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ABSTRACT 

Groundwater is the most dependable source of freshwater supply on the planet. Meanwhile, 

the prohibitively expensive cost of groundwater data loggers, telemetry, and data analysis 

tools makes responsive groundwater management difficult. The situation is exacerbated in 

Sub-Saharan African countries with a severe lack of groundwater data. In Rwanda, for 

example, groundwater level data is collected using standalone sensors via field patrols, and 

there are no effective tools for analyzing this data. This research aimed to develop a low-cost, 

low-power Internet of Things (IoT)-based system and Machine Learning (ML) model for 

monitoring and predicting groundwater quantity in order to provide managers and other 

stakeholders with inexpensive tools for groundwater management in Eastern Rwanda. 

Historical hydro-climatic data were obtained from the Rwanda Meteorological Agency 

(MeteoRwanda) and the Rwanda Water and Forestry Authority (RWFA), and system 

specifications were obtained from managers and other stakeholders. A data logger with a 

submersible water table depth probe was built using redesigned low-cost MS5803-14BA and 

MBE280 sensors, an improved I2C interface, a real-time clock, a microSD module, mini solar 

charger, and an ATmega328P-based framework. A low-power, long-range telemetry system 

was developed using an open-source Dragino LoRa transceiver and a 4G LTE dongle. The 

system was deployed at the Bandamaji groundwater station for two weeks, allowing for near 

real-time data collection, analysis, and validation of its power consumption, cost, and network 

efficiency. The findings show that the system has a relatively low cost of around USD 

310.168, a promising efficacy with a daily energy consumption of about 12% of the battery’s 

capacity of 66,600J. The network performance is 84.46% for PDR, -83 for RSSI, and each 

send takes about 37.13 seconds. Predictive analytics tools were developed by combining RF 

with SVR and KNN methods in order to improve prediction efficiency and accuracy. These 

ensemble machine learning techniques were calibrated and tested using well-prepared 

datasets. Multiple hyper-parameters and lagged inputs were also tested iteratively until the 

best results were obtained. The EEMD-SVR-RF technique improves prediction accuracy (R2) 

at 90-day lead time by 5.1832%, 49.8543%, and 2.5083%, respectively, when compared to 

SVR, ANN, and RF methods. In addition, when compared to other models, this model also has 

the smallest errors of 0.0038 m for MAE, and 0.0011 m for RMSE. Moreover, the SVR-RF 

with EEMD preprocessing outperforms the EMA-KNN-RF with an R2 of 0.9608, RMSE of 

0.0011, MAE of 0.0382, and NSE of 0.9586. These results are comparatively better and more 
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insightful for groundwater management and the advancement of IoT and AI-based hydrology 

solutions.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Introduction 

Groundwater is the most important source of freshwater for a variety of uses. This resource is 

critical for combating poverty, ensuring water and food security, creating decent jobs, socio-

economic development, and adapting to climate change. Because of its underground nature, it is 

frequently undervalued, mismanaged, and abused.  In some areas, the rate at which groundwater is 

abstracted is alarming threatening human life and the ecosystem [1].  Groundwater must be 

preserved for current and future generations. This goal is attainable if there is reliable information to 

guide policy and resource governance. Such information can be obtained through continuous and 

effective monitoring of groundwater utilization and changes.   

Many countries, particularly developing countries, lack access to tools for observing and modeling 

aquifers. Cost and technical skills are major factors preventing these tools from reaching low-

income countries [2], [3] The Internet of Things (IoT) and Artificial Intelligence (AI) technologies 

that are emerging have the potential to revolutionize groundwater management. The thesis argues 

that inexpensive automatic IoT-enabled groundwater monitoring improves accuracy, efficiency, and 

reliability of groundwater levels time series data. It also argues that open source predictive machine 

learning analysis produces reliable seasonal groundwater forecasts.  

In relation to the current research topic, this chapter aims to provide the motivations for the study, 

describe its background, and outline the statement of research aim and objectives. First, it introduces 

the background and motivation of the research, as well as the potential of IoT and ML technologies 

for groundwater management. The research problem statement is followed by a discussion of the 

research objectives in relation to the overall purpose of the study. Finally, it presents a summary of 

the contributions of the thesis as well as its overall structure. 
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1.2  Research Background and Motivation 

Groundwater is the world's largest (more than 97%) and most important unfrozen fresh water 

reserve, serving as a major source of water supply in many countries, particularly in arid and semi-

arid regions, for drinking, irrigation, and animal husbandry [1]. This resource has a high potential 

for helping to achieve the United Nations (UN) Sustainable Development Goals (SDGs), 

particularly SDG6 [4], which states that water should be accessible to all and managed sustainably. 

Groundwater is critical to the fight against poverty, food and water security, the creation of decent 

jobs, socioeconomic development, and society and economy resilience to climate change [5]. In a 

broader sense, groundwater is linked to more than 50% of the SDG targets [6]. Meanwhile, while 

groundwater is the most exploited raw material on the planet, it is under-monitored and under-

managed [6].  Mismanagement of groundwater, as well as its frequent abuse through over-

exploitation, endangers the entire water cycle, and thus endangers human well-being and the 

survival of all life [7]. Nearly half of the world’s population relies on groundwater as their primary 

source of drinking water, and groundwater accounts for approximately 43% of the water used in 

agriculture and food production [4]. It also serves as a major supply for the global ecology’s 

preservation and sustainability. Global water demand is steadily increasing, resulting in groundwater 

scarcity. Almost half the world’s major aquifers are at risk of depletion and drying out [4][5]. One 

of the driving forces behind the lowered water tables is unsustainable aquifer abstraction.   

In Africa, while more than 75% of the population is dependent on groundwater for basic water 

supply, there is growing interest and excitement about the potential of groundwater for irrigation 

[7][8]. Africa's groundwater demands are expected to rise substantially as the continent's population 

and economy expand at a rapid pace, but knowledge about this resource is limited [8]. With 

recurring draughts causing human and animal deaths as well as economic consequences, Sub-

Saharan Africa's population reliant on groundwater grows during dry seasons. The East African 

drought of 2011 resulted in food shortages for over ten million people and over 260,000 deaths [8]. 

Groundwater supplies approximately 80% of Rwanda’s fresh water, with Eastern Province being the 

most reliant on this resource [9]. To meet rising demands and natural influences, improved and 

adaptive groundwater management strategies are required. 
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1.2.1 Groundwater Situation in Rwanda’s Eastern Province 

Eastern province is typically composed of mountains, hills, and wide deep valleys, the floors of 

which are 200 meters below the surrounding hills and mountains. Historically, this region has been 

plagued by recurring droughts and water scarcity  [8]–[12], as it receives approximately 25% less 

annual rainfall than the rest of the country [11][13]. As a result of this situation, the government 

developed and made available all of the region's springs. The water from these springs is of 

acceptable quality, but yields are low, especially during the long dry season, when some of the 

springs may run dry. As a result, the use of springs in this region is extremely difficult, leaving 

groundwater wells as the most viable solution to water scarcity [14]. This province has the most 

drilled wells, with at least 400 boreholes and wells as of 2009 [10]. The test wells were drilled for 

the first time between May and October 1985 in order to facilitate a study aimed at the development 

of groundwater aquifers in this zone [14]. Since 1994, the eastern province has seen extensive 

borehole drilling and shallow well construction [10]. With a large number of wells, as this part of 

the country receives less than 1000 mm of rain on average, and the average evaporation rate is 

estimated to be between 1,000 and 1,500 mm [6], production is limited, forcing resource managers 

to devise new methods of managing water resources equitably and sustainably. Nonetheless, there 

has been a rapid depletion of aquifers over the last three decades due to higher abstraction rates and 

the greatest climate change impact on the Eastern Province [4][12]. These effects of climate 

variability are likely to worsen, resulting in longer drought periods. Aquifers will undoubtedly 

continue to be a major source of fresh water at demand points in this region. 

1.2.2 Rwanda’s Groundwater Management Strategic Plan 

Rwanda's water management policy (enacted in 2010 and reviewed on 04/2011), aims to ensure that 

the country's groundwater resources are managed in a holistic and long-term manner, utilizing an 

Integrated Water Resources Management (IWRM) approach. The policy aims to achieve three 

major goals: (i) to protect, conserve, manage, and develop Rwanda's groundwater resources in an 

integrated and sustainable manner; (ii) to ensure that groundwater resources are available in 

sufficient quantity and quality for current and future generations' socio-economic and ecological 

needs; and (iii) to ensure that decisions affecting groundwater resource management are made in a 

coordinated manner and with the participation of all stakeholders at local, national, and international 

levels. 
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Among other things, the policy directs the use of cost-effective groundwater resource assessment 

and monitoring systems, recognizing that rational decisions cannot be made without reliable 

information and the ability to apply knowledge appropriately [10]. On this basis, the strategic plan 

[10], was created to provide translation and implementation of the water management policy.  

1.2.3 The Current Groundwater Monitoring Practice in Rwanda 

Even though groundwater accounts for the majority of managed water resources in many low-and 

middle-income countries, hydrogeological capacity is lacking. This frequently includes both 

technical and institutional capacity [7]. The current groundwater monitoring practice in Rwanda 

employs standalone pressure transducer sensors, and seasonal field patrols are conducted to collect 

data from those sensors. This practice necessitates significant amount of human, material, and 

financial resources and may result in inaccuracies and missing data.  

The Internet of Things (IoT) and Machine Learning (ML) are potential technologies for improved 

groundwater resources management. The availability of inexpensive, low-power wireless sensors 

and telemetry opens up new avenues for groundwater hydrology research and development. IoT 

offers ground-based, continuous, and remote monitoring, as well as data analytics that can be 

utilized to inform groundwater decisions. 

