by Kollo and von Rosen (2005) [Chapter 4] con-
tains useful detailed information about uniqueness, estimability conditions, moments and
approximative distributions of the maximum likelihood estimators in the model given in
Definition 3.2. Recently other authors considered the modelwith slightly different con-
ditions. For example in Filipiak and von Rosen (2012), the explicit MLEs are presented
with the nested subspace conditions on the within design matrices instead. In (Hu, 2010,
Hu et al., 2011), the extended growth curve model without nested subspace conditions
but with orthogonal design matrices is considered and generalized least-squares estima-
tors and their properties are studied.

3.4.1 Maximum likelihood estimators

To find estimators of parameters, when the covariance matrixΣ is not structured, very
often the maximum likelihood method is used. The maximum likelihood estimators of
parameters in the growth curve model have been studied by many authors, see for in-
stance Srivastava and Khatri (1979) and von Rosen (1989). For the extended growth
curve model with nested subspace conditions as in Definition3.2, von Rosen (1989) de-
rived explicit maximum likelihood estimators (MLEs). The following theorem gives the
MLEs of parameters in the extended growth curve model.

Theorem 3.1
Consider the extended growth curve model as in Definition 3.2. Let

P r = T r−1T r−2 × · · · × T 0, T 0 = I, r = 1, 2, . . . ,m+ 1,

T i = I − P iAi(A
′
iP

′
iS

−1
i P iAi)

−A′
iP

′
iS

−1
i , i = 1, 2, . . . ,m,

Si =

i∑

j=1

Kj , i = 1, 2, . . . ,m,

Kj = P jXPC′

j−1
(I − PC′

j
)PC′

j−1
X ′P ′

j , C0 = I,

PC′

j
= C ′

j(CjC
′
j)

−Cj .

Assume thatS1 is positive definite.

(i) The representations of maximum likelihood estimators of Br, r = 1, 2, . . . ,m and
Σ are

B̂r = (A′
rP

′
rS

−1
r P rAr)

−A′
rP

′
rS

−1
r (X −

m∑

i=r+1

AiB̂iCi)C
′
r(CrC

′
r)

−

+(A′
rP

′
r)

oZr1 +A′
rP

′
rZr2C

o
r
′,

nΣ̂ = (X −
m∑

i=1

AiB̂iCi)(X −
m∑

i=1

AiB̂iCi)
′

= Sm + Pm+1XC ′
m(CmC ′

m)−CmX ′Pm+1,
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whereZr1 andZr2 are arbitrary matrices and
∑m

i=m+1 AiB̂iCi = 0.

(ii) For the estimatorsB̂i,

P r

m∑

i=r

AiB̂iCi =
m∑

i=r

(I − T i)XC ′
i(CiC

′
i)

−Ci.

The notationCo stands for any matrix of full rank spanningC(C)⊥, andG− denotes an
arbitrary generalized inverse in the sense thatGG−G = G.

For the proof of this theorem, see for example von Rosen (1989) or Kollo and von
Rosen (2005).

A useful results is the corollary of this theorem whenr = 1, which gives the estimated
mean structure.

Corollary 3.1

Ê[X] =
∑m

i=1
AiB̂iCi =

m∑

i=1

(I − T i)XC ′
i(CiC

′
i)

−Ci.

Example 3.4

Setm = 2 in the extended growth curve model of Definition 3.2. Then, form Theorem
3.1, the maximum likelihood estimators for the parameter matricesB1 andB2 are given
by

B̂2 = (A′
2P

′
2S

−1
2 P 2A2)

−A′
2P

′
2S

−1
2 XC ′

2(C2C
′
2)

− + (A′
2P 2)

oZ21 +A′
2Z22C

o′

2

B̂1 = (A′
1S

−1
1 A1)

−A′
1S

−1
1 (X −A2B̂2C2)C

′
1(C1C

′
1)

− +A′o
1 Z11 +A′

1Z12C
o′

1

where

S1 = X
(
I − C ′

1(C1C
′
1)

−C1

)
X ′,

P 2 = I − A1(A
′
1S

−1
1 A1)

−A′
1S

−1
1 ,

S2 = S1 + P 2XC ′
1(C1C

′
1)

−C1

(
I − C ′

2(C2C
′
2)

−C2

)
C ′

1(C1C
′
1)

−C1X
′P ′

2,

Zkl are arbitrary matrices.
Assuming that matricesAi’s, Ci’s are of full rank and thatC(A1) ∩ C(A2) = {0},

the unique maximum likelihood estimators are

B̂2 = (A′
2P

′
2S

−1
2 P 2A2)

−1A′
2P

′
2S

−1
2 XC ′

2(C2C
′
2)

−1,

B̂1 = (A′
1S

−1
1 A1)

−1A′
1S

−1
1 (X −A2B̂2C2)C

′
1(C1C

′
1)

−1.

Obviously, under general settings, the maximum likelihoodestimatorŝB1 andB̂2 are
not unique due to the arbitrariness of matricesZkl. However, it is worth noting that the
estimated mean

Ê[X] = A1B̂1C1 +A2B̂2C2
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is always unique and thereforêΣ given by

nΣ̂ = (X −A1B̂1C1 −A2B̂2C2)(X −A1B̂1C1 −A2B̂2C2)
′

is also unique.
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Figure 3.2: Estimated mean growth curves for Potthoff and Roy (1964) dental data.

Example 3.5: Example 3.2 continued

Consider again Potthoff & Roy (1964) classical dental data and the model of Example
3.2. Then, the maximum likelihood estimates of parameters are

B̂1 =

(
20.2836 21.9599
0.9527 0.5740

)
, B̂2 = (0.2006),

Σ̂ =




5.0272 2.5066 3.6410 2.5099
2.5066 3.8810 2.6961 3.0712
3.6410 2.6961 6.0104 3.8253
2.5099 3.0712 3.8253 4.6164


 .

The estimated mean growth curves, plotted in Figure 3.2, forgirls and boys are respec-
tively

µ̂g(t) = 20.2836 + 0.9527 t,

µ̂b(t) = 21.9599 + 0.5740 t+ 0.2006 t2.
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3.4.2 Explicit estimators when the covariance matrix is linearly
structured

A covariance matrixΣ = (σij) is linearly structured if the only linear structure between
the elements is given by|σij | = |σkl| 6= 0 and there exists at least one(i, j) 6= (k, l) so
that |σij | = |σkl| 6= 0. Examples of linear structures for the covariance matrix are, e.g.,
uniform structure, compound symmetry structure, banded structure, Toeplitz structure,
etc.

In most of works on the extended growth curve model no particular attention has been
made on the structure of the covariance matrix. In fact thereare few articles treating the
problem of structured covariance matrix although it may be important in the growth curve
analysis.

For the classical growth curve model, the most studied structure are the uniform co-
variance structure and the serial covariance structure, see for example, (Lee and Geisser,
1975, Lee, 1988, Khatri, 1973, Klein and Žežula, 2009, Srivastava and Singull, 2015).
The paper by Ohlson and von Rosen (2010) was the first to propose a residual based pro-
cedure to obtain explicit estimators for an arbitrary linear structured covariance matrix in
the classical growth curve model as an alternative to iterative methods. The idea in Ohlson
and von Rosen (2010) was later on applied to the sum of two profiles model by Nzabanita
et al. (2012). The results in Nzabanita et al. (2012) have been generalized to the extended
GMANOVA model with an arbitrary number of profiles by Nzabanita et al. (2015a). The
procedure relies on the decomposition of the residual spaceinto m + 1 subspaces, see
Theorem 3.3, and on the study of residuals obtained from projecting observations onto
those subspaces. Hereafter we illustrate how it works.

If Σ would have been known, from least squares theory, the best linear unbiased
estimator (BLUE) of the mean structure in model (3.6) would be given by

Ẽ[X] =
m∑

i=1

P
P̃ iAi,Σ

XPC′

i
, (3.8)

whereP
P̃ iAi,Σ

= P̃ iAi(A
′
iP̃

′

iΣ
−1
i P̃ iAi)

−A′
iP̃

′

iΣ
−1
i , and P̃ i is defined asP i in

Theorem 3.1 withSi replaced withΣ.
Applying the vec-operator on both sides of (3.8) we get

vec(Ẽ[X]) =

m∑

i=1

(PC′

i
⊗ P

P̃ iAi,Σ
)vecX.

Noting that the matrixP = PC′

i
⊗P

P̃ iAi,Σ
is a projector, see Theorem 3.2, we see that

the estimator of the mean structure is based on a projection of observations on the space
generated by the design matrices. Naturally, the estimators of the variance parameters
are based on a projection of observations on the residual space, that is the orthogonal
complement to the design space.

Theorem 3.2
LetP =

∑m
i=1 PC′

i
⊗ P

P̃ iAi,Σ
andVi = CΣ(P̃ iAi), i = 1, 2, . . . ,m. Then,

(i) The subspacesVi’s are mutually orthogonal and

V1 ⊕ V2 ⊕ · · · ⊕ Vi = CΣ(A1 : A2 : · · · : Ai), i = 1, 2, . . . ,m;
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(ii) The matrixP is a projection matrix;

(iii) C(P ) =
∑m

i=1 C(C ′
i)⊗ Vi.

The proof of this theorem can be found in Nzabanita et al. (2015a).
The spaceC(P ) is refereed to as the mean space and it is used to estimate the mean

parameters whereasC(P )⊥, the orthogonal complement to the mean space, is refereed to
as the residual space and it is used to create residuals.

WhenΣ is not known it should be estimated. The general idea is to usethe variation
in the residuals. For our purposes we decompose the residualspace intom + 1 orthog-
onal subspaces and Theorem 3.3, proved in Nzabanita et al. (2015a), shows how such a
decomposition is made.

Theorem 3.3
LetC(P ) andVi be given as in Theorem 3.2. Then

C(P )⊥ = I1 ⊞ I2 ⊞ · · ·⊞ Im+1,

where

Ir = Wm−r+2 ⊗ (⊕r−1
i=1Vi)

⊥, r = 1, 2, . . . ,m+ 1,

Wr = C(C ′
m−r+1) ∩ C(C ′

m−r+2)
⊥, r = 1, . . . ,m+ 1,

in which by convenience(⊕0
i=1Vi)

⊥ = ∅⊥ = V0 = Rp, C0 = I andCm+1 = 0.

The residuals obtained by projecting data to these subspaces are

Hr = (I −
r−1∑

i=1

P
P̃ iAi,Σ

)X(PC′

r−1
− PC′

r
),

r = 1, 2, 3, . . . ,m+ 1, and here we use for convenience
∑0

i=1 PP iAi,Si
= 0.

For illustrative purposes, letm = 2. In this case the BLUE of the mean is

Ẽ[X] = M̃1 + M̃2,

where

M̃1 = PA1,ΣXPC′

1
,

M̃2 = P T 1A2,ΣXPC′

2
, T 1 = I − PA1,Σ = T 1.

From here we see that the estimated mean is obtained by projecting observations on some
subspaces. The matricesPA1,Σ andP T 1A2,Σ are projectors onto the subspacesV1 =
CΣ(A1) andV2 = CΣ(A1 : A2) ∩ CΣ(A1)

⊥, respectively. Figure 3.3 shows the whole
space decomposed into mean and residual subspaces.

In practiceΣ is not known and should be estimated. A natural way to get an estimator
ofΣ is to use the sum of squared residuals. IfΣ is not structured we estimate the residuals,
Hi, i = 1, 2, 3, in Figure 3.3 with

Rr = (I −
r−1∑

i=1

PP iAi,Si
)X(PC′

r−1
− PC′

r
), r = 1, 2, 3,
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W1 W2 W3

V1

V2

V3

M̃2

M̃1

H1

H2

H3

Figure 3.3: Decomposition of the whole space according to the within andbetween
individuals design matrices illustrating the mean and residual spaces:V1 = CΣ(A1),
V2 = CΣ(A1 : A2) ∩ CΣ(A1)

⊥, V3 = CΣ(A1 : A2)
⊥, W1 = C(C ′

2), W2 =
C(C ′

1) ∩ C(C ′
2)

⊥, W3 = C(C ′
1)

⊥.

whereP i andSi are given in Theorem 3.1. Thus a natural estimator ofΣ is obtained
from the sum of squared residuals, i.e.,

nΣ̂ = R1R
′
1 +R2R

′
2 +R3R

′
3, (3.9)

which is the maximum likelihood estimator.
WhenΣ is linearly structured, the estimator in (3.9) does not exhibit the same struc-

ture although it may be desirable. One objective of this thesis was to propose an procedure
that produces an estimator of the covariance matrix with a desired linear structure. The
idea is first to estimate the covariance matrix fromQ1 = H1H

′
1 and use it to define the

inner product in the spacesV1, and then estimateM1 andH2 by projecting observations
onC(C ′

1)⊗ V1 and
(
C(C ′

1) ∩ C(C ′
2)

⊥
)
⊗ V⊥

1 respectively.
By vecΣ(K) we mean the patterned vectorization of the linearly structured matrix

Σ, that is the columnwise vectorization ofΣ where all 0’s and repeated elements (by
modulus) have been disregarded. Then there exists a transformation matrixT such that

vecΣ(K) = T vecΣ or vecΣ = T+vecΣ(K),

whereT+ denotes the Moore-Penrose generalized inverse ofT .
From results in Nzabanita et al. (2012), the first estimator of Σ is

Σ̂1 = argmin
Σ

tr {(Q1 − (n− r1)Σ)( )′}

given by

vecΣ̂1 = T+
(
(T+)′Υ̂

′

1Υ̂1T
+
)−

(T+)′Υ̂
′

1vecQ1,
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whereΥ̂1 = (n− r1)I and the notation(Y )( )′ stands for(Y )(Y )′.

Assuming that̂Σ1 is positive definite (which always holds for largen), and using it
to define the inner product in the spaceV1, the estimator ofM1 andH2 are given by
M̂1 = P

A1,Σ̂
(s)

1

XPC′

1
andĤ2 = (I − P

A1,Σ̂
(s)

1

)X(PC′

1
− PC′

2
), respectively.

A second estimator ofΣ is obtained using the sum ofQ1 andĤ2Ĥ
′

2 in a similar way
and is given by

vecΣ̂2 = T+
(
(T+)′Υ̂

′

2Υ̂2T
+
)−

(T+)′Υ̂
′

2vecQ̂2,

whereQ̂2 = Q1+Ĥ2Ĥ
′

2, Υ̂2 = (n−r1)I+(r1−r2)T̂ 1⊗ T̂ 1 andT̂ 1 = I−P
A1,Σ̂1

.

Assume that̂Σ2 is positive definite and use it to define the inner product inV2, the
estimators ofM2 andH3 are given by

M̂2 = P
T̂ 1A2,Σ̂2

XPC′

2
,

Ĥ3 = T̂ 2X(PC′

2
− PC′

3
),

T̂ 2 = I − P
A1,Σ̂1

− P
T̂ 1A2,Σ̂2

.

At last, a third estimator ofΣ, is obtained using the sum̂Q3 = Q̂2+Ĥ3Ĥ
′

3 and is given
by

vecΣ̂3 = T+
(
(T+)′Υ̂

′

3Υ̂3T
+
)−

(T+)′Υ̂
′

3vecQ̂3, (3.10)

whereΥ̂3 = (n− r1)I + (r1 − r2)T̂ 1 ⊗ T̂ 1 + r2T̂ 2 ⊗ T̂ 2.

The estimatorŝΣ1, Σ̂2 andΣ̂3 are all consistent forΣ, however, aŝΣ3 uses all in-
formation contained in all residuals, it can arguably be interpreted as a dispersion matrix.

The unbiased estimator of the mean structured is given bŷE[X] = M̂1 + M̂2.

Example 3.6: Example 3.5 continued

Consider again Potthoff & Roy (1964) classical dental data and the model of Example
3.5. Assume that the covariance matrix has a Toeplitz structure, i.e.,

Σ
(s) =




σ ρ1 ρ2 ρ3
ρ1 σ ρ1 ρ2
ρ2 ρ1 σ ρ1
ρ3 ρ2 ρ1 σ


 .

Then, the estimate of the structured covariance matrices given by (3.10) is

Σ̂3 =




5.2128 3.2953 3.6017 2.7146
3.2953 5.2128 3.2953 3.6017
3.6017 3.2953 5.2128 3.2953
2.7146 3.6017 3.2953 5.2128


 .
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For comparison, the MLE computed with Proc Mixed in SASr (SAS Institute Inc., 2008)
is

Σ̂
(s)

ML =




4.9368 3.0747 3.4559 2.2916
3.0747 4.9368 3.0747 3.4559
3.4559 3.0747 4.9368 3.0747
2.2916 3.4559 3.0747 4.9368


 .

The procedures illustrated in this section were used to build up a flip-flop algorithm
that can handle the linear structuredΣ in the bilinear regression modelX ∼ Np,q(ABC,Σ,Ψ),
see (Nzabanita, 2013).

3.5 Estimation in trilinear regression model

The model (3.7) can be written in matrix form using three different modes as

X(1) ∼ Np,qr(AB(1)(D ⊗C)′,Σ, Ir ⊗Ψ), (3.11)

X(2) ∼ Nq,pr(CB(2)(D ⊗A)′,Ψ, Ir ⊗Σ), (3.12)

X(3) ∼ Nr,pq(DB(3)(C ⊗A)′, Ir,Ψ⊗Σ). (3.13)

The maximum likelihood approach can be used to find estimators forB, Σ andΨ. How-
ever, to find explicit estimators is not possible. Instead, we can establish estimating equa-
tions that can be solved iteratively using, for example, theflip-flop algorithm. Observe
that the parametersΨ andΣ are defined up to a positive multiplicative constant because,
for example,Ir ⊗ cΨ⊗ c−1

Σ = Ir ⊗Ψ⊗Σ with c > 0. This issue has been discussed
by some authors, among others (Dutilleul, 1999, Manceur andDutilleul, 2013, Srivastava
et al., 2008, Singull et al., 2012).

To find estimating equations for parameters we first fixΨ in (3.11) and find estimating
equations forΣ andB(1). Secondly, we fixΣ in (3.12) and find estimating equations for
Ψ. This procedure is justified by the fact that the models in (3.11)-(3.13) give the same
likelihood function (Nzabanita et al., 2015b). From results in Nzabanita et al. (2015b),
the estimating equations for parameters in model (3.7) are given by

B̂(1) = (A′

S
−1
1 A)−1

A
′

S
−1
1 X(1)(D(D′

D)−1
⊗ Ψ̂

−1
C(C′

Ψ̂
−1

C)−1), (3.14)

S1 = X(1)(Ir ⊗ Ψ̂
−1

−D(D′

D)−D′

⊗ Ψ̂
−1

C(C′

Ψ̂
−1

C)−1
C

′

Ψ̂
−1

)X ′

(1),

qrΣ̂ = (X(1) −AB̂(1)(D ⊗C)′)(Ir ⊗ Ψ̂
−1

)(X(1) −AB̂(1)(D ⊗C)′)′, (3.15)

prΨ̂ = (X(2) −CB̂(2)(D ⊗A)′)(Ir ⊗ Σ̂
−1

)(X(2) −CB̂(2)(D ⊗A)′)′, (3.16)

whereS1 is assumed to be positive definite andB̂(2) is obtained fromB̂(1) by a proper
rearrangement of elements.

These estimating equations are nested and cannot be solved explicitly. To obtain max-
imum likelihood estimators ofΣ, Ψ andB the following iterative algorithm is proposed.

Algorithm 3.1. 1. Choose initial solution̂Ψ = Ψ̂0;
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2. ComputêB(1) using (3.14);

3. ComputêΣ using (3.15);

4. ComputêΨ using (3.16);

5. Repeat steps 2–4 until the convergence criterion is met.

Usually, there is no prior information that may guide to choose the initial solution.
Very often the identity matrix would be enough to get the solutions. The convergence
criterion may be based on the rate of change inΨ̂⊗ Σ̂ and not separately on̂Ψ andΣ̂.





4
Concluding Remarks

THIS chapter is reserved to the summary of contributions of this thesis and suggestions
for further research.

4.1 Summary of contributions

In this thesis, the problem of estimating parameters in bilinear and trilinear regression
models has been considered. The main theme has been to propose algorithms for estimat-
ing unkown parameters when the covariance matrices are structured. The main contribu-
tions of the thesis are as follows:

• In Paper A, we studied the extended growth curve model with two terms and a lin-
early structured covariance matrix. A simple procedure based on the decomposition
of the residual space into three orthogonal subspaces and the study of the residuals
obtained from projections of observations on these subspaces yielded explicit and
consistent estimators of the covariance matrix. An explicit unbiased estimator of
the mean was also proposed.

• In Paper B, the extended generalized multivariate analysisof variance with a lin-
early structured covariance matrix was considered. We showed how to decompose
the residual space, the orthogonal complement to the mean space, intom + 1 or-
thogonal subspaces and how to derive explicit consistent estimators of the covari-
ance matrix from the sum of squared residuals obtained by projecting observations
on those subspaces. Also an explicit unbiased estimator of the mean was derived.
Paper B generalizes results of Paper A.

• In Paper C, the bilinear regression models based on normallydistributed random
matrix was studied. For these models, the dispersion matrixhas the so called
Kronecker product structure and they can be used for exampleto model data with

31
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spatio-temporal relationships. The aim was to estimate theparameters of the model
when, in addition, one covariance matrix is assumed to be linearly structured. We
proposed a flip-flop like algorithm for estimating parameters and showed that the
resulting estimators are consistent.

• In Paper D, the classical growth curve model was extended to atensor version
by assuming a trilinear structure for the mean in the tensor normal model. An
algorithm for estimating model parameters was proposed.

4.2 Further research

• The algorithm proposed in Paper A & B yields estimators with good properties like
unbiasedness and/or consistency. However, to be more useful their other properties
(e.g., their distributions) have to be studied. Also, more rigorous studies on the
positive definiteness of the estimates for the covariance matrix is of interest.

• The techniques used in Paper C to show the consistency of estimators can be used
to prove the consistency of other estimators based on the flip-flop algorithm.

• Paper D proposed an likelihood-based algorithm for estimating parameters in the 2-
fold growth curve model. However, there is no warranty whether it produces global
solution nor the solution does not depend on the initial guess. These issues merit
a deep study. Validation and other model diagnostic techniques can be developed.
The model can be extended in various way, e.g., assuming different profiles (in one
or both of two growth directions) among groups. The problem of testing on the
mean parameters or the covariance matrix structure is of great interest.

• Finally, application of procedures developed in this thesis to concrete real data sets
and a comparison with the existing ones may be useful to show their merits.
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