
i | P a g e  

 

 

Design and Prototyping of an Environmental Conservation 

System Based on Embedded Machine Learning for Precision 

Farming 

 

By: 

Nalwanga Rosemary 

Reference Number: 220000300 

A dissertation presented to the African Center of Excellence in 

Internet of Things (IoT), University of Rwanda as partial fulfilment of 

the requirements for the Master’s degree in Internet of Things- 

Embedded Computing Systems. 

 

Supervised by: Dr Ignace Gatare 

Dr Gerard Rushingabigwi 

 

  
 

 



ii | P a g e  

 

DECLARATION 

I NALWANGA ROSEMARY, hereby declare that this dissertation entitled “Design and 

Prototyping of an Environmental Conservation System Based on Embedded Machine 

Learning for Precision Farming” is my original work based on a simulation and prototype 

and has not been submitted for any other degree or professional qualification, except 

where work that has formed part of jointly-authored publications has been included. 

Name of student      

 

NALWANGA ROSEMARY 

 

Signature and Date 

…………………………………………………………

……………………………. 



iii | P a g e  

 

BONAFIDE CERTIFICATE 

This is to certify that this dissertation entitled “Design and Prototyping of an Environmental 

Conservation System Based on Embedded Machine Learning for Precision Farming” is a record 

of the original work done by Ms NALWANGA Rosemary (Reference Number: 220000300) a 

MSc student in Internet of Things Embedded Computing Systems. It has not been submitted for 

any other degree or professional qualification, except where work that has formed part of jointly-

authored publications has been included. The research work has been done under the supervision 

of Dr Ignace GATARE and Dr Gerard RUSHINGABIGWI. 

 

Main Supervisor:      Co-supervisor 

 

     

Dr Ignace GATARE    Dr Gerard RUSHINGABIGWI 

 

 

 

The Head of Masters and Trainings ACEIoT 

 

 

 

Dr James RWIGEMA 

 

 

 



iv | P a g e  

 

ACKNOWLEDGEMENT 

First and foremost, I thank and appreciate the Almighty God for enabling me to work through 

and accomplish this research. I also thank my supervisors and lecturers: Dr Ignace Gatare, Dr 

Gerard Rushingabigwi, and Dr Jimmy Nsenga for the patience, wisdom, enthusiasm, 

commitment, and timely feedback that they have rendered throughout this research period. I am 

so much grateful for the continued support and efforts rendered. 

I thank my friends and family for the unwavering support that they have rendered to me 

throughout this journey I am grateful to each of my friends for their love encouragement and 

support towards this work. A big thanks to Samson Ooko, for his continued support and 

guidance throughout this journey. I appreciate Halima so much for the love, care and support 

rendered to me in various ways to achieve this.  

To all individuals that have contributed to the accomplishment of this work academically, 

spiritually, socially, financially, and other aspects, I appreciate you so much, and may the 

Almighty God bless you abundantly. My family and friends have been a great source of courage 

and they have believed in that I can make it. Without them, there would be a great gap. 

I also thank the STES Group in Rwanda for giving me a platform to deploy my prototype on 

their field and dashboard too. Thanks to Toussaint and Wilson plus Mr Nzitonda. 

Lastly, I want to thank the IUCEA organization for believing in me and giving me an 

opportunity of furthering my studies to this level. Thank you so much for your support in every 

way that was possible. 

 



v | P a g e  

 

ABSTRACT 

Most of the existing precision agriculture solutions recommend the use of fertilizers as a remedy 

to poor soil fertility. Such solutions cause environmental degradation in the long run mainly due 

to the overuse of fertilizers. There is, therefore, a need for a system to ensure that farmers can 

practice precision farming in terms of a sustainable soil management approach to attain high 

yields while at the same time conserving the environment. In this research, a design and 

prototype of an embedded machine learning-based system to predict the best crop to grow with 

minimal use of fertilizers to conserve the environment is presented. The system senses different 

real-time soil parameters daily, integrates them with forecast weather information and uses 

embedded machine learning techniques to determine which crop would grow best under the 

existing conditions with minimal use of fertilizers. In addition to crop prediction, the system 

helps farmers to monitor the nutrient evolution of the soil so that action can be done in real time. 

The results are either displayed on the device or sent to the farmer’s mobile phone. This is a 

move from the existing solutions that depend on cloud analytics and do not consider the change 

of soil conditions overtime in making the predictions and decisions. The prototype was tested at 

STES Group in Rwanda, an innovation and start-ups support hub that provides a commercial 

smart farming system. The data collected was hosted on a virtual cloud provided by STES so that 

data can be stored for future use. The implementation of the proposed solution is expected to not 

only lead to high productivity and reduced costs but also conserve the environment.  

Keywords: Internet of Things, Precision Farming, Embedded Machine learning (ML), 

Environmental conservation, Deep learning, Crop prediction 
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CHAPTER ONE 

INTRODUCTION 
1.0 Introduction 

The demand for agricultural products has mainly been increasing due to the fast growing 

population and urbanization [1]. To give way to infrastructural development, the increase in 

population has led to more agricultural land being converted into non-agricultural fields. Adverse 

changes in climate and wastage of natural resources have also had negative impacts on 

agriculture [2]. This has led to the application of new technologies to help mitigate the problems 

leading to the growing popularity of precision agriculture.  

Internet of Things (IoT) is used in precision agriculture [3], [4] to help in the optimization of 

resources, assisting farmers to make informed decisions to achieve high productivity and yields. 

Digital Farming and Precision Agriculture allow utilization of agricultural inputs like pesticides, 

water, seeds plus soil fertilizers in right amounts and time for maximizing crop quality, yield and 

productivity. By deploying sensors for data collection, it enables the farmers to know and 

understand what to do with their farms in a better way so as to conserve the resources being used 

and reduce adverse effects on the environment. With solutions that deal with soil parameters, 

farmers are mostly advised on the nutrients to add, and such solutions may lead to overuse of 

chemicals and fertilizers; thus causing environmental degradation in the long run. These 

fertilizers are usually chemicals that, in most cases, kill important microorganisms in the soil that 

facilitate the conversion of dead animals and plants into organic matter that is rich in nutrients. 

Synthetic fertilizers that are Nitrogen- and phosphate-based leach into water ways that are 

underground and make them toxic, leading to water pollution. More to that, chemical fertilizers 

make the top soil acidic leading to crop burn and hence lower crops yields [5] 

Besides, soil fertility is one of the most important elements that determine the growth and 

ultimate production of crops. Thus, it is one of the primary factors considered in developing 

precision farming solutions.  To begin with, the three main crop nutrients are nitrogen (N), 

phosphorus (P), and potassium (K) together often referred to as NPK. There are also other 

important nutrients such as calcium, magnesium, and sulphur, among others, but are needed in 

small quantities as compared to NPK [6]. Soil Potential of Hydrogen (PH) also affects soil 

chemical properties and thus fertility. Each and every plant has a preferred level of pH. With the 
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knowledge of what  pH level your soil is, it can enhance the ability to determine the particular 

crops that  will thrive greatly and aid in clear decisions about fine tuning the pH level to 

accommodate specific plants[6]. 

The convergence of precision farming with artificial intelligence, where farmers can be able to 

respond to changes in crop growth on time can be a great solution for sustainable food 

production [6]. Studies and commercial precision farming solutions have considered different 

parameters in an attempt to determine soil fertility. In a survey of IoT technologies used in the 

Agricultural environment, different studies emphasize the need to measure soil NPK and soil pH 

in ensuring a reliable solution [7]. In addition, as also discussed by Lova Raju et al., some studies 

also include soil moisture, soil temperature, and soil humidity which even though are important 

to plant growth do not exactly show how fertile a given soil sample is [7]. This narrows down the 

parameters to be considered for a concrete soil fertility survey to soil pH, soil NPK, and weather 

conditions.  

Most of the crop farmers are based in rural areas that hardly have connectivity, there is no 

infrastructure to support communication with the cloud which as well comes with an added cost. 

This comes as a challenge to farmers who may need to practice precision farming through IoT 

integrated with AI or machine learning in particular to achieve some of the sustainable 

development goals. Soil being complex and harbouring living organisms constantly evolves in a 

number of aspects that may be physical, biological and chemical. Testing of soil samples in 

standard laboratories so as to determine the nutrient content levels is not done frequently because 

it is expensive and takes time yet nutrient contents vary on short timescales [8]. 

Existing solutions are either based on offline expensive lab process or use of cloud based 

architecture in which sensing devices have to collect data and send to the cloud to enjoy machine 

learning driven intelligence. Due to cost, connectivity, and the need for real-time intelligence, 

there is a need for a solution that can enable machine learning at the edge to overcome the 

challenges. This study, therefore, presents an embedded machine learning solution that will also 

ensure a real time soil fertility management and prediction of crops to be grown thus leading to 

increased yields while at the same time conserving the environment.  

So as to prove the viability of the system, the prototype was deployed at STES group[9]in 

Rwanda which maintains a smart precision farming system. This provided a virtual cloud that 

hosted the databases to store the collected data of NPK and soil pH. 
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1.1 Problem statement 

In Africa, agriculture is mainly practiced in rural areas. Most of the time traditional methods of 

farming are used by small scale farmers. There has been an increasing rural urban migration 

leading to loss of labour. In addition, this has made rural areas to become less attractive to 

socioeconomic developments [1]. Moreover, numerous factors have led to constraints in 

agricultural production systems for smallholders in Africa, these include; excessive 

waterlogging, low soil fertility, frequent drought and moisture stress, run-off, and soil erosion. 

This is as a result of using inappropriate farming methods and agricultural inputs, difficulty in 

accessing the desired markets for inputs and outputs, changing climatic conditions, and weak 

agricultural extension services. This has led to low productivity, low incomes, increased costs, 

environmental degradation, labour constraints, and food [12]. 

Due to the above mentioned challenges, the use of technology is being adopted to enhance 

precision farming in Africa with many companies offering such solutions. One of the 

commercially available solutions in Rwanda is provided by STES Group [13]. Even though the 

commercial and prototyped precision farming solutions have led to an increase in production and 

reduced costs, on the other hand some have led to environmental degradation. Most of the 

solutions encourage the use of fertilizers as a remedy to poor soil fertility.  

With Synthetic fertilizers, the crops are given a quick boost but do little in stimulating the 

soil life, improving the soil texture, or improving soil's long-term fertility.  This has long-term 

effects on the soil, leading to pollution of the environment as some of the chemicals find their 

way into waters sources.  It also leads to the burn of crops chemically, an increase in 

air pollution, acidification, and mineral depletion of the soil. There is, therefore, a need for a 

solution to minimize the use of fertilizers and still allow the use of the IoT-based precision 

farming systems but having to ensure the environment is conserved at the same time.  

In addition to that, most farmers are based in rural areas where the connectivity is poor and there 

is no infrastructure to support cloud based solutions to help with their activities. With the urge to 

incorporate digital farming with AI, there is a need to bring AI close to the farmers that is, 

pulling it from the cloud to the edge devices. 
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1.2 Objectives 

1.2.1 General Objective 

The study aimed to design and prototype an Embedded AI driven System that can predict the 

best crop to grow with minimal use of fertilizers thereby ensuring conservation of the 

environment. 

1.2.2  Specific Objectives 

1. To find out the soil nutrient requirements for crops grown in Rwanda in terms of soil 

NPK, soil pH, and weather (rainfall, temperature, Humidity). 

2. To review existing IoT-enabled precision agriculture solutions. 

3. To investigate different AI technologies that can be used in precision farming systems 

4. To prototype an environmentally friendly system for precision farming using Internet of 

Things (IoT) that helps farmers to predict which crop can thrive in the already existing 

soil nutrients and content. 

The study was guided by the following questions 

1. Are there environmental challenges that come up due to the excessive use of synthetic 

fertilizers to the soil? 

2. Can we incorporate IoT and Artificial Intelligence to help farmers take an informed 

decision about the crop to be grown on a fertilizer free basis?  

3. What should be considered in developing an environmental friendly precision framing 

solution through crop prediction? 

1.3 Hypothesis 

The hypothesis was that IoT technologies can be merged with Artificial Intelligence to enhance 

environmental conservation through sustainable soil management and crop prediction. 

1.4 Study Scope 

The study was focused on using ML to predict the best crop to be grown with the existing 

soil conditions with minimal use of fertilizers. Our prototype will however not 

recommend the amount of fertilizer to be added. In addition, only 5 crops were 

considered for prototype design, and these include; beans, maize, lentil, peas, and 
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watermelon. The monitored soil parameters that were considered in the prediction were 

NPK, pH, and weather information of Temperature, Humidity, and Rainfall 

1.5 Significance of the study 

This research is expected to contribute towards the sustainable development goals of conserving 

the environment through guided precision farming in terms of best crop prediction and 

sustainable soil management. The study gives a farmer a prediction based on a fertilizer free 

context and thus minimize the overuse of fertilizers which may end up damaging the soil 

1.6 Organization of the document 

This chapter gave an introduction to the research study and the next chapter which is 

chapter 2 gives a review of the related literature is presented and the gaps identified.  

Chapter 3 presents the methodology applied in this research study and Chapter 4 presents 

the system model and design, simulation models, and simulation parameters. The 5th 

chapter discusses the results and findings analysed from the research study carried out 

and lastly Chapter 6 outlines the conclusions and recommendations. 

1.7 Summary 

This chapter presented an introduction to the study, from the problem statement it is 

evident that the current precision farming solutions have led to environmental 

degradation and thus the need for the study. On implementation of the system, the study 

will among other benefits contribute towards the attaining some of the sustainable 

development goals in Agriculture, farming and the Environment at large. 
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CHAPTER TWO 

LITERATURE REVIEW 

In this chapter, a review of related literature is presented. Literature on digitization of soil 

nutrient data is first presented followed by precision farming solutions based on soil fertility. The 

use of artificial intelligence in soil fertility management is presented and lastly, a review of data 

sets is given and a conclusion drawn. 

2.1 Digitizing soil nutrient data 

There exist different techniques used to evaluate the soil fertility of a particular field. To begin 

with, while measuring the soil fertility, the basic method soil samples are mixed with water and 

the Nitrogen, Phosphate, and potassium as nitrates, phosphates, and potassium chemically 

extracting. A comparison is done to a colour chart to determine the amount of N, P, and K found 

in the soil sample [10]. The use of commercial soil NPK and Soil pH sensors has also been 

proposed in recent studies and solutions. A system is proposed in which the soil nutrients (N, P, 

K) are measured for rice crops using colour sensor TCS3200 [11]. The use of customized in-

house sensors that measure soil chemical properties is proposed [12]. An optical transducer is 

developed and used to detect and measure the presence of different soil nutrients (N,P,K) in that 

soil [13]. This sensor helps in deciding how much the needed additional contents of the detected 

nutrients can be added to the soil to increase soil fertility to the desired value. The N, P, and K 

values of the sample are determined by light absorption of each nutrient. 

2.2 Precision farming using IoT 

A framework for precision agriculture [14] uses environmental sensors that are of low cost, with 

an Arduino board and two wireless transceivers, and an actuating circuit. This provides 

automated monitoring and irrigation of crops. Solutions using the same concepts of irrigation 

using IoT are recommended [15] – [16]. Other precision farming solutions based on IoT are 

proposed [4]; [17]-[18]. Such solutions show the increasing use of Internet of Things in 

agriculture but do not put into consideration the plant nutrient requirement, a focus of the 

proposed study, and will also not be applicable in areas where irrigation is not practiced which is 

the case with many farms in Rwanda. A system based on energy conservation and low cost for 
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smart agriculture is proposed by Kumar et al. This system monitors the soil moisture content and 

using a sensor developed in-house. The Indian Institute of Technology Hyderabad (IITH) mote is 

used in the proposed network as both a sensor node and a sink node which provides low-power 

communication [12].  This however considers just soil moisture to give advice on irrigation. It 

does not put the aspect of soil content in terms of nutrients into consideration. 

2.3 Precision farming solution based on soil fertility 

Waddington et al. presents a system that measures the soil nutrients, i.e. NPK, for rice crops 

using a colour sensor is proposed. It allows the farmer to view the soil fertility status at their 

convenience on a web application and also suggests which fertilizer they can add to get a better 

yield [19]. A system is proposed by Pravallika that uses data values of moisture, values of soil 

pH, values of Temperature, and values of Humidity value from the soil and analyses the soil 

status [20]. It thereafter helps the farmer to make a thorough analysis of the soil fertility of their 

field and plant a crop accordingly to increase on crop yield and productivity. This system uses a 

coding algorithm (data-driven approach) to analyse and predict the soil fertility and suitable crop. 

Such studies and other related studies show that monitoring the soil NPK and pH is essential 

when developing solutions that monitor soil fertility. They also support the argument that the 

fertility of the soil changes overtime. 

2.4 Artificial Intelligence in soil fertility management 

Artificial intelligence centered with deep learning provides several algorithms that can help in 

monitoring the health of the soil before planting and during the growth process also. Soil 

deficiencies can be analysed to ensure smooth crop growth [21]. With soil weakness comes 

several crop defects and low production; so assessment of nutrient levels in the soil is relevant. 

Incorporating the nutrient cycling models that exist with embedded AI approaches of crop 

productivity can help in optimization of uptake, targets, nutrient capture, delivery, and long-term 

impacts on soil microbial communities that combine functionality profiles and optimal safety 

[21]. This can as well help farmers to take timely actions on time to the changes in plant growth 

based on the soil nutrient status. 
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According to Vijayabaskaret al. [22], a system that uses predictive analysis to suggest the 

fertilizer which has to be added to the soil to increase crop productivity is designed. The 

prediction is done based on a Bayesian algorithm at the cloud to give farmers information after a 

certain period. 

A logistic regression ML algorithm by Ghanshala et al. is used at the cloud in order to analyse 

data that is being sent from the field [23]. The collected data is based on NPK sensors and, after 

analysis, information is sent to the farmers to know the status of their farms. A web portal is also 

created which gives information about the fertilizer(s) required for their crops [24]. Milija 

Bajčeta et al. developed an IoT-based private cloud platform that is used in ecological 

monitoring and agriculture [25]. In this paper, IoT nodes are used and they communicate to the 

server in a cloud gateway or directly. The server serves the purpose of hosting analysis for data, 

it hosts data integration and remote visualizations, plus smart application development and 

deployment.  

Spandana et al. proposed an application of IoT for soil quality. In the solution, eight different 

sensors are used to analyse the soil type, soil moisture levels, and soil quality with weather 

aspects including wind, temperature, and humidity [26]. A node MCU is used with data being 

sent to the cloud through Wi-Fi technology. A related commercial solution BAZAFARM [9] is 

used in Rwanda. It works in a network of sensor nodes that collect the soil moisture, 

temperature, and nutrient content and send data to a master node which then pushes data to the 

Internet. The collected data can be accessed by users to do the needful in terms of irrigation. The 

collected data is also sent to a virtual cloud for storage and future use. The decision to irrigate is 

made based on threshold values of the soil state. 

2.5 Datasets 

Sources of data include; actual data collection, open-source datasets and synthetic data 

generation among others. Open datasets from various studies can easily be explored from readily 

online datasets which provide links to many different data sites. Due to issues of privacy and 

security concerns, identifying open datasets in some areas of study may be limited. Data 

collected from African settings are also limited. This pushes the need for the exploration of 

synthetic data generation to complement the small datasets. Third-party datasets such as weather 
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datasets can also be explored from service providers who either provide them for free or based 

on subscription fees and can be readily accessed through custom APIs. 

There are AI-powered synthetic data solutions that take original data and transform it into 

privacy-compliant synthetic copies. Synthetic data comes as a solution to the lack of 

enough datasets that are needed to build strong and accurate machine learning models to 

aid in prediction systems [27]. 

Table 1: N, P, K range requirements of each crop [33] 

Crop Beans Maize Lentil Peas watermelon 

NPK (mg/kg) 20, 65, 25 74, 50, 18 20, 70, 19 40, 70, 77 99, 20, 50 

2.6 Summary 

In most of the aforementioned systems, the need to reduce the application of external chemical 

fertilizers to the fields is not emphasized yet this has been proven to harm the environment in the 

long run. Furthermore, some of the systems only present to the farmer the state of their field in 

terms of soil nutrient content and this leaves them to make uninformed decisions on what to do 

with the data. In addition, the solutions that recommend the use of predictive algorithms depend 

on a cloud-based architecture that does not apply to the African setting where connectivity is a 

challenge. Thus the need for an edge based solution. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

This chapter describes the selected system development methods and the machine learning, data 

collection tools, synthetic data generation tools, and programming tools.  

3.1 Software Development Method 

3.1.1 Waterfall Model 

The waterfall model was selected as the system development method. This model uses the 

software development cycle for creating of the system in a sequential and linear approach. This 

model systematically develops phase after phase following a download fashion [28]. The model 

is divided into several phases with the output of one phase being the input in the next phase. 

With this model, phases cannot overlap and one phase has to be completed before moving to the 

next phase until the process is completed. Figure 3.1 shows the phases in the waterfall model. 

 

Figure 3.1: The waterfall model  
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3.1.2 Reasons for using waterfall 

The waterfall model was selected due to the following reasons: 

 The system requirements for the precision farming system were clearly well documented 

and not expected to change 

 The definition of the proposed product was stable. 

 The technologies to be applied were well understood and were not dynamic. 

 There were no ambiguous requirements for the system. 

 The researchers had the required expertise and were available to support the product 

development process 

 The proposed project was short and had to be completed within a fixed time frame 

3.1.3 System development steps 

The sequential phases of the waterfall model in software development were followed 

i) Requirements Gathering and Analysis 

In this phase, the requirements were gathered based on the problem statement and consultation of 

stakeholders and other service providers and review of related solutions and literature. The 

requirement was analysed and the system requirements documented.  

ii) System Design 

The researchers developed the system-level design including the system architecture, block 

diagram, use case diagram, simulation setup, and prototype design.  

iii) Implementation 

The researcher worked on the coding for both the simulation and prototype and refined 

accordingly. The machine learning model was also coded and developed at this phase. 

iv) Testing 

The model was first tested in the cloud platform before a model to be implemented in the device 

was simulated and tested. The system was then developed and tested to ensure it meets the user 

requirements. 

v) Deployment and maintenance 

The deployment and maintenance phases will be implemented in future works 
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3.1.4 Advantages of the waterfall model 

Some of the advantages for the waterfall model were; 

 It was simple and easy to use and understand 

 Managing the model was easy given the fact that each phase had a specific deliverable 

 Each of the phases was completed one after the other 

 The requirements were well understood so the model worked well for our case 

 This model is more efficient for smaller projects where there is a clear understanding of 

the requirements. 

 The tasks were easy to arrange 

 The results of each process were well documented. 

3.2 Embedded ML Process flow 

The embedded ML process starts the training of datasets as shown in figure 2, through a 

synthetic data platform to generate synthetically enhanced data. The datasets were subjected to 

Mostly AI platform to generate synthetically enhanced data with a relatively bigger volume 

compared to the original raw dataset. The dataset was collected with the same sensors as per the 

system design. These included soil NPK, values soil pH, weather parameters of temperature, 

rainfall, and humidity. The synthetic data forms the input to the Machine Learning process and is 

used to train a model that can run on edge embedded devices that are resource constrained. An 

Embedded Machine Learning package is then generated for compilation and simulation. The 

model is thereafter being subjected to implementation on an embedded device. For our 

simulation context, test data is used to test the model in the cloud and results compared to when 

the same is used in the edge simulation environment. Synthetic data generation steps are shown 

in figure 3.2. 
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Figure 3.2: The Embedded ML Process 

3.2.1 Open Dataset 

Due to limited time, we chose to use an open dataset from Kaggle, an online platform which 

dataset formed a basis for creating the synthetic data used in this study. Data augmentation was 

used to create the dataset. The augmented data of fertilizer data, climate, and rainfall was 

collected from India. 

Attributes information: 

 N - Nitrogen  

 P - Phosphorous  

 K - Potassium  

 pH  

 Weather (Temperature, Humidity, Rainfall - Rainfall in mm) 
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3.2.2 Synthetic Data Generation 

Data collected from African settings are limited. This pushes the need for the exploration of 

synthetic data generation to complement the small datasets. There are AI-powered synthetic data 

solutions that take original data and transform it into privacy-compliant synthetic copies. 

Synthetic data comes as a solution to the lack of enough datasets that are needed to build strong 

and accurate machine learning models to aid in prediction systems. In this case we used Mostly 

AI which is an open source platform and it trains a model to and allows it retain the granularity 

and statistical distribution of the data. It retains the data patterns plus correlations and 

dependencies on time. It then uses its model to generate a synthetic version of the data. 

 

Figure 3.3: Synthetic Data generation steps 

3.3 Software Tools 

3.3.1 Embedded ML 

Embedded ML allows the use of AI in resource constrained smart devices. It is a type of machine 

learning that enables the shrinking of deep learning networks to fit tiny hardware. Tensor Flow 

Lite, a machine learning framework for embedded devices created by Google is used in 

Embedded ML. The framework makes deep learning smaller and faster for implementation in 

embedded devices. 
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3.3.2 STM32CubeIDE 

STM32CubeIDE in a development platform from ST electronics that can enable code generation, 

configuration of peripherals, compilation and debugging for STM32 microcontrollers [29]. These 

microprocessors have the capability to accommodate TinyML models for edge artificial 

intelligence inferencing. 

3.3.3 Proteus Design Suite 

The Proteus Design Suite has got an easy to use interface and a powerful feature set that can 

enable one to rapidly design a system, test the system and come up with a PCB [30] 

3.3.4 Mostly Ai 

This is an open source platform that was used in the generation of synthetically enhanced data. It 

trains a model to retain the data’s granularity, statistical distributions, patterns, correlations, and 

time dependencies. It then uses its model to generate a synthetic version of the data. 

3.3.5 Edge Impulse 

Edge Impulse enables you to finally use Tensor Flow on Microcontrollers. The end-to-end deep 

learning pipeline enables you to finally create Tensor Flow models. 
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CHAPTER FOUR 

SYSTEM DESIGN AND ANALYSIS 

In this chapter, the system design, system design analysis, and system simulation setup are 

presented.  

4.1 System Design 

Soil nutrient sensors and soil pH sensors integrated with communication modules and 

microcontrollers form part of the sensing unit of the system. Different sensor nodes are deployed 

in a farm. Each node collects data daily for one month and forwards it to the sink node via 

Bluetooth Low Energy (BLE). The collected data is then aggregated and integrated with forecast 

weather information at the sink node. An embedded AI model is then used to predict the best 

crop to grow based on the observed soil parameters with notifications being shown on the device 

and also sent by SMS to the farmer’s mobile phone. Figure 4.1 gives the system architecture. 

 

Figure 4.1: High Level system architecture 
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The data aggregated by the sink node and the prediction results are sent to the cloud through 

cellular networks. Data will be stored on the ThingSpeak cloud platform with the information 

being made available through web and mobile based dashboards for future analysis and data 

sharing. Energy harvesting for the system using solar radiation from the sun is used to power the 

system.  

4.1.1 Embedded System Level Design 

The sink node constitutes of an NPK sensor, soil pH sensor, a GSM for connectivity in case a 

message (SMS) is to be sent to the farmer’s mobile phone, an Arduino Nano 33BLE sense with 

ARM Cortex M4 microprocessor to support the TinyML models, an LCD for display and a solar 

power harvesting module for powering the device. The other sensor nodes constitute the sensors 

and the Arduino Nano 33BLE sense. These collect data and send it to the sink node via 

Bluetooth Low Energy. Figure 4.2 shows the sink node block diagram  

 

Figure 4.2:  Sink node block diagram 

4.2 Hardware Components 

The proposed design constitutes the following hardware components; Soil NPK Sensor - the 

RS485 soil nutrient fertilizer detector meter which is suitable for detecting the content of 

nitrogen, phosphorus, and potassium in the soil. Soil PH Sensor- the RS485 Arduino Soil pH 

Sensor for agriculture was used. The sensor is widely used and reliable in soil PH testing and 

other occasions that need pH monitoring. An Arduino Nano 33BLE sense that has an ARM 
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Cortex 4 processor which supports TinyML models and a GSM module for sending an SMS to 

the user’s mobile phone. It consists of an LCD for the display of results on the device and a 

MAX485 TTL to RS-485 Interface Module for interfacing with the two sensors NPK and soil pH 

sensor. 

4.2.1 Arduino Nano BLE Sense 

The Arduino Nano 33 BLE sense is built upon the nRF52840 microcontroller. It has the ARM 

Cortex 4 processor making it appropriate for solutions that involve embedded machine learning. 

In addition, it has an integrated Bluetooth low energy module that enables communication with 

other devices and a variety of sensors including temperature and humidity sensors. Figure 4.3 

shows the pin layout for the board. It has been designed to offer a power savvy and cost 

effective solution. 

 

Figure 4.3: Arduino Nano 33BLE Sense 

This compact and reliable Nano board is built around the NINA B306 module for BLE and 

Bluetooth 5 communication; the module is based on Nordic nRF 52840 processor that 

contains a powerful Cortex M4F and the board has a rich set of sensors that allow the 
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creation of innovative and highly interactive designs. Its architecture, fully compatible with 

Arduino IDE Online and Offline.  

4.2.2 Soil NPK Sensor 

This is suitable for detecting the content of Nitrogen (N), Phosphorus (P), and Potassium (K) in 

the soil. The JCXT soil NPK sensor that was used for this system is a low cost, quick responsive, 

high precision and portable Sensor that works with Modbus RS485. The advantage of this sensor 

over a traditional detection method is that it gives very fast measurement and data are highly 

accurate.  It has a high-quality probe, rust resistance, electrolytic resistance, and alkali corrosion 

resistance to ensure the long-term operation of the probe part and is thus suitable for all kinds of 

soil. 

 

Figure 4.4: The NPK sensor 

It operates on a power range of 9V-24V and has a measuring range of 0-1999 mg/kg. The 

Operating temperature is 5-45 °C, its resolution is1mg/kg, and precision of ±2% with a baud rate 

of 2400/4800/9600. The principle of an optical NPK sensor is based on the interaction between 

incident light and soil surface properties, such that the characteristics of the reflected light vary 

due to the soil's physical and chemical properties. 

The Pin layout of the connections with the Modbus RS485 module 

The NPK Sensor has 4 wires. The brown one is VCC which needs a 9V-24V Power Supply. The 

GND pin is black in colour and is connected to the GND of Arduino. The Blue wire which is the 

B pin is connected to the B pin of MAX485 and the Yellow Wire which is the A pin is connected 

to the A pin of MAX485. 
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4.2.3 Soil pH Sensor 

This is a Soil pH Sensor that can measure the Soil pH value from 3 to 9 with high accuracy up 

to ±0.3PH. It is water and dustproof and has an IP68 protective case and is sealed with High-

density epoxy resin which can prevent moisture from entering the body interior part. The sensor 

works perfectly with Modbus RS485 and the result is highly impressive [31] 

 

Figure 4.5: The soil pH sensor 

Pin lay out connection 

The soil pH sensor uses software serial Modbus as a communication protocol to interface with 

the Arduino board. VCC is the brown wire that needs a power supply between 5V-30V thereafter 

connects to the 5V of Arduino. The GND pin which is black in colour needs to be connected to 

the GND of Arduino. The Blue wire which is the B pin is connected to the B pin of MAX485 

and the Yellow Wire, which is the A pin, is connected to the A pin of MAX485. 

 

Figure 4.6: Pin connection of soil pH sensor to the interface module 
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4.2.4 MAX485 TTL to RS-485 Interface Module 

This interfaces both the soil NPK and soil pH sensors with Arduino board. It allows us to use the 

RS-485 differential signalling for robust long-distance serial communications up to 1200 

meters or in electrically noisy environments and is commonly used in industrial environments. It 

supports up to 2.5MBit/Sec data rates, but as distance goes up, the maximum data rate that can 

be supported comes down. 

 

Figure 4.7:MAX485 TTL to RS-485 Interface Module 

Pin lay out of the module 

There are 4-pin headers on the assembly module namely; 

1 x 4 Header (Data side) 

RO = Receiver Output. Connects to a serial RX pin on the microcontroller 

RE = Receiver Enable. This is for Active LOW and Connects to a digital output pin on a 

microcontroller.  

DE = Driver Enable. This is for Active HIGH and it is typically jumpered to RE Pin. 

DI = Driver Input. This Connects to serial TX (Transmission) pin on the microcontroller 

1 x 4 Header (Output side) 

VCC = 5V 

B = Data ‘B’ Inverted Line. Common with the B 

A = Data ‘A’ Non-Inverted Line. Connects to A on far end module 

GND = Ground 

4.2.5 Liquid Crystal Display (LCD) 

LCD: provides visual status information about the system status on the device. When the sensors 

collect data from the soil, the N, P, and K values are displayed plus the soil pH value too on the 

LCD. It also eventually displays the crop predicted after data aggregation and inference are done. 
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The LCD that was used has 8 data pins. An LCD screen is an electronic display module that uses 

liquid crystals to produce a visible image. The 16×2 translates to a display of 16 characters per 

line in 2 such lines. 

 

Figure 4.8: The 16x2 Liquid Crystal Display 

 

4.2.6 The GSM Module 

A GSM SIM800L modem was used as a communication module to enable the farmer to 

receive the prediction information on their mobile phone through an SMS. GSM is a 

wireless modem that works with a GSM wireless network.  This modem sends& receives 

data through radio waves. It requires a SIM card from a wireless carrier in order to 

operate a GSM module[32] 

This has an on-board LED indicator which blinks once every two to three seconds when 

it has completely registered the SIM to a network. When the LED indicator is blinking 

every second, this means that the SIM800L is still searching for a network to register 

onto. If the LED indicator does not blink, recheck the power supply to ensure that it 

provides plentiful current and precise output voltage. The SIM800L module requires 

voltage in range of 3.4 to 4.4 V. If proper voltage is not provided, the module will give 

under- and overvoltage warnings. 
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Figure 4.9: The SIM800L GSM Module 

4.3 System Analysis 

4.3.1 System functional requirements 

The end goal of a project is to deliver a high quality product. Functional requirements are the 

primary ways that the requirements are communicated to a project team. Functional requirements 

help to keep the project team going in the right direction. They include product features or 

functions that developers must implement to enable users to accomplish their tasks. The 

functional requirements for the proposed system were as follows: 

 The system should be able to sense the existing soil parameters in a farm namely; the 

nutrient (N, P, and K) and soil pH. 

 The system should be able to collect the forecasted weather (Temperature, Humidity and 

Rainfall). 

 The system should be able to predict the best crop to grow with the current soil 

conditions. 

 The system should be able to send an alert to a farmer on the predicted crop to be grown 

on the device and farmer’s mobile 

 The system should be able to send the collected data and the prediction to an open source 

IoT cloud platform for storage. 

 The farmers and extension officers should be able to view a dashboard with a variety of 

visualization tools of data stored in the cloud. 
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 The system should be powered through a renewable energy source and use the minimal 

energy possible. 

4.3.2 Non-functional requirements 

Non-functional requirements are quality attributes that describe the ways the system should 

behave. They include the following: 

 Availability: the system’s functionality and services should be available for use with all 

operations 99.99% of the time. 

 Usability: the system should be easy to use by the farmers, the extension officers, and the 

administrator. 

 Reliability: The system should work without failure for at least 10 years 

 Scalability: The system must grow without negative influence on its performance. 

 Power consumption: It should be in a position to consume as low power as possible to 

conserve energy and the environment. Ultra-low power devices should be used in the 

implementation. 

 Data Integrity: the system should be in a position to secure access to confidential data for 

the users. 

 Performance: the system should ensure optimal responsiveness to various user 

interactions with it at all times 

 Recoverability: In case of failure, the system should have a self-recovery backup 

procedure 

 Flexibility: Flexible service based architecture will be highly desirable for future 

extension 

 Security: ensure that the software is protected from unauthorized access to the system and 

its stored data. 

 Size: the system should be designed using miniaturized devices for portability 

 Regulatory requirements: the system should confirm the traffic regulatory requirements 
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4.4 The Flow chart for data collection 

 

Figure 4.10: How the data collection process flows 
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4.5 The system flow chart 

 

Figure 4.11: The flow of the system process 
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4.4 Simulation design of the Embedded Kit 

Figure 4.11 presents the high-level simulation context of the proposed system. The Embedded AI 

model executable is deployed in an STM32F401CC board on proteus design suite. Input data of 

readings from sensors and weather information is given in the form of a file from an SD card. 

This data includes values of Nitrogen, Phosphorus, and Potassium (NPK), values of soil pH, and 

the values of weather in terms of rainfall, temperature, and humidity. The inference results being 

shown on the serial terminal or also on the Liquid Crystal Display (LCD) 

The STM32F401xC devices are based on the high-performance Arm® Cortex® -M4 32-bit 

RISC core operating at a frequency of up to 84MHz. These can support the TinyML model that 

is being used for inference and prediction at the edge device. 
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Figure 4.12: Proteus simulation layout of the system 
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CHAPTER FIVE 

RESULTS AND ANALYSIS 

This section presents the results of the research study, the analysis of the results and system plus 

the explanations of the results. 

5.1 Evaluation of embedded AI for predicting best crop 

From the Open data sets, synthetic data is generated using Mostly AI platform in this case. Then, 

the synthetically enhanced data is fed into Edge impulse which is a Machine learning platform. A 

TinyML model is generated and deployed on STM32 Cube with an Edge AI application IDE, 

from which the model is simulated and inference got on a serial monitor. 

 

 

Figure 5.1: Summary of the steps for system development 

5.1.1 Input: Synthetic Dataset 

In this study, an open data set collected from a farm found was used as input to the synthetic data 

generation platform [33]. The reason for using synthetic data is to increase the volume of data to 

enable a better deep learning model. The free version of a commercial synthetic data platform, 

Mostly AI, was used to generate more data [27]. The dataset includes information on N, P, K, 

pH, temperature, humidity, and rainfall collected everyday over some time with labels of the best 

crops that did well under the specified conditions. The data contained 20 different crops and the 
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best parameters for maximum yields. Data relating to five food crops were selected for our study. 

Before use, the generated synthetic data was tested and the performance compared to using the 

original data set and was 99% accurate. Synthetic data generation reports also show that all the 

required thresholds including privacy tests were met. 

5.1.2 Embedded AI model generation 

The training model was developed using an open source embedded ML platform called edge 

impulse. The data was preformatted and JSON files were created for upload into the platform. 

Five files each with data about the five selected crops were uploaded and data automatically 

separated into the training, validation, and test sets using the holdout method. The raw data were 

classified using a Neural Network classifier. The model had 7 inputs, from sensor and weather 

data and 5 outputs being the selected crops which were Maize, Beans, Lentil, Peas, and 

watermelon. The window size used was 1000ms with a sampling rate of 1000ms for the data.  

5.1.3 Prediction Model with non-synthetic datasets 

With the use of small volumes of data that were raw from the open source, a model accuracy of 

78.8% was achieved with a loss of 0.32% from the validation set. This implies that there is a 78.8 

percent probability of predicting the best crop rightly 

 

Figure 5.2: Model confusion matrix with non-synthetic data 
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With this model, there is a probability of 0.97 of lentil being right, 0.96 probability of beans 

being right, 0.89 probability of maize being right, 0.77 probability of peas being right and 0.0 

probability of watermelon being right as shown in the F1 score row. This is because of the 

limited dataset samples that the model is being based on for training. Figure 5.2 shows the 

confusion matrix for the validation set. 

 

 

Figure 5.3: On-device performance for non-synthetic data 

With non-synthetic data, the on-device performance gave an inference speed of 1ms, it utilizes a 

RAM amount of 1.5Kb and a flash memory of 15.8Kb. This implies that our model can well fit 

and function on embedded devices that have limited memory space. 

5.1.4 Prediction Model with Synthetic datasets 

With the use of large volumes of data that were synthetically generated, a model accuracy of 

92.2% was achieved with a loss of 0.24% from the validation set. From the confusion matrix 

below, the probability of predicting beans accurately is 0.88, the probability of predicting lentil 

accurately is 0.90, the probability of predicting maize accurately is 0.90, the probability of 

predicting peas accurately is 0.94 and the probability of predicting watermelon accurately is 

0.99. This shows an increase in accuracy of the model compared to when raw small datasets are 

used. Figure 5.4 shows the confusion matrix for the validation set.  
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Figure 5.4: Model confusion matrix with synthetic data 

This implies that with large volumes of data, a better model inference accuracy can be achieved 

and this is through the use of the small volumes of data available to generate synthetic data with 

bigger volumes but maintaining the statistical distribution of the data. Synthetic data use in the 

generation of datasets for AI models assures the privacy of the data and this is key in the data 

science world. It also saves costs, it’s more accurate and faster. 

 

Figure 5.5: On-device performance for synthetic data 

With the use of synthetic data, the on-device performance achieved is shown above. The 

inference took 1ms, the amount of RAM used is 1.7Kb and the flash memory used is 17.4Kb. 

These can all be accommodated on edge devices with constrained memory and computation 

capacity. 
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K means anomaly detection learning block was added to enable the model to identify any 

anomalies that may have been captured by the sensors. The cluster count was set at 32 with a 

minimum score before tagging an anomaly of 0.30. After testing a CMSIS-PACK for STM32 

boards was generated for integration in an IDE and deployment  

5.1.4 Model Validation 

To validate the model, test data from the real original open datasets were used to find out how 

accurately the best crop to be grown can be predicted. When the test data was applied on both the 

cloud and embedded device, the model predicted the crop to be grown with 99.9% accuracy. 

This shows that the model is effective in predicting the best crop to be grown considering the 

real-time conditions of the soil. In addition, this confirms that synthetically enhanced data has 

minimal effects on the performance of the resulting models. The synthetically enhanced data 

actually proved to give a more concrete model as compared to when small datasets were used. 

5.1.5 Inference Simulation 

A C++ project was created in STM32CubeIDE and the CMSIS-PACK was integrated into the 

project. The project was then compiled and debugged and an executable HEX file was created 

for simulation on proteus platform. Figure 5.6 gives a sample output from the simulation on the 

Proteus design suite. This is the same result as when compared to classification in the cloud 

using the same data as shown in figure 5.7. 

 

Figure 5.6: proteus inference result 
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From the virtual terminal display result, the crop with value 1 indicates the predicted crop to be 

planted based on the real time condition of the soil, then value 0 shows the crops not suitable for 

the soil in that state at the moment. The classification of the data took 5ms and the digital signal 

processing (DSP) of the data took 3ms. The model performs anomaly detection on the data to 

rule out the ambiguity of results. 

When a model was trained using a similar dataset and deployed at the cloud to test if the 

inference would be the same as the inference at the edge device, the result was satisfactory that 

the embedded AI result is still accurate. It implies that the embedded Machine Learning model is 

perfect and accurate and gives the same result as would be done in the cloud. This is the result of 

cloud analysis of the parameters for crop prediction. 

 

Figure 5.7: Cloud inference output 

The results give a prediction of the best crop to be grown indicated by value 1 without the use of 

fertilizers as the conditions on the validation dataset are appropriate for the recommend crop. 

This supports the objectives of the study on limiting the use of fertilizers and thus environmental 

conservation. 

5.2 PROTOTYPE RESULT ANALYSIS 

5.2.1 Prototype Implementation 

Different components of the embedded device were connected as shown in figure 5.8. The 

prototype was set up in the STES group Lab and with sample soils being collected from STES 

group farm where they practice smart irrigation. Given the fact that their system did not monitor 
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the soil NPK and PH as done in the study, the solution was also integrated into their system so as 

to evaluate its ability to improve the existing system.  

 

Figure 5.8: The System prototype 

5.2.2 Sensor Readings 

Figures 5.9 shows the readings from the sensor on a serial monitor during the testing of their 

functionalities.  Different soil samples were taken and the sensors adequately gave different 

readings for each sample. 

GSM Module 

Arduino Nano 33 

BLE 

PH Sensor 

NPK Sensor 

RS 485 interface modules 

LCD 
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Figure 5.9: Sample sensor readings 

5.2.3 Cloud Storage 

A private cloud storage platform used by STES group was used for storage of the soil condition 

readings overtime. Figure 5.10 shows the dashboard for the cloud storage platform. Separate 

tables were created for each of the targeted sample values and data collected over a period of 5 

days. Figure 5.11 shows sample collected data for the sensors. Data was sent to the virtual cloud 

via GSM modules after every 5 minutes. The database created and hosted on Bazafarm virtual 

cloud stores the sensor readings of Nitrogen, Phosphorus, Potassium and soil pH plus their time 

stamps. The reason for storage of this data is for analysis, future use and research because in this 

work, we faced a big challenge of lack of enough datasets for concrete AI model training. 

The dashboard displays the number of devices connected, the number of collected data entries, 

the number of parameters being collected and the time stamps for the data. 
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Figure 5.10: The system cloud dashboard 

 

Figure 5.11: Sample NPK sensor collected data 

5.2.4 Crop Prediction 

The system was able to predict the best crop to be grown based on the soil NPK, pH and 

forecasted weather data pulled by an API integrated in the application. Figure 5.12 gives a 
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sample prediction for watermelon at 0.99. The prediction is given in terms of a probability of the 

crop that would do best under the existing soil conditions. 

 

Figure 5.12: crop prediction results 

The probability of beans growing well in the sampled soil without having to complement the soil 

with NPK fertilisers is 0.00, for Lentil it is 0.00, for maize it is 0.00391 and for peas its 0.00. 

With this prediction, in case the farmer chooses to plant otherwise, He will need to apply NPK 

fertilizers to support his crop planted 

The figure 5.12 shows the inference display on LCD that is attached to the embedded device 
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Figure 5.13: Inference display on LCD 

5.3. Analysis and interpretation of results 

5.3.1. Device Performance 

The required device resources by the model were analysed to determine if the model could run 

on an embedded device as was intended. The estimated on-device performance by the model on 

an embedded device from the cloud training platform is 1.7Kb peak RAM usage, 17.4Kb ROM 

usage, and an inference time of 1ms. The results show that the required resources are still 

minimal. This shows that the model can be used on many commercially available embedded 

devices that have the required ARM Cortex M4 core.  

5.3.2. Model parameter Significance 

Different parameters were omitted during the model training to verify the significance of each 

parameter in predicting the best crop to be grown. Figure 5.14 performs each of the three classes 

of parameters used namely soil nutrient, Soil PH, and weather (temperature, humidity, and 

rainfall). This was done using the same settings for the neural network. The graph below shows 

how relevant each parameter is in providing a concrete prediction inference for the system. NPK 

is most relevant with a percentage of 78.5% followed by soil humidity or moisture with 68% that 

comes under the forecasted weather APK. These are followed by rainfall and pH with 52%. 
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Figure 5.14: Individual sensor significance 

5.3.3 Sensor Significance 

In this experiment, sensors were used and an APK (Android Application Package) for forecasted 

weather data. The graph below in figure 5.15 shows the significance of each sensor and weather 

APK in the prediction analysis. From the graph it shows that weather APK and soil NPK sensors 

are the major considerations that are mandatory for predicting the best crop to grow as compared 

to pH. The soil pH is dependent on the soil nutrient content hence the pH sensor can be replaced 

by the soil NPK sensor. In addition to that, there exists a soil integrated sensor that measures 

seven (7) parameters in one that is; soil Nitrogen, Phosphorus and Potassium content (NPK), soil 

pH, soil conductivity, soil moisture and soil temperature. Using this can help optimise resources 

at a reduced cost. Looking at the resulting graph, the weather APK has a significance of 95% 

followed by the soil NPK sensor with a significance of 80% and lastly the soil pH sensor with a 

significance of 55%. 
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Figure 5.15: Individual sensor significance 

 

5.3.5 Effect of Soil Moisture on soil NPK and PH 

During the testing of the working of the prototype it was noted that soil moisture affects the 

values for both NPK and pH. This means that it is important to also monitor the soil moisture so 

as to get a more accurate prediction.  

When soils were dry, the pH values tended to hike beyond 7 and the NPK values also tended to 

lower down. This is one of the reasons why rainfall is very key in crop growth. It moisturizes the 

soil and helps the NPK values to increase and stabilise. When the soil is too acidic, lower than 

the recommended level of 5.5 for good crop yield, there will be a decrease in the crop yield 

instead. 
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CHAPTER SIX 

CONCLUSION, RECOMMENDATIONS, AND FUTURE WORKS 

6.1 CONCLUSIONS 

This study proposes the use of Embedded AI in precision agriculture for the prediction of the 

best crop to grow with the existing soil conditions to conserve the environment. This is a move 

from the existing solutions that mostly use cloud-based solutions. The use of Embedded AI helps 

overcome connectivity challenges in Africa and ensures real-time responses for precision 

solutions. 

Our model was tested in both the cloud and embedded devices with the results giving the same 

accuracy. This supports the use of Embedded ML for precision farming solutions and is scalable 

to other use cases so long as the data for model training is available. The study also shows that 

synthetic data can also be applied in smart agriculture in cases of limited data for machine 

learning. Our experiment shows that the use of synthetic data does not degrade the performance 

of an AI model so long as the right methods are applied. From the evaluation of the sensors, we 

note that soil nutrient and weather information are vital when deciding on which crop to the best 

plant. Since pH is related to the underlying soil nutrient levels its effect on the model 

performance is minimal. 

Considering that this is ongoing research, the next step is to implement this solution, which will 

lead to the conservation of the environment by ensuring that farmers minimize the use of 

fertilizers that have a lasting effect on the environment. The use of embedded AI will also ensure 

that costs are reduced and real-time actions are taken to enhance productivity. 

6.1.1 NULYFYING THE HYPOTHESIS 

The hypothesis was that IoT technologies can be merged with Artificial Intelligence to enhance 

environmental conservation through sustainable soil management and crop prediction. 

From our results, it is proven that through merging of Artificial Intelligence and embedded 

Machine Learning in particular with Internet of things technology, a concrete crop prediction can 

be made on a fertilizer free basis. When the crop is grown with the current soil contents based on 



43 | P a g e  

 

the prediction, fertilisers won’t have to be added and thus conserving the environment through 

avoidance of the effects of the excessive use of synthetic fertilizers.  

6.2 RECOMMENDATIONS 

Based on the findings and experiences during the study we would like to recommend the 

following for better results for such a solution: 

 Soil moisture should be part of the inputs to the AI model as it directly influences the 

readings for the soil quality parameters. 

A soil integrated sensor suitable for reading values of soil moisture, soil pH, Nitrogen, 

Potassium, Phosphorus (NPK), soil temperature and total soil salt (soil conductivity) can be used 

instead of the 2 sensors that were used in this research. This sensor is soil comprehensive and 

creatively measures the 7 parameters which greatly optimises resources and facilitates a concrete 

soil assessment with one sensor. 

6.3 PERSPECTIVE AND FUTURE WORKS 

This work introduced the use of embedded AI in Agriculture and proposes and evaluates a model 

for the prediction of the best crop to grow under the existing conditions with minimal use of 

fertilizers. In addition, a prototype on a real embedded development board was developed and 

conducted tests with soil from different farms to further evaluate the performance of the 

proposed solution. Future works will involve implementation of the solution and further 

evaluation on a deployment setting. 
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APPENDICES 

Appendix 1: Notification of paper acceptance for Publication 
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Appendix 2: The system prototype setup 
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Appendix 3: The Edge AI Crop Prediction Code 

#include <newmodel_inferencing.h> 

#include <Wire.h> 

#include <LiquidCrystal_I2C.h> 

#define THRESHHOLD 0.6 

 

// Set the LCD address to 0x27 for a 16 chars and 2 line display 

LiquidCrystal_I2C lcd(0x3F, 16, 2); 

staticconst float features[] = {61.0000, 44.0000, 17.0000, 26.1002, 71.5748, 6.9318, 102.2662 

    // copy raw features here (for example from the 'Live classification' page) 

    // see https://docs.edgeimpulse.com/docs/running-your-impulse-arduino 

}; 

/** 

 * @brief      Copy raw feature data in out_ptr 

 *             Function called by inference library 

 * 

 * @param[in]  offset   The offset 

 * @param[in]  length   The length 

 * @paramout_ptr  The out pointer 

 * 

 * @return     0 

 */ 

intraw_feature_get_data(size_t offset, size_t length, float *out_ptr) { 

memcpy(out_ptr, features + offset, length * sizeof(float)); 

return 0; 

} 
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void setup() 

{ 

Serial.begin(115200); 

Serial.println("Edge Impulse Inferencing Demo"); 

} 

void loop() 

{ 

lcd.clear(); 

float N=features[0]; 

float P=features[1]; 

float K=features[2]; 

float humidity=features[3]; 

float temp=features[4]; 

floatph=features[5]; 

float rainfall=features[6]; 

ei_printf("value of N:"); 

Serial.println(N); 

 

lcd.setCursor (0,1); // go to start of 2nd line 

lcd.print("value of N:"); 

lcd.setCursor (1,1); 

lcd.print(N); 

lcd.setCursor (0,4); // go to start of 2nd line 

lcd.print("value of P:"); 

lcd.setCursor (1,4); 

lcd.print(P); 

lcd.setCursor (0,8); // go to start of 2nd line 

lcd.print("value of K:"); 

lcd.setCursor (1,8); 

lcd.print(K); 
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ei_printf("value of P:"); 

Serial.println(P); 

ei_printf("value of K:"); 

Serial.println(K); 

ei_printf("value of humidity:"); 

Serial.println(humidity); 

ei_printf("value of temperature:"); 

Serial.println(temp); 

ei_printf("value of PH:"); 

Serial.println(ph); 

ei_printf("value of rainfall:"); 

Serial.println(rainfall); 

ei_printf("Edge Impulse standalone inferencing (Arduino)\n"); 

if (sizeof(features) / sizeof(float) != EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE) { 

ei_printf("The size of your 'features' array is not correct. Expected %lu items, but had %lu\n", 

            EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, sizeof(features) / sizeof(float)); 

delay(1000); 

return; 

    } 

ei_impulse_result_t result = { 0 }; 

    // the features are stored into flash, and we don't want to load everything into RAM 

signal_tfeatures_signal; 

features_signal.total_length = sizeof(features) / sizeof(features[0]); 

features_signal.get_data = &raw_feature_get_data; 

    // invoke the impulse 

    EI_IMPULSE_ERROR res = run_classifier(&features_signal, &result, false /* debug */); 

ei_printf("run_classifier returned: %d\n", res); 

if (res != 0) return; 

lcd.clear(); 
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    // print the predictions 

ei_printf("Predictions "); 

lcd.print("Predictions "); 

 

ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)", 

        result.timing.dsp, result.timing.classification, result.timing.anomaly); 

ei_printf(": \n"); 

ei_printf("["); 

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) { 

ei_printf("%.5f", result.classification[ix].value); 

#if EI_CLASSIFIER_HAS_ANOMALY == 1 

ei_printf(", "); 

#else 

if (ix != EI_CLASSIFIER_LABEL_COUNT - 1) { 

ei_printf(", "); 

        } 

#endif 

    } 

#if EI_CLASSIFIER_HAS_ANOMALY == 1 

ei_printf("%.3f", result.anomaly); 

#endif 

ei_printf("]\n"); 

    // human-readable predictions 

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) { 

ei_printf("    %s: %.5f\n", result.classification[ix].label, result.classification[ix].value); 

if (result.classification[ix].value>=THRESHHOLD) 

        { 

lcd.clear(); 

lcd.setCursor(0,0); 

lcd.print(result.classification[ix].label) 
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lcd.setCursor(0,1); 

lcd.print(result.classification[ix].value); 

        } 

    } 

#if EI_CLASSIFIER_HAS_ANOMALY == 1 

ei_printf("    anomaly score: %.3f\n", result.anomaly); 

lcd.print(result.classification[ix].label, result.classification[ix].value); 

#endif 

delay(1000); 

} 

* @brief      Printf function uses vsnprintf and output using Arduino Serial 

* @param[in]  format     Variable argument list 

voidei_printf(const char *format, ...) { 

static char print_buf[1024] = { 0 }; 

va_listargs; 

va_start(args, format); 

int r = vsnprintf(print_buf, sizeof(print_buf), format, args); 

va_end(args); 

if (r > 0) { 

Serial.write(print_buf); 

    } 

} 