1.3 Statement of the Problem 

The conventional groundwater data logging instruments have high power consumption, are 

expensive and difficult to deploy logistically [2], [3]. In addition to that, most groundwater data 

analysis and decision support tools have prohibitively high licensing costs and are only useful for 

short-term groundwater predictions [15]. These factors contribute to unsustainable aquifer 

management by causing irregular and inefficient monitoring, as well as ineffective analysis of 

groundwater responses. Although, groundwater monitoring and forecasting have been the focus of 

extensive hydrology research, but the long-term hydrological data are scarce in most parts of the 

world [9]– [11], owing in part to a lack of affordable groundwater monitoring tools, making 

groundwater evaluation and groundwater decision-making difficult [13], [14], [16], [17]. Currently, 

groundwater monitoring in Rwanda is done with stand-alone water level sensors, and there is no 

effective seasonal forecast of groundwater variability [3]. These factors limit our ability to mitigate 

the effects of droughts and water scarcity. Innovative solutions for efficient and cost-effective 
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groundwater management are critical in order to provide managers and policymakers with easily 

accessible information [16]. 

This research focused on the development of an energy-efficient, affordable IoT system for 

monitoring of groundwater tables, as well as an efficient machine learning model for seasonal 

prediction of groundwater availability, in order to provide groundwater managers and other 

stakeholders with relevant and reliable information. 

1.4 Research Aim and Objectives 

The research aimed to develop reliable IoT and ML-based tools for monitoring and predictive-

analysis of groundwater levels in order to aid in sensible decision-making in sustainable 

groundwater resource management.  

Specifically, the research will attain the following objectives: 

i.To obtain requirements for the Internet of Things-enabled groundwater table depths monitoring 

system. 

ii.To design and develop a low-cost, low-power, energy-harvesting Wireless Sensor Network (WSN) 

for remote and near real-time groundwater level monitoring. 

iii.To validate the developed WSN's affordability, energy efficiency, and network efficacy through 

field deployment. 

iv.To develop an efficient machine learning model for seasonal prediction of groundwater levels. 

v.To evaluate the developed machine learning model using appropriate performance metrics. 

The present research sought to leverage the potential of emerging open source (IoT and ML) 

technologies to create and evaluate two tools: an IoT-enabled groundwater level monitoring system 

and machine learning for seasonal groundwater level prediction, as well as empirical evaluation of 

these tools. This solution is referred to as the Internet of Things for groundwater (IoT4GRW). 

Hence, the primary contribution of this research is to provide novel, affordable, automated, and 

efficient groundwater management tools to support the findings that groundwater is undermanaged 

[6], in many parts of the world, particularly Rwanda [18], due to the high cost of instrumentation 

and a lack of appropriate technical skills[3], [18]. It also contributes to a better understanding of 

methods for IoT-enabled environmental monitoring and forecasting solutions. 



6 

 

1.5 Methodology 

The research was carried out in four systematic phases. It began with a review of existing tools and 

methods for monitoring and analyzing groundwater responses to natural and anthropogenic effects in 

Africa and elsewhere. Groundwater variables as well as the potential influencing factors were 

identified. Different types of groundwater monitoring practices were considered, as well as their 

efficiency, cost and energy implications, simplicity, and limitations. In addition to that, the 

effectiveness, accuracy, interpretability, and resource requirements of the existing groundwater 

predictive analysis techniques were also evaluated. The preliminary literature review was followed 

by requirements gathering from groundwater engineers, managers, and other stakeholders. 

Furthermore, weather and water table data were collected, exploratory analyses were performed, and 

environmental data treatment methods were applied. 

In the second phase, machine learning predictive algorithm for groundwater was conceptualized, 

designed, developed and evaluated. This phase began with data preparation to create the dataset 

(combination of real-world weather and water level data) for each groundwater station, where 

different data treatment methods were employed. The dataset comprises temperature, precipitation, 

solar radiation, humidity, and groundwater level data from three groundwater stations in Rwanda’s 

Easter Province.  Pre-processing was also performed to ensure that the data is suitable for the 

selected models. Then, the best performing machine learning algorithms (KNN, RF, SVR, and 

ANN) were selected, iteratively trained, and compared. Following that, a baseline in model 

performance was established to provide a point of comparison when comparing these models to their 

hybrid versions. A hybrid and ensemble predictive modeling approaches were used to improve the 

efficiency and accuracy by reducing the models’ generalization errors on training set. Thereafter, all 

hybrid models were iteratively calibrated and tested with various hyper-parameters and lagged inputs 

until the best results are obtained. The models were evaluated using the MAE, NSE, RMSE, and R2 

performance metrics. All model development was done in an open source python environment, and 

all testing and comparisons were done with a python-based hydrology framework. Based on the 

comparison of these models, the model with the highest accuracy in seasonal (3 moths) groundwater 

level prediction was determined, chosen and applied to prediction.  

The third phase involved the design, development, and application of a low-cost, low-power IoT-

enabled system for continuous observation of groundwater levels. The literature and requirements 



7 

 

gathered from stakeholders influenced the system's design. The designed solution was realized using 

an open source development board and software tools. Stakeholders were also involved in the 

prototype's development and testing. The high resolution low-cost pressure sensors were redesigned, 

and the I2C protocol's transmission distance was improved to create an inexpensive submersible 

groundwater table depths probe. The sensors chosen are low-power, and the solar energy was used to 

provide the nodes with energy autonomy. The monitoring system includes a GIS-enabled web-

visualization portal for data sharing. The prototype was then deployed at the groundwater 

observatory station for field testing.  

The fourth phase included an evaluation of the efficacy, cost, power, and energy expenditure, as well 

as their implications for the applicability of the developed groundwater monitoring prototype.  

1.6 Rational for and Significance of the Research 

The present research is claimed to be significant in that it sought not only to address the lack of 

continuous, affordable, and effective groundwater management tools but it also offers in depths 

insights into the design, development, empirical analysis of WSN and ML models, as well as the 

adoption of LoRa technology in groundwater observation and improvement of I2C WSN protocol. 

The research is also consistent with Rwanda's water management policy (Enacted in 2010) and the 

United Nations Sustainable Development Goals (SDGs-2030). The outcomes could inform the 

actions that Rwanda's Ministry of natural resources may need to take to improve groundwater 

resource management. Moreover, the current research focuses on the development of both an 

affordable IoT-enabled groundwater level monitoring system and an open-source machine learning 

groundwater level predictive model in Rwanda (whereas many studies, for example, the studies 

cited above do not), so this study is expected to contribute to the literature on methods for efficiently 

developing, evaluating, and utilizing IoT and ML technologies in groundwater management at an 

affordable cost. 

Lastly, the Rwandan government intends to increase groundwater usage through irrigation 

expansion [11], while the Ministry of natural resources is working to increase data collection and 

interpretation to improve understanding of the available quantity of water resources [16]. Hence, the 

current research is both timely and important in terms of providing managers with appropriate tools 

that facilitate the provision of appropriate information to policymakers. 
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1.7 Context of the Research 

The current research was carried out in Rwanda's Eastern Province. This province's primary source 

of freshwater is groundwater, and it is prone to recurring droughts [12]. While it receives 600-700 

mm of annual rainfall, which is 25% less than the rest of the country [13], it also has a high rate of 

evaporation ranging from 1000 to 15000 mm. In this province, there are three groundwater 

observatory stations: Ruhuha, Mukarange, and Rugarama, as well as three weather stations: 

Nyagatare, Kawangire, and Ngoma. RWFA (which is under Rwanda's Ministry of Natural 

Resources) manages the groundwater stations, while MeteoRwanda manages the weather stations. 

RWFA installed stand-alone diver sensors and barometric sensors in December 2016, which are 

used to sample groundwater water column pressure and atmospheric pressure at 12-hour intervals. 

This information is gathered through seasonal (3-4 month) patrols in the field. MeteoRwanda 

provides weather data relevant to this study (air temperature, humidity, solar radiation, and 

precipitation). In current practice, groundwater data are not linked to climatic information, and only 

simple analysis is performed on groundwater data. 

Although our case study is in Rwanda's Easter Province, the WSN prototype was deployed in 

Tanzania (at the Bandamaji groundwater station) due to the COVID-19 quarantine, which prevented 

the researcher from accessing the original case study in Eastern Rwanda. Bandamaji station was 

chosen for two reasons: first, it is located in the North region of Zanzibar-Tanzania, which has 

higher groundwater consumption, particularly for rice cultivation [19], and second, it was the only 

properly secured area among the North region's groundwater stations during the research period. The 

station's round-the-clock security ensures the safety of the WSN's devices. 

1.8 Thesis Approach and Outline 

This thesis adapted its author’s published research papers. The first chapter provided the 

background and motivation for the research on IoT and ML technologies for groundwater 

management in Rwanda. It also describes the groundwater situation in Rwanda's Eastern Province, 

Rwanda's groundwater management strategic plan, the current groundwater monitoring practice in 

Rwanda, a statement of the problem, the objectives of the study, and the rationale for and 

significance of the study. The context of the study is also provided, and the chapter concludes with a 

thesis outline. 



9 

 

Chapter 2 examines the relevant literature on the status of groundwater resources in eastern Rwanda, 

groundwater management practices, emerging technologies, and research methodology approaches. 

Chapter 3 describes the design and implementation of a low-cost, low-power, energy-harvesting, 

Internet of Things-enabled groundwater monitoring system (achieved research objectives 1, 2 and 

3). Chapter 4 describes the machine learning hybrid KNN-RF approach for long-term forecasting of 

groundwater levels (achieved objectives 4 and 5). Chapter 5 focuses on an advanced machine 

learning prediction method that combines EEMD and a hybrid SVR-RF model. It adds two new 

groundwater monitoring stations to the groundwater prediction network and improved forecasting 

efficacy and accuracy (also achieved objectives 4 and 5). 

Chapter 6 concludes the thesis by providing a summary of the research outcomes and conclusions 

drawn from those findings discussed in Chapters 3, 4, and 5. This chapter discusses the limitations 

of the current study, the implications of the research findings, and recommendations and suggestions 

for future research in this field. 

Along the lines of the thesis outline, the following chapter provides a review of the literature that 

informed the current research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction  

This chapter reviews relevant literature from African and global contexts that inform groundwater 

management research through monitoring and forecasting using IoT and ML technologies. The 

following subheadings will be used to organize this review of related literature. 

2.2 Groundwater and its Significance in Life  

Groundwater is a common pool resource that is stored beneath the earth's surface. This limited 

resource is stored in aquifers, which are areas of permeable rocks. The boundary between water-

saturated and unsaturated ground is defined by the water table. Water is abundant beneath the water 

table in the rocks and soil [20]. Groundwater is critical to sustaining ecosystems and enabling human 

adaptation to climate variability and change because it is the world's largest distributed store of fresh 

water. Aquifers are the primary source of freshwater supplies on a global scale. Groundwater serves 

nearly half of the world's population and provides half of the water used in agriculture and food 

production. This resource is critical to development agendas such as the UN Sustainable 

Development Goals (SDGs) 2 and 6 to end hunger, achieve food security, and promote sustainable 

agriculture by 2030. In Africa, where rainfall and river discharge are among the most variable on the 

planet, groundwater is a critical source of freshwater [21]. Groundwater, as opposed to surface 

waters, provides a distributed, relatively low-cost, and climate-resilient source of freshwater to meet 

rapidly growing demand in Sub-Saharan Africa (SSA) associated with expanding access to safe 

water and improving food security through irrigation. The rate at which aquifers are depleted is 

alarming; Figure 2.1 depicts multiple water pumps installed in a single well, demonstrating the 

possibility of a water table overdraft in our case study. 
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Figure 2.1 Multiple water pumps installed in a community well. 

 

Groundwater, for example, supplies more than 75 % of Africa's freshwater supplies and 80% of 

Rwanda's water sources. To ensure the long-term viability of this resource in SSA, and particularly 

in Rwanda, frameworks for institutional coordination and stakeholder participation, information 

management programs, and capacity building are required [22], [23]. Groundwater resource is likely 

to become more strategic for global water and food security as more frequent and intense climate 

extremes (droughts and floods) increase variability in precipitation, soil moisture, and surface water 

[24]. However, over the last century, the use of this resource has also increased dramatically [15]. 

This implies that improved livelihoods and climate change adaptation will be much more difficult to 

achieve if available groundwater resources are not used effectively.  

The subheadings that follow provide in-depth reviews of the factors influencing groundwater 

hydrology as well as the methods used to address the aforementioned challenges.   

2.3 Climatic and Human Influence on Groundwater Variability 

It is widely acknowledged that there is a strong relationship between climate variability and 

groundwater quantity. According to UN-Water [23] and the Intergovernmental Panel on Climate 

Change (IPCC) [24], climate change has a direct impact on the groundwater cycle and, as a result, on 

the quantity and quality of groundwater resources available to meet human and environmental 
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demands. Over time, the wider scientific community has come to realize that single discipline 

studies cannot adequately answer management questions [25], prompting scientists to incorporate  

climatic factors into water table modeling. These scientific and societal efforts are primarily intended 

to characterize and comprehend the response of aquifers to the effects of weather and climate 

uncertainty as a result of global warming [26]–[28]. Effective water table assessment and projection 

are impossible without taking weather influences into account. Following that, the future risks to 

groundwater resources from global change are typically assessed by driving hydrological models 

with climate model outputs [22].  

More research [29][23][24] is confirming the noticeable effects of climate variability on droughts 

and aquifers. Studies indicate that there are strong spatial correlations among observation sites (in 

both data and model calculations), indicating the existence of a distinct relationship between large-

scale atmospheric circulation patterns and groundwater dynamics. Hora et al. [25] in India, Bowes et 

al. [30] in the United States, and Taylor et al. [21] in Sub-Saharan aquifers highlight significant links 

between climate stress and groundwater development in these continents. Hence, the availability of 

groundwater resources for drinking water may be influenced by climate change and other future 

developments. 

The relationship between hydrology and climatic conditions is referred to as hydro-climatology, 

which is a broad discipline concerned with understanding the workings of the hydrological cycle in 

the context of climate change. Significant progress in obtaining a satisfactory hydro-climatological 

understanding of groundwater variability remained to be made, particularly if hydro-climatological 

knowledge is to be fully integrated into water resource management and planning [27]. There are 

numerous potential links between climate change, extreme events, and disasters on one hand and 

groundwater fluctuations on the other [26]. Climate change's consequences are a growing source of 

concern for water managers. These resources are distributed globally due to the erratic influences of 

climate and physiographic structures [25]. Given the harsh realities of climate change, the hydro-

climatology information is needed in greater quantities and for longer periods of time than ever 

before [29]. A combination of in-situ groundwater level and meteorological observations can be used 

to provide early warning of agricultural and hydrological droughts [30]. This is especially important 

because climate change is expected to cause higher temperatures, more intense rainfall, and longer 

dry seasons in Rwanda [31].   
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Human activities, on the other hand, have a wide range of effects on groundwater systems and 

availability. Numerous studies [32]–[35], have found significant impacts of human activities, 

primarily irrigation and groundwater exploitation. The study in [36], suggests that human-caused 

impacts on groundwater availability have long-term consequences. Groundwater extraction can have 

an effect on groundwater levels, potentially affecting other water use, such as agriculture and 

groundwater-dependent ecosystems [28]. With that said, quantitative estimates of climate change's 

hydrologic effects are critical for understanding and resolving potential water resource problems 

associated with domestic water use, industry, power generation, agriculture, transportation, future 

water resource system planning and management, and environmental protection [24]. 

Because of the relationships between surface and groundwater systems, activities that alter surface 

stages have been shown to influence aquifers and groundwater levels. A recent study [37] discovered 

that groundwater behavior was influenced by river stages that were transferred to the aquifer.  

However, Doll et al. [35], revealed that human influence occurs on a global scale, resulting in altered 

aquifer yields, particularly in arid and semi-arid regions with intensive irrigation practices. 

2.4 Aquifer Management, Practices, Issues, and Constraints  

Groundwater management entails balancing resource exploitation (in terms of quantity, quality, and 

relevant links to other natural resources) with rising demand for water for broad economic 

development and livelihoods [38][1]. The UNESCO [7], defines groundwater management as the 

control of groundwater abstraction and quality while also addressing the effects of groundwater 

abstraction on ecosystems, surface waters, land subsidence, and other factors. In support of these 

definitions, Foster et al. [39], state that the primary goal of groundwater management is to develop 

groundwater resources on the basis of a policy plan, as well as to monitor and control the effects of 

abstraction on the aquifers. To provide further clarification on groundwater management, [7] asserts 

that controlling the location and quantity of aquifer water withdrawals is one of the most important 

aspects of groundwater management. Thus, effective groundwater management must prevent or at 

least reduce aquifer overdraft.  

The evaluation of groundwater issues and the implementation of management solutions necessitate 

the collection of hydrogeological data that are both 'baseline' and 'time-variant' in nature.  As we saw 

in the subsection 2.3, groundwater levels (hydraulic heads) fluctuate over time as a result of human 
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influence and changing climatic conditions. Monitoring groundwater abstraction and aquifer water 

levels provides critical information for groundwater resource management [39]. One of the most 

important tools for obtaining information needed for adequate decision-making about sound and 

sustainable development and protection of groundwater resources is well-organized and 

implemented groundwater monitoring. This viewpoint is shared in [40], who believes that 

monitoring and assessment are critical tools for long-term management of groundwater resources. 

Monitoring is the collecting of time-varying data in its broadest sense, while groundwater 

monitoring is the collection, analysis, and storage of a variety of data on a regular basis in 

accordance with specific circumstances and aims.   

Long-term water-level monitoring during periods of significant land-use change is specifically 

important for aquifer protection. Therefore, accurate ground-water level data must be collected over 

sufficient time periods to allow for proper development, management, and protection of the Nation's 

ground-water resources. Meteorological data, such as precipitation, aid in the interpretation of 

changes in water levels in observation wells. Meteorological and stream-flow data are frequently 

available from other sources; however, if not, some monitoring of variables such as stream-flow and 

precipitation may be required to supplement water-level data, particularly in remote areas or small 

watersheds. The frequency with which water levels are measured is one of the most important 

aspects of a water level monitoring program. Water-level fluctuations caused by changes in climatic 

conditions and water-level trends caused by changes in land-use or water-management practices are 

more likely to be "sampled" when data is collected in a systematic, long-term manner. The 

availability of long-term water-level records improves the ability to forecast future water levels 

significantly [41]. Water-level hydrographs, which are graphical plots that show changes in water 

levels over time, are an especially useful type of data reporting. Such hydrographs show the range of 

water-level fluctuations, seasonal water-level variations, and the cumulative effects of short-term 

and long-term hydrologic stresses [40]. This kind of information has the potential to assist water 

managers in meeting the recommendations outlined in the Brandtland commission's report [42], 

which focuses on environmental and effective natural resource utilization and preservation. 

2.4.1 Monitoring Changes in Groundwater Table Depths 

Groundwater resources are becoming increasingly important in supplying freshwater. This resource 

is an important source of freshwater throughout the tropics, providing access to safe water for 
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domestic, agricultural, and industrial purposes near the point of demand [43]. Water table monitoring 

is critical for guiding evidence-based decision making required for long-term water resource 

management and governance [44]. Levett et al. [45], argue that, environmental water monitoring 

should be regarded as  a fundamental component of environmental science and policy. The 

continuous observations of groundwater tables under growing demands and climatic stressors has 

received the interest of scientists all over the world due to its importance to human, the environment, 

and the economy. According to Graham [46], groundwater level time series can also be thought of as 

the sum of the net groundwater recharge-discharge. This implies that time series data represents the 

net amount of available water in the aquifer. 

Satellite has been one of the most used methods for groundwater observation over the last decades. 

However, according to a number of researchers, most satellite products are still too coarse for water 

management purposes, making precipitation downscaling a high-risk activity [47]. The recent 

advancement in ground-based water resource observation using wireless sensor networks has 

revolutionized the way this resource is managed. It reduces the cost of monitoring while improving 

the spatial and temporal coverage of monitoring networks, as well as the overall efficiency of the 

process. Although the Internet of Things has seen extensive applications in surface water hydrology, 

the literature only reports on a small number of IoT applications for groundwater management. To 

the best of the author’s knowledge, there are two studies that have used wireless sensors for 

groundwater monitoring. One of these applications is discussed in [48], where a water table probe 

was created using low-cost sensor. Authors suggested that data logger has high accuracy and can be 

applied to monitoring of changes in water table depths in the well. However, a short I2C channel 

was used and no telemetries for data transfer are reported, only data saving on SD memory card is 

described. A study reported in [49], have also used low-cost sensors to data logger that records water 

flow in a flooded cave and drip rate of water in the cave. Their solution is compact and well 

designed, but it only saves data on memory card. None of these studies have used long-range 

communication to relay data to the remote receiving node or server. The paucity of deployment of 

IoT-enabled aquifer monitoring networks is primarily due to the high cost of underwater data loggers 

and their telemetry [3]. As a result, there has been a scarcity of long-term observations of changes in 

groundwater storage in low-income regions, widening the knowledge gap in groundwater hydrology. 
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As stated in the Subsection (2.2), groundwater, as opposed to surface waters, provides a distributed 

source of freshwater to meet the rapidly increasing demand in Sub-Saharan Africa (SSA) associated 

with expanding access to safe water and improving food security through irrigation [21], there is an 

urgent need to improve funding and technical skills in order to provide long-term monitoring of 

these resources [50], [51]. Automatic groundwater level monitoring using under-water pressure 

transducer sensors will provide critical data for drought monitoring and assessment.  

2.4.2 The Importance of Long-term Groundwater Level Data and Information 

Sharing 

Hydrology as a geoscience is built on observations and data from long-term experimental 

watersheds. They allow us to benchmark process understanding, observe trends and natural cycles, 

and are required for testing predictive models. Long-term experimental watersheds are also places 

where new measurement technologies are developed. These studies provide critical evidence for 

understanding and managing the provision of clean water supplies, predicting and mitigating the 

effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also 

demonstrate how to manage land and water in an integrated, sustainable manner that reduces 

environmental and economic costs [52]. As the time series lengthens, this provides unparalleled 

insights into the sustainability of groundwater. Hence, the long-term groundwater data continue to 

have a fundamental value that grows over time.  

The importance of persistent groundwater data collection and preservation has been emphasized for 

a long time. Nearly fifty-five years ago, two legendary figures in hydrology, Hewlett et al. [53] and 

Leopold [54], highlighted the significance of long-term data in managing current and future water 

resources. According to Hewlett et al. [53], the observational data collected from long-term 

experimental watersheds distributed around the world are the foundations of scientific hydrology and 

the evidence base for sustainable water management. Many basic data acquisition and research 

programs were established in response to the first International hydrological decade (1965–1974), 

which aimed to expand quantitative process-based understanding of the hydrological cycle [55].  

Data streams at long-term sites enable us to identify and quantify the relationships between rainfall, 

soil moisture, groundwater, and runoff, facilitating understanding of flood and drought risk in 

various types of landscapes [52], [56]. However, as time series lengthen, the value and scientific 

leverage of these sites become equally invaluable in providing critical long-term data that provides 
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context for more focused research driven by hypothesis testing [57]. Long-term monitoring resulting 

from curiosity-driven research is critical for policymakers and society, serving as the foundation for 

rational decision making [45]. In most cases, the lack of a mechanisms to commit long-term funding 

makes long-term aquifers monitoring difficult for policymakers [52]. 

Several researchers have indicated that long-term data are more important than ever because they 

allow us to see trends and study the effects of various types of human and environmental induced 

groundwater changes, especially in light of the uncertain effects of projected climate change and 

increasing development activities [22], [52]. These long-term records will, however, play an 

important role in developing a better understanding of the hydrogeological and climatic conditions 

that control access and sustain well yields, informing where, when, and how groundwater 

withdrawals can contribute sustainably to building resilience and alleviating poverty, as represented 

by the United Nations SDGs [21]. They are also crucial for calibrating groundwater models, and 

they serve as the foundation for accurate simulations of future abstraction scenarios [39]. In general, 

these data are more important than ever before, as we work to preserve limited resources for current 

and future generations [52]. Despite the benefits and importance of long-term data for scientists and 

water managers, there is a lack of data and information sharing, particularly in low-income countries 

[7]. A large body of literature demonstrates that, even in places where groundwater data is 

continuously collected, it is rarely interpreted and shared with relevant stakeholders. 

A thorough review on the role of IoT in continuous data collection from remote and difficult-to-

access locations is presented in the subsection 2.5.  

2.5 Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) 

Local networks, which belong to the network layer and typically include nodes equipped with 

sensors and/or actuators, are generally organized as Wireless Sensor Networks (WSNs), which are 

networks made up of spatially distributed sensing nodes that are frequently used to monitor and 

record environmental conditions. Data is typically collected via a (possibly multi-hop) route to a 

concentrator, also known as a "sink" or "gateway," which stores and/or forwards it outside the WSN. 

To be thorough, the sink is in charge of connecting the WSN to the outside world via a 

communication protocol that, in general, can differ from the protocol used to connect sensor nodes. 

In fact, the devices used in WSNs typically operate with limited energy for sensing, processing, and 
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communication tasks [58]–[60], igniting a cross-layer design approach that typically necessitates the 

joint consideration of distributed signal or data processing, medium access control, and 

communication protocols. These WSNs constitute the majority of IoT platforms. According to 

researchers [61]–[63], the IoT is a novel paradigm that is rapidly gaining traction in the context of 

modern wireless telecommunications. In broad terms, the IoT is a constantly growing collection of 

linked devices that capture and share data. The International Telecommunication Union (ITU) [64], 

defines IoT as “a global infrastructure for the information society, enabling advanced services by 

interconnecting (physical and virtual) things based on existing and evolving interoperable 

information and communication technologies”. These definitions indicate that IoT is a system of 

interconnected, internet-connected objects capable of collecting and transmitting data over a wireless 

network with little or no human intervention. Wireless sensors make it possible for these objects to 

communicate with one another. Indeed, information exchange between sensor nodes and the rest of 

the IoT platform components is frequently accomplished by combining long-range (e.g., cellular 

LTE, SigFox, NB-IoT, and LoRaWAN) and low/medium-range (e.g., Z-Wave, ZigBee, Wi-Fi, NFC, 

RFID, Bluetooth Low Energy (BLE) or IEEE 802.11) communication technologies. Because the IoT 

is heavily reliant on WSN, it is necessary to have technical knowledge of WSN and their protocols, 

as well as a thorough understanding of the IoT ecosystem, when designing a reliable IoT solution 

[65]. While there are several models for IoT ecosystems [66]–[69], some of them overlook critical 

aspects of this technology in terms of environmental and hydrology monitoring. Figure 2.2 depicts 

an example of an ecosystem model that provides a high-level overview of IoT solutions [70].  
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Figure 2.2 The layout of a four-stage IoT solutions architecture [70]. 

  

Among the IoT protocols listed above, are those specifically designed to support low-bandwidth, 

battery-powered devices. These are referred to as a set of low-power wireless wide area network 

(LPWAN) technologies. Many scientists are interested in an open source, long-range (LoRa) 

protocol within this family of protocols. LoRa is a wireless modulation scheme derived from Chirp 

Spread Spectrum (CSS) technology that operates at the physical network layer and encodes 

information on radio waves using chirp pulses. This scheme is best suited for applications that 

require small chunks of data to be transmitted at low bit rates [71]–[75]. Working at up to 2.4 GHz 

on license-free sub-gigahertz bands, it also supports industrial, scientific, and medical (ISM) 

frequencies (e.g., 868MHz, 433MHz, and 915MHz). The Low Power Wide Area Network 

(LoRaWAN) is built on top of LoRa modulation at a media access control (MAC) layer. The LoRa 

Alliance [76], released the specification, which depicts the LoRaWAN network protocol, on June 16, 

2015. This standard enables seamless interoperability among smart things without the need for 

complex local installations, allowing users, developers, and businesses to implement the IoT with 

greater freedom. A 6LoWPAN is an improved version of the LPWAN designed by the Internet 

Engineering Task Force (IETF) to support IPv6 addressing. However, because of its complexity and 

high overhead, it was not applicable to constrained devices [77]. 
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When choosing the right LPWAN technology for an IoT application, several factors must be 

considered, including quality of service, battery life, latency, scalability, payload length, coverage, 

range, deployment, and cost. The comparisons of short, medium, and long-range, wireless protocols 

with their respective bandwidth capacities are depicted in the Figure 2.3.   

  

Figure 2.3 The comparison of data rate and range capacity of LPWAN radio technologies based on positioning [72]. 

 

Similarly, when considering the application of large-scale IoT deployment, it is also critical to 

understand the differences between the various schemes in an LPWAN family in order to make an 

informed choice of the appropriate technology. Table 2.1 summarizes the key technical features of 

various low-power wireless communication schemes.  

Table 2.1 Comparisons of LPWAN technologies for large-scale IoT implementation 

 NB-IoT LoRaWAN Sigfox LTE-M 

End-device cost $12 $2.000-$5.210 $2.080 $20-30 

Maximum payload 1600 

bytes 

242 bytes 12 bytes  256 bytes 

Range 10 km 

(rural), 1 

km 

(urban) 

5 km (rural), 

20 km (urban) 

10 km (rural), 

40 km (urban) 

1 km (urban), 10 km 

(rural) 
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Bandwidth 200 kHz 125 kHz and 

500 kHz 

100 Hz 1.400 MHz-500 MHz 

Maximum data 

rate 

200 kbps 50 kbps 100 bps 1 Mbps both in uplink & 

downlink 

Latency 1.600 s -

10 s 

<400 ms [78] 30 s 10 ms -15 ms 

Transmission 

power 

46 dBm 2/20 dBm 14.500 dBm 20/23 dBm 

Allows private 

network 

No Yes No No 

Battery life Good  Long Long [79] Low 

 

According to the data in Figure 2.2 and Table 2.1, each of these schemes has advantages and 

disadvantages over the others. Sigfox and LoRaWAN are similar in many ways, but LoRaWAN has 

many advantages over other techniques. The ones that stand out are its ability to support millions of 

messages per gateway, multitenant operability, and security embedded end-to-end AES-128 for both 

network and application [72], [76]. While the NB-IoT has advantages in terms of latency and quality 

of service, it is difficult to implement firmware-update-over-the-air (FUOTA) or file transfers, has 

limited support for node mobility, its downlink is very limited, and its services are prohibitively 

expensive [66], [67].  Subsection 2.5.1 provides an overview of LoRa technology, including cost and 

energy implications. 

2.5.1 Primer on LoRa Radio Technology 

As described in Section 2.5, LoRa operates at the physical layer and consumes less energy. This 

scheme also uses end-to-end encryption for trusted network security. The basic LoRaWAN network 

architecture is star-of-stars, in which end-devices communicate with gateways via LoRaWAN. A 

network server is normally connected to a higher throughput network (WiFi, Ethernet, 3G or 4G) at 

the far end of the LoRaWAN and receives raw LoRaWAN frames from the end devices via the 

gateway. The FEC, bandwidth (BW), and spread factor (SP) are the three most important LoRa 

parameters to configure [80]. These parameters have a significant impact on network performance, 

with BW having the most sway. Normally, one or more radio transceivers connect the two sides to 

the field nodes and the gateway. RFM95W is a widely used, low-power LoRa enabling transceiver. 

It consumes little current and is resistant to interference [81]. Table 2.2 presents the typical 

RFM95W LoRa modem specifications. One or more radio transceivers are typically used to connect 
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the two sides of the field nodes and the gateway. RFM95W based LoRa transceivers are not only 

recommended for its low power, but also for its impervious to interference.  

Table 2.2 RFM95W modem specification 

Parameter  Description 

Modulation type LoRa TM, GMSK, 

FSK, OOK, GFSK, 

and MSK 

 

Link Budget 168 dB (Maximum) 

Low RX Current 10.300 mA, 200 nA 

for register retention 

 

RF output vs Input Power  +20 dB -100mW 

(Constant RF) 
 

Packet appliance 256 bytes (Maximum) 

with CRC 

 

Synthesizer 61Hz 

Dynamic Range RSSI 127dB 

  

 

According to Table 2.2, the RFM95 modem provides a consistent amount of power to the receiving 

node and can tolerate temporary attenuation. 

Subsection 2.5.2 discussed open-source, low-power, and low-cost IoT technologies.  

2.5.2 Low-power, Low-cost WSNs and the Open Designs 

WSN dates back to the 1950s, when the United States (USA) first introduced this technology for 

military purposes. Soon after the 1980s, governments and universities began to use WSNs in a 

variety of applications, including forest fire detection, weather stations, and many others [58],[60]. 

Sensor cost has been an impediment to rapid adoption in many applications over the years [82]. 

Recent advances in electronics miniaturization and communication models have allowed for the 

creation of low-cost, low-power micro-scale sensors, microcontroller boards, and telemetries. The 

sharing of open designs and software has also contributed to the growth of low-cost sensor networks 

(LCSNs)  [83], [84]. In this regard, there are various open-source IoT prototyping and development 

boards available that support various wireless connectivity, processing, and memory capabilities. 

Common boards include the ESP32, ESP8266, Arduino family (Uno, Nano, Mini, and Mega), 
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Raspberry Pi, Pycom Fipy, and others. This advancement has resulted in a high availability of spatial 

WSN sensing capacity at a fraction of the cost of conventional instruments. Most importantly, this 

technology also allows researchers and end-users to customize the LCSNs based on their needs [3]. 

Studies [3], [49], [83], [84] on the applicability of affordable sensors have shown that LCSNs have 

large potential for improving in situ environmental and hydrology observation. Despite the growth of 

LCSNs, there have been few studies using this technology on water resources [76], particularly in 

developing regions, and even fewer on groundwater hydrology globally [3], [84]. Therefore, there is 

a need to expand the use of LCSN to allow for a broader collection of groundwater data, particularly 

in Sub-Saharan Africa aquifers. 

2.5.3 Powering and Sustaining the WSNs 

To enable long-term operation, WSN nodes must be self-sufficient. These nodes are typically 

deployed in remote and difficult-to-access locations that require a reliable, long-lasting power 

source. Using replaceable batteries when they are depleted is not only expensive, but also difficult. 

Therefore, relying solely on battery power may not be able to sustain the network for an extended 

period of time [85]. This is where alternative energy generation methods are required. The available 

ambient energy can be harvested and stored in rechargeable batteries (e.g., lithium polymer) 

depending on the environment where the nodes have been deployed and the type of energy 

harvester(s). These renewable energy sources include thermal, light, chemical, kinetic, and 

electromagnetic energy [86]. These energies are converted to electricity using harvesting electronic 

circuitry. Among other sources, light in the form of solar energy harvested by photovoltaic cells is 

the most efficient [87]. The components for ambient energy harvesting must be chosen carefully in 

this quest [88]. In fact, the capacity of harvesters and reachable battery is chosen based on the 

dynamics of the load as influenced by WSN operations (see Figure 2.4).  



25 

 

 

Figure 2.4 An illustration design consideration for an energy harvesting system [86]. 

 

Energy harvesters must be small enough to fit into the available space while also providing adequate 

ventilation. A major aspect for an energy-efficient system is the availability of a sufficient amount of 

energy source at the deployment region [87]. Additionally, and perhaps most importantly, the 

production should be energy and cost efficient. 

2.5.4 Use of the Internet of Things for Groundwater Table Monitoring 

The Internet of Things (IoT) has gained traction in environmental research in recent years, and 

ground-based aquifer monitoring is far more recommended than remote sensing. Hence, the adoption 

of low-cost instrumentation in wireless sensor technologies has greater potential in this context. 

As previously stated, the application of WSN and IoT to surface water management have received a 

lot of attention [89]–[92] [93] but less attention has been paid to its application in groundwater 

resources [94] [55]. Previous research has revealed a scarcity of low-cost groundwater sensing 

deployments in both developed and developing countries [34], and we review these findings here. 

Anumalla et al. [95] presented one of the earliest studies in this field, in which pressure sensors and 

field programmable arrays were used to monitor the levels of ground-water tables in Western 

Nebraska aquifers in the United States. To relay data from a remote field to the data processing unit, 

the authors used a 2.4 GPRS/GSM communication scheme. The information gathered was 

disseminated through a web application and text messages. The authors made a significant 

breakthrough in water table monitoring, but their system relies on expensive, energy-intensive 
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devices and network protocols. Calderwood et al. [84], used cellular network telemetry to develop an 

open-source, low-cost WSN for real-time groundwater management. A proprietary data collection 

unit (Solinst kit) and an open-source data handling and visualization web application comprise the 

system. Their findings appear promising; however, the proprietary logger and telemetry used may 

limit the system's application in low-income areas due to its higher cost. 

In addition, Chan et al. [48], proposed a groundwater observatory model that includes a low-cost 

probe built with low-cost pressure sensors (NXP MPX5010DP and MS5803-02ba) to measure water 

table depths and an SD memory card for data storage. The submersible sensor is housed in a water-

resistant (aluminum tube) enclosure, while a common logger in a separate open-to-air enclosure 

samples atmospheric pressure. The authors established in that study that the redesigned sensor 

performed better in terms of accuracy, which was closely related to a commercial version. Their 

approach is sound, but the lack of telemetry and the use of primary batteries limit the logger's life 

span, making it unsuitable for water table monitoring in remote areas. Furthermore, Beddows et al. 

[49], propose a data logger for measuring cave water flow and drip rate. The logger is powered by 

three alkaline AA batteries and features a real-time clock, SD memory card low-cost sensors, and is 

built on the Arduino platform. This system, however, only stores data on SD memory cards and 

depends on primary batteries, necessitating field visits to collect data and replace batteries, making it 

unsuitable for aquifer management.  

Rahman et al. [2], recently presented an architecture for water resource management that 

incorporates artificial intelligence and the internet of things. Their smart system monitors water 

usage using a Raspberry Pi-based platform and low-cost sensors. However, the system is only 

intended for water management at the end-user level, not aquifer management, and it employs the 

ZigBee protocol, which covers a relatively short distance (up to 400 meters) outdoors. Moreover, no 

information on energy expenditure, overall cost, or system deployment approach is provided.  

The analysis of the works on the subject under discussion is summarized in Table 2.3. 

Table 2.3 Analysis of the selected closely related studies for comparison 

 
[84] [49] [95] [96] 

 

Sensor type 

 

Solinst 

Leveloggers 

 

MS5803-02BA 

and  

NXP 

 

Unidata pressure 

sensor  

 

Not specified 
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MPX5010DP 

 

Processing 

board  

 

Solinst in-built 

board 

 

Arduino Pro 

Mini 

 or Nano 

 

PIC12F675 

microcontroller 

on Altera Nios 

FPGA board 

 

 

Not specified 

Network 

Technologies 

GPRS/GSM* Not specified 802.11 based 

WLAN 

GRPRS/GSM* 

     

Power 

consumption 

analysis 

 

Not specified Details not  

Provided 

Details not 

provided 

Not reported 

Energy 

harvesting 

 

Not reported Not reported Not reported Not included 

 

 

 

Cost analysis 

 

 

Detailed 

reported 

 

 

Reported 

 

 

Reported 

 

 

Reported 

GSM= Global System for Mobile Communications, GPRS= General Packets Radio Services. 

According to Table 2.3, most of the analyzed studies used commercial pressure transducers and did 

not provide information on the overall cost, energy, and power analysis of the solutions reported in 

these studies. It is also evident that low-cost, long-distance communication technologies (e.g., LoRa) 

were not used. Instead, high-power, high-cost networks were used.  

2.6 Artificial Intelligence and Its Role in Hydrology  

According to the field's founder, McCarthy [97], artificial intelligence (AI) is the art and science of 

creating intelligent machines, particularly clever computer programs. It is similar to using computers 

to study human intelligence, but AI does not have to be restricted to physiologically observable 

ways. AI is divided into several sub-fields, including Machine Learning (ML), Robotics (RBT), 

Computer Vision (CV), Natural Language Processing (NLP), and Artificial Neural Networks 

(ANN). These sub-fields enable AI to be used in a wide range of disciplines, including health, 

industry, entertainment, hydrology, and many others. The present research focuses primarily on the 

ML aspect of AI. Subsection 2.6.1 describes ML and related frameworks as part of AI technology. 

2.6.1 Machine Learning and Appropriate Frameworks and Tools 

Machine learning and Artificial Intelligence complement each other, and the next breakthrough will 

come not only from pushing each of them further, but also from combining them [98]. In recent 

years, AI, specifically machine learning (ML), has grown rapidly in the context of data analysis and 
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computing, allowing applications to function intelligently [99]. ML is widely regarded as one of the 

most popular latest technologies in the fourth industrial revolution because it allows systems to learn 

and improve based on experience without being explicitly programmed (4IR or Industry 4.0). Thus, 

ML algorithms are critical for intelligently analyzing hydrology data and developing the 

corresponding real-world applications. These algorithms are typically classified into four categories: 

supervised, unsupervised, semi-supervised, and reinforcement learning [99].  Supervised learning 

employs labeled training data, unsupervised learning employs unlabeled training data, semi-

supervised learning employs both unlabeled and labeled data, and reinforcement learning employs 

an environmental-driven approach. Overall, the effectiveness and efficiency of a machine learning 

solution are determined by the nature and characteristics of the data, as well as the performance of 

the learning algorithms [100]. 

There are numerous ML tools and frameworks that support various programming languages such as 

C/C++, Python, R, Java, JavaScript, and others, with Python, JavaScript, and R being the most 

popular open-source languages. In this list, Python has become the most widely used for ML 

development and applications. TensorFlow, Scikit-Learn, Theano, Keras, and WEKA are examples 

of common frameworks. Scikit-Learn is a well-known Python-based framework that has an 

ensemble feature for combining predictions from multiple supervised models, works without special 

hardware support, and has a constantly updated and comprehensive set of algorithms and 

implementations. Furthermore, it is a part of many ecosystems; it is closely related to statistical and 

scientific Python packages [101]. A large number of libraries and visualization tools for dealing with 

hydrology issues, such as CFM, OpenHydrology, PyQGIS, and Hydrostat, are available for free and 

open sharing. 

2.6.2 Machine Learning as Water Management Tool  

Given the widespread use of ML in hydrological modeling over the last several decades, it is 

currently frequently employed to describe a variety of hydrological processes [102]. The hydrology 

community may use this technology to fully leverage the power of massive volumes of data in 

diverse hydrology subdomains using machine learning [47]. In the subject of hydrology, machine 

learning has been utilized to better grasp hydrological complexities [102], such as runoff modeling 

and water quality forecasts. This interpreted data is critical for hydrological management and will be 
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useful to water managers and policymakers. Several works from various application scenarios have 

demonstrated the use of ML to support water decisions [47], [103]–[105]. 

2.6.3 Machine Learning Based Predictive Modeling and its Role in Groundwater 

Analysis 

The scientific community agrees that machine learning algorithms, when supplemented with data 

from in-field monitoring nodes, can improve models and forecasts of water availability, droughts, 

and other water-related events. Predictive modeling, according to Shmueli [106], is the practice of 

using a statistical model or data mining method to forecast new or future observations on data. As 

indicated by Cranmer et al. [107], predictive models try to provide a probabilistic model that fits 

testing data that was not utilized to estimate the model's parameters well. Predictive analytics is a 

science that can produce future insights with high accuracy. This analytics makes use of a wide 

range of methods and technologies, including big data, data mining, statistical modeling, machine 

learning, and various mathematical processes. Organizations use predictive analytics to sift through 

current and historical data to detect trends and forecast events and conditions that should occur at a 

specific time based on parameters supplied. Models can be developed, for example, to discover 

relationships between climatic parameters and changes in water table depths. Hydrologic process 

modeling is a critical tool for the efficient management of water resource systems [108]. Although 

studies have shown that extensive training of models with large amounts of prior data is the reason 

for higher predictive accuracy [109], it is strongly encouraged to broaden ML application in 

predicting the hydrologic cycle even in areas where data is scarce [47]. This has not been the case in 

Sub-Saharan Africa, where the use of ML in hydrology is still in its early stages [110][21]. The 

frequently used ML based in groundwater hydrology are random forest (RF), support vector 

regression (SVR), artificial neural network (ANN), and k-nearest neighbor (KNN). In addition to 

these methods, some hybrid approaches have been devised in pursuit of enhancing the efficiency of 

predictive accuracy. In groundwater hydrology, the most commonly used ML-based models are 

random forest (RF) [111]–[113], support vector machine (SVR) [114]–[117], artificial neural 

network (ANN) [103], [118]–[120], and k-nearest neighbor (KNN) [121]. In addition to these 

methods, some hybrid approaches have been developed in the pursuit of improving predictive 

accuracy efficiency [122]–[125]. These ML methods are calibrated using appropriately prepared 

historical samples before being applied to prediction, and then tested using unseen sub-samples from 

the same distribution as the training sample. Data preparation entails processes such as removing 
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unrealistic data points, scaling data to the appropriate range, and dividing the sample into training, 

validation, and testing sets. Most of the time, the calibration set is greater than twice the sum of the 

other subsets. These common ML techniques are represented mathematically and described in the 

following subheadings. 

2.6.3.1 K-Nearest Neighbor 

K-Nearest Neighbor is a simple and robust method for regression and classification. The KNN 

method can estimate unknown data points based on their distance from known data points (training 

sample) [126][127]. While attained observations are incomplete and noisy, the KNN technique is 

one of the best methods for ML-based forecasting [128], [129]. Moreover, using this method, the 

most significant data points can be identified from noisy samples. For continuous data, voting is 

done based on the distance measured between data points using either Minkowski, Euclidean, 

Chebyshev, or Manhattan metrics. Suppose, we have two sets 𝑋, and 𝑌, each of them has 𝑡 number 

of items, such that 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑡), and 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑡) so long as (𝑗 = 1,2,3, . . . , 𝑡). Then, 

distance between the desired data point and nearby points can be calculated using the 

aforementioned metrics. Distance between the desired point to the closest points is then defined as: 

𝐷̂(𝑋, 𝑌) = ∑𝑡
𝑗=1 [(|𝑥𝑗 − 𝑦𝑗|𝑟)]1/𝑟,                                         (2.1) 

where, 𝑟 is a positive real number, and 𝐷̂ is the calculated distance. 

To anticipate the variations in water table depths, we perform the following steps:   

1. Use Equation 2.1 to calculate the distance between 

a new sample and each of the   

adjacent points.  

     2.  Sort all values calculated in step 1, by increasing order.  

     3.  Utilize the greedy search technique to determine the optimal value of K, based    

          on RMSE.  

     4.  Enumerate an inverse distance weighted mean using K neighboring examples.  

     5.  Return average as the approximated value.  

In the above scheme, K is a user-configurable parameter that represents the number of contiguous 

features to be included in the calculation of average votes. Then, prediction of variations in 

groundwater levels is obtained as the average weighted distance between samples. 
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2.6.3.2 Artificial Neural Network 

The artificial neural network is a combination of multiple interconnected neurons that learn cardinal 

relationships in a set of data in the same way as the human brain operates [120], [130], [131] . 

Interconnected neurons make an input layer, one or more hidden layers, and an output layer. As 

input data are fed through the input layer, neurons in the hidden layer(s) compute the output using 

connection weights and bias. One of the two stages in which ANNs are used is in the training phase. 

In this phase, a training algorithm such as conjugate gradient momentum, Levenberg–Marqardt, 

backpropagation, Adam, gradient-descent, or Bayesian regularization is selected and the suitable 

connection weights are determined. The feed-forward network was trained using the back-

propagation method to avoid an over-fitting issue. Another stage is the real application of the trained 

neural network. The estimated value(s) is then obtained as: 

𝑌𝑒 = 𝑓 ∑𝑘
𝑗=1 (𝑥𝑖𝑤𝑖𝑗 + 𝑏),             (2.2) 

 

where xi is the input examples, Ye is the approximated output, b is bias term, f is an activation 

function, and 𝑤𝑖 is the weight of the vertices. In a three-layered multilayer perceptron network, the 

transformation of the weighted inputs is accomplished using a rectifier linear unit (ReLU), which is 

defined as: 

     𝑥𝑟 = max(0, 𝑥𝑖),                                             (2.3) 

𝑥𝑟 symbolizes the transformed input passing in the hidden layer, 𝑥𝑖 is the raw input. All 𝑥𝑖 values 

greater than zero are mapped to their respective y-values, while all 𝑥𝑖 smaller than zero are assigned 

to zero. This makes ReLU computational modest and be able to efficiently handle negative inputs, 

and also offers smoother optimization [132]. 

2.6.3.3 Support Vector Machine 

The support vector machine for regression problems is termed as a support vector regression (SVR). 

SVRs are supervised learning techniques introduced by Cortes and Vapnik [133]. These are 

powerful methods that utilize structural risk minimization to obtain optimal solutions [133], [134]. 

SVR accomplishes risk minimization measures using a set of several input vectors while conducting 

an estimation of non-linear targets through regression processes [134][135]. Based on the 

assumption that, there is a relationship between the dependent variable y and independent variables 
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(X1, X2, X3,…,Xt), the SVR model estimates a function f(x), which determines the target values yi 

plus the admissible error ϵ. In an SVR model, data processing is conducted in a hyperplane and it 

starts as a linear transformation of the time-series. The linear representation of an SVR algebraic 

function is given by: 

𝐹 = 〈𝑤, 𝑥〉 + 𝑏,                                                             (2.4) 

            𝑌 = 𝑓(𝑥) + 𝜖,                                                                (2.5) 

where 𝑏𝜖𝐑, 𝑥, 𝑤𝜖𝑥, and 〈𝑤. 𝑥〉 are the bias, inputs signals, weight vector, and the dot product 

between 𝑥 and 𝑤 respectively. Then to minimize the norm ∥ 𝑤 ∥2= 〈𝑤. 𝑥〉 we need to find smallest 

possible value of 𝑤 as: 

                         𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
∥ 𝑤 ∥2,                                                            (2.6) 

subject to: 

〈𝑤, 𝑥〉 + 𝑏 − 𝑌𝑖 ≤ 𝜖; 𝑌𝑖 − 〈𝑤, 𝑥〉 − 𝑏 ≤ 𝜖; 𝜖 ≥ 0; 𝑖 = 1,2, . . . , 𝑡           (2.7) 

As the primary goal is to get a function f(x) that can be used to calculate a set of observed 𝑥𝑖 and 

estimated 𝑦𝑖 values with the level of accuracy bounded by 𝜖, this is realized by minimizing a 

regularized risk function in (Equation (2.6)) with constraints stipulated in inequalities given below 

(Equation (2.7)). Two relaxed variables (𝜉 , 𝜉∗) are incorporated in (Equation (2.8)) to allow for 

some error tolerance.  

1

2
∥ 𝑤 ∥2+ 𝐶(∑𝑡

𝑖=1 (𝜉 + 𝜉∗)),                                          (2.8) 

subject to:  

〈𝑤, 𝑥〉 + 𝑏 − 𝑌𝑖 ≤ 𝜖 + 𝜉∗; 𝑌𝑖 − 〈𝑤, 𝑥〉 − 𝑏 ≤ 𝜖 + 𝜉; 𝜉∗ + 𝜉 ≥ 0; 𝑖 = 1,2, . . . , 𝑡.        (2.9) 

where 𝑡 is the total number of model input features, and C is a user-configurable parameter that 

manages the influence of each supporting vector in generalization and stability of the SVR model. 

Ultimately, Eq.2.9 can be reformulated to: 

𝐹(𝑥, 𝛼𝑖, 𝛼𝑖
∗) = ∑𝑡

𝑖=1 (𝛼𝑖 − 𝛼𝑖
∗)𝑘〈𝑥, 𝑥𝑖〉 + 𝑏                                          (2.10) 

where 𝑘〈𝑥, 𝑥𝑖〉 is the kernel, and αi,αi
∗ are Lagrangian multipliers. Before applying SVR in data 

processing, the appropriate kernel and support vectors should be determined. The SVR kernel 
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provides mapping of the non-linear features in a high dimensional space while converting it into a 

normal linear format. Thus, SVR suits well for complex interrelationship among features in 

environmental modeling [136]. There are several types of kernels, such as polynomial, multi-layer 

perceptron, exponential, and Gaussian radial basis function. Radial basis essence has shown a 

commended performance in hydrologic studies [135][137]. The exponential radial bias function is 

given by: 

𝑘(𝑥𝑖, 𝑥) = exp(−∥ (𝑥𝑖 − 𝑥𝑡) ∥2) ÷ 2𝜎2,                                   (2.11) 

2.6.3.4 Random Forest 

Based on decision trees with the application of bootstrap aggregation, random forests (RF) for 

regression problems and classification were introduced by Breiman [138]. A forest of diverse trees is 

developed using randomly chosen features selected from random subsets of the original training 

data. As a large number of trees is produced, classification results are obtained from the popular 

class, while in regression problems, the result is computed as the average value obtained from all the 

individual regression trees [139][140]. In the current study, we focus on the regression type of RF. A 

forest may contain several trees as specified by the user. Suppose the number of trees in the forest is 

denoted by M. The random forest method works in the following manner: 

1. Randomly fetch different subsets xi from a given dataset X 

2. Use sampled data to create M decision trees. 

3. Enumerate average of the votes from the decision trees. 

4. Return the average as the final approximated value. 

Randomness is applied at two levels of the random forests: during data selection and in attribute 

selection. Since the regression trees are created from random vectors selected from training dataset 

X, each leaf-node contains a constant estimate of Y. As an example, the data points 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑀, 𝑦𝑀)}are selected as samples for the leaf-nodes, and the anticipated data 

can be modeled as the averaged predictions from all the individual regression trees as: 

𝑦̂(𝑥𝑗) =
1

𝑀
∑𝑀

𝑚=1 𝑦𝑚(𝑥𝑗),                                                      (2.12) 
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Such that, 𝑗 = 1,2, . . . , 𝑀, and where 𝑦̂(𝑥𝑗) is the estimated result. In RF, tuning-parameters have a 

great effect on the ability of the model [141]. The most important tuning parameters for RF in Scikit-

Learn are n_estimators, random_state, n_jobs, min  sample_leaf, max_features [141]. 

 

The hydrology forecast can be made with a short (few days or weeks) or long (seasons or years) lead 

time. Short-term and long-term forecast outcomes may be relevant depending on the type of 

information required to support groundwater management decisions. The further into the future you 

go in such modeling; the more difficult it becomes to predict how groundwater changes will occur. 

Seasonal forecasts, in most cases, have a greater potential to inform groundwater decisions [142]. 

The majority of the research in the literature has focused on short-term water table forecasting, has 

used a large amount of input, and has not been conducted under temperate climate conditions [143]. 

For example, Zhou et al. [144] present a comparison of ANN and SVM for water table depth 

modeling. The authors used discrete wavelets in data preparation, and their results show that SVM 

outperforms the ANN model in terms of accuracy. Similarly, the SVM method is said to outperform 

the adaptive neuro-fuzzy inference system and the ANN [145], [146]. Furthermore, Natarajan et al. 

[147], evaluate the accuracy of SVM, extreme learning (ELM), genetic programming (GP), and 

ANN in groundwater level simulation. Their findings suggest that ELM outperforms GP, SVM, and 

ANN in terms of precision. Additionally, the studies  [148], [136] provide a thorough explanation of 

the application of SVM in hydrology. Guzman et al. [124] present one of the few studies focused on 

seasonal forecast of water tables, in which a Recurrent Neural Network is trained using a sufficient 

amount of historical precipitation and groundwater level time series data and applied to predict water 

level up to three months ahead with promising accuracy. These findings are promising for irrigation 

water management, but they may not be applicable to Sub-Saharan Africa, which has a variety of 

aquifers and a temperate climate.In addition, recent research has investigated the effectiveness of a 

non-linear auto-regressive network with exogenous input (NARX) in modeling variations in water 

table heights using precipitation and temperature data [136], [149], [150]. NARX performed well in 

seasonal predictions of groundwater depths for various aquifer types, according to Wunsch et al. 

[150] and Guzman et al. [136], [149]. The authors' results were obtained with a large training 

sample, which is not common in Sub-Saharan Africa. Furthermore, the climate is different, with 

precipitation not being the only significant recharge of aquifers in humid areas. For forecasting daily 
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levels, [151] prefers SVM to NARX. Some studies attempted to combine multiple techniques in 

order to improve the accuracy of machine learning models [152], [124]. For instance, the authors of 

[152] describe a hybrid method for simulating groundwater levels that combines Wavelet, ANN, 

SVM, and empirical mode decomposition.  

2.6.3.5 Ensemble Mode Decomposition 

The EMD method, first proposed by [153], is an adaptive and empirical approach for data analysis. 

This data driven method is designed for the data having nonlinear and nonstationary characteristics. 

It decomposes original time series into several simpler components “mono component functions” 

known as intrinsic mode functions (IMFs). IMFs should meet two principle conditions: the number 

of extreme values and that of zero crossings must be equal or at most differ by one in the whole 

signal segment, and the second condition is that at any point, the mean of envelope defined by the 

local minima and that of the local maxima must be zero [153]. For a given series 𝑥(𝑡) the EMD can 

decompose this input signal into narrow band IMFs using sifting process as flows: 

(i) Identify and extract all the minima and maxima  

(ii) Connect all the local minima and maxima by a cubic spline to form the lower and upper 

envelope. 

(iii) Calculate the mean value 𝑚1 of these envelops and subtract it from the signal ℎ1 = 𝑥(𝑡) −

𝑚1. 

(iv) Check if ℎ1 fulfills two criteria for IMF. Otherwise, repeat steps (i)-(iv) until satisfies the 

IMF criteria. 

              Supposing, the conditions are satisfied after 𝑗  times of iteration, then: 

 

ℎ1𝑗 =  ℎ1(𝑗−1) −  𝑚1𝑗                                                                  (2.13) 

then 

 𝑑1 =  ℎ1𝑗  is the first IMF. 

The residual value is obtained as presented in Equation (2.14). 

𝑟1 =  𝑥(𝑡) −  𝑑1                                                                         (2.14) 

The residue is considered as the input signal to be used in another sifting process to get next IMF 𝑑2, 

since it contains all the remaining frequency information of the original data. 
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𝑟3 =  𝑟1 −  𝑑2                                                                              (2.15) 

𝑟𝑛 =  𝑟𝑛−1 − 𝑑𝑛                                                                                     

The algorithm stops when 𝑟𝑛 is a trend component such that no more IMF can be extracted.   

With 𝑗𝑡ℎ degree of freedom, the function can be presented in Equation 2.16. 

𝑥(𝑡) =  ∑(𝑑𝑗(𝑡) +  𝑟1(𝑡))

𝐼

𝑗=1

                                                      (2.16)  

where I is the total number of IMFs, 𝑟𝐼(𝑡)  is the residual of the decomposed signal, and  𝑑𝑗(𝑡) is the 

𝑗𝑡ℎ IMF. 

Although the EMD has high locality and adaptability, but suffers from instability, end interpolation 

and mode mixing challenges [154]. The ensemble empirical mode decomposition (EEMD) is an 

improved version of the EMD in attempt to overcome the end effects and mode mixing issues 

experienced in EMD computation. This improvement avoids the pattern aliasing issue in EMD since 

it contains sifting mechanism that injects white–noise in the signals and treats the mean values as the 

final result. EEMD captures well the dynamics of hydrology[155][156]. The EEMD works in the 

following manner: 

(i) Inject white noise 𝑤𝑛(𝑡) to the original series 𝑥(𝑡) 

𝑋(𝑡) = 𝑥(𝑡) + 𝑤𝑛(𝑡)                                                            (2.17) 

(ii) Extract IMFs from the data with added white noise 

(iii) Iterate step 1 and step 2 adding different white noise to the series in each iteration.  

(iv) Get the ensemble means of the extracted IMFs as the final result  

 

2.7 The Use of Machine Learning and IoT for Groundwater Management 

In summary, the majority of the literature on the use of IoT in hydrology has focused on surface 

water, with few discussions on low-power, long-range, and energy harvesting solutions for 

groundwater management. It is also demonstrated that there is a paucity of groundwater data and 

little research on the use of appropriate technologies such as IoT in Sub-Saharan Africa. Even the 

scant information available on aquifers is almost never shared with multiple stakeholders. 

Furthermore, there are a few studies in the literature that report on machine learning-based seasonal 

water table forecasts, particularly in temperate regions. This information is almost never shared with 
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multiple stakeholders. Literature encourages more aquifer exploration through the use of sustainable 

and cost-effective solutions to assist groundwater managers and policymakers. On the other hand, 

the body of literature discusses a variety of approaches to developing or improving technological 

solutions in novel ways while generating new knowledge about the process and application. 

However, the design science methodological approach is best suited to the current research due to its 

steps that are appropriate for the desired outcomes. 

2.8 Research Methodological Approach  

Literature presents several approaches to scientific studies that focused on devising solutions to 

identified problems and develop new knowledge iteratively. The present study adopts a design 

science research (DSR) methodological approach which was first ideated  in 1969 by Simon [157]. 

Over the years, DSR has been assessed, improved, and recognized as an acceptable approach to 

research in information systems and other fields [158]. While natural and social sciences seek to 

explore, explain, describe, and predict, design science seeks to create something that does not yet 

exist or to improve on existing solutions.  

According to Johannesson et al. [159], the goal of design science in information systems and 

technology is to create novel artifacts such as models, methods, and systems that help people 

develop, use, and maintain IT solutions. The authors went on to say that DSR is typically used to 

create artifacts that address practical issues that people face in a variety of contexts. Humans create 

artifacts to solve or address a specific problem. These can include physical objects, methods, 

guidelines, products, services, and processes, among other things. In support of the above-mentioned 

researchers' viewpoint, Schallmo et al. [160], elaborate that, in addition to creating an artifact, DSR 

also generates new knowledge about those artifacts, as well as their use and environment. 

Furthermore, Holmstrom et al. [161], stated that this methodological approach is human-centered 

and can be used to address ill-defined or unknown problems. With regard to the preceding 

viewpoint, and that of Ben Mahmoud-Jouini et al. [162], [163], DSR is best suited to decision 

contexts with high uncertainty and ambiguity because it involves abduction and experimentation 

with multiple alternative solutions that actively mediate a variety of tensions between possibilities 

and constraints. The DSR approach is implemented in five major steps (shown in Figure 2.5), 

namely, problem explanation, requirement definition, design and development, demonstration, and 

artifact evaluation. 
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The author of the present research believes that DSR is the best fit for the current research, which 

aimed at designing and developing an IoT-based solution as well as a machine learning method to 

provide a practical solution to address groundwater management problems in eastern Rwanda. The 

proposed solution consists of an autonomous monitoring network and decision support tools that 

were developed iteratively and through experimentation. The prototype was also validated in the 

field and its reliability and efficacy were assessed. The outcomes are made available to a wide range 

of stakeholders via web and mobile applications. 

 

Figure 2.5 A general schematic representation of the design science research approach [164]. 
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CHAPTER 3 

DEVELOPMENT AND VALIDATION OF A LOW-COST, LOW-POWER 

ENERGY-HARVESTING, LoRa-GSM, IoT SYSTEM FOR MONITORING 

GROUNDWATER LEVELS 

 

 

3.1 Introduction 

This chapter presents the design, development, deployment, and validation of a low-cot, low-power 

IoT-based system (LWNGM) that makes use of LoRa and GSM communication technologies as 

well as energy-harvesting technique, to achieve the objectives one, two, and three of this research.  

The objectives are namely: To obtain requirements for the Internet of Things-enabled groundwater 

table depths monitoring system, To design and develop a low-cost, low-power, energy-harvesting 

Wireless Sensor Network (WSN) for remote and near real-time groundwater level monitoring- and 

To validate the developed WSN's affordability, energy efficiency, and network efficacy through field 

deployment. 

The proposed low-cost, low-power, wireless sensor network for groundwater monitoring (LWNGM) 

was developed to provide near real-time groundwater level data to support prudent decision making 

in groundwater resource management in Eastern Province in Rwanda but the LWNGM was 

deployed in Zanzibar, Tanzania because of the reasons explained in the Section 1.7 in Chapter 1. 

The system is based on the ATmega328P microcontroller platform and incorporates MS5803-14BA 

and MB280 sensors. The I2C communication channels between the sensors and the microcontroller 

were extended using 25-meter PVC cables. The electronics were potted and protected in a 

waterproof aluminum cylinder. The Arduino UNO wakes up in six-hour intervals for measurements 

and data-logging to the SD card, and at twelve-hour intervals for relaying data (in batches) to the 

LoRa gateway, before it goes back into a deep-sleep mode for the rest of the time (duty cycle < 1%). 

The average power consumption for the end node was 104.081 mW. The power autonomy of all 

nodes is provided by a 3.7 V, 5000 mAh rechargeable LiPo battery, and a 9 V, 600 mAh 

rechargeable Li-ion battery, respectively, which are supported by 6 V and, 3 W solar chargers. The 

data processing and storage components, as well as the data visualization dashboard, were created 
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using free and open-source software. The LWNGM was reasonably priced, ranging between $350 

and $400. Practical evaluation determined that the system is reliable and transferable, particularly in 

areas with a limited budget for hydrologic management.  

Section 3.2 outlines the research's major contributions. The materials and methods used in this work 

are explained in Section 3.3. Section 3.4 describes the experimental design and evaluation of the 

LWNGM system. Section 3.5 delves into the results of the experiment described in Section 3.4. 

Section 3.6 concludes the chapter and provides an outlook. 

 

In this study, we created and tested a groundwater monitoring platform based on low-power, low-

cost sensors, open-source tools, and low-power solar energy harvesters. The system periodically logs 

the water table depth data to an SD card on site, and then relays the recorded data to the LG01 LoRa 

gateway in batch, twice a day. This study will broaden the regional and global understanding of 

simple and low-cost WSN technology for hydrology management. It will also improve evidence-

based consultation to assist decision-makers in making better decisions for sensible water resource 

management. 

3.2. Contributions 

The research work presented in this chapter has made the following contributions: First, developed a 

conceptual design of low-cost, low-power, autonomous WSN for groundwater monitoring based on 

non- proprietary software. Second, it has developing an energy-harvesting wireless sensor network 

for continuous and near real-time monitoring of groundwater. Third, has developing an integrated 

system that combines sensor-based remote monitoring with downstream units for open data sharing 

with policymakers, scientists, and the general public. Fourth, has conducted a practical analysis and 

evaluation of the cost and energy expenditure for the water table monitoring model in order to better 

understand the cost and energy implications of affordable WSN technology. 

3.3. Materials and Methods 

In this section, we provide a detailed elucidation of the field sites, materials, and methods utilized for 

this investigation. 
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3.3.1. Study Site Description  

Bandamaji station is found in Donge Mnyimbi at −5.968399, 39.250488, with an elevation of 

approximately 37 m in Zanzibar, Tanzania (Figure 3.1). This area is approximately 25 km from the 

Zanzibar stone town. The groundwater observatory station is under the Zanzibar Water Authority 

(ZAWA) [165], [166], a government organization responsible for the management and distribution 

of water supply in the Isles. The station is situated approximately 87 m from one of the huge ponds 

in Zanzibar. The majority of the people in Mnyimbi and nearby villages get their water from drilled 

wells. 

Groundwater is the primary source of freshwater for more than a quarter (25%) of Tanzanians [167], 

and is the primary source of water (more than 70%) in the Zanzibar Islands [168][169]. However, 

according to some studies, groundwater extraction in Zanzibar is unsustainable, and some boreholes 

are no longer operational [165], [170], [171]. At the end of each month, ZAWA monitors patrols 

across the country to collect water quality and quantity measurements from bored observational 

wells. Normally, the only available water table depth-monitoring tool is the beeper tape. These 

patrols are time-consumin.,mg, human-resource- intensive, and material-resource-intensive. Current 

monitoring practices and frequencies have a significant impact on the quality and availability of 

continuous water table data. As a result, there is a need for affordable and continuous groundwater 

monitoring in Zanzibar  [165], [170].  
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Figure 3.1 Location of bandamaji monitoring well in (a) Africa (b) Tanzania and (c) Zanzibar (Unguja) - Donge, Mnyimbi 

3.3.2 Description of the System Design and Realization 

One of the driving forces behind this study’s attempt to create a WSN-based platform for monitoring 

variations in water table depths is technological advancement in low-power sensors and telemetry. 

The system is intended to have low power and low cost in nature. To achieve this goal, the system 

comprises four low-cost, low-power main components: the terminal unit (end node), gateway, 

network server, and cloud application server. The low-cost and low-power components (shown in 

Table 3.1) are redesigned and used to realize the intended system. 

 

Table 3.1 Selected components for the development of the LGMWN. 

Component Function  
 

Version 

Arduino 

board 

Microcontroller to host 

sensors, memory and 

clock. 

  

UNO R3 

MicroSD 

card shield  

To host  with the 

MicroSD card 

Generic/Robotlyn 

SD card breakout 
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shield 

 

LoRa 

gateway 

Linking between LoRa 

Nodes and the network 

Server 

 

LG01-P,868 MHz 

MicroSD 

card 

Field data storage Class 4, 16 GB 

Solderboard Solderboard for 

prototyping  
 

Solar 

harvester 

 

Solar energy collector 9 V/12 V, 3 W/6 W 

Real-time 

clock 

 

Accurate time keeping DS3231 

Sensor 

connection 

cable 

 

To link sensors to 

microcontroller 

UTP Cat 6 

I2C 

differential 

interface 

 

To extend the length of 

the I2C connections 

PCA9615 

LoRa 

breakout 

shield 

 

LoRa shield to connect 

to LoRa gateway 

V1.4 

4G LTE 

USB modem 

 

4G LTE modem to 

provide backhaul for 

LoRa 

EC25-EU mini PCIe 

 

Adjustable 

DC to DC 

converter 

DC to DC converter to 

provide 9V and 12V for 

nodes and gateway 

5 V/8 V/9 V/12 V 

   

3.2.2.1 GATEWAY HARDWARE AND PROGRAM 

The gateway (GW) is the connection point through which end nodes send data to the server. The 

Dragino LG01-P gateway (Dragino, Shenzhen, Guangdong, China) embeds a Semtech SX1276 

LoRa module with an RMF95 chipset (Semtech Corporation, USA), and connects the LoRa wireless 

network to the Internet protocol (IP). This gateway supports LoRaWAN protocol on a single channel 

and controlled by the customizable OpenWrt Linux-based platform. It has a 100 mA current rating 

and a 12 V voltage rating. The gateway operates at 868 MHz with a 3 dBi gain antenna, receives 

sensor data via LoRa radio with an average sensitivity of -148 dBm, and relays it to the local server 

via a GPRR/GSM backhaul. The Quectel 4G LTE EC25-EU USB dongle (Quectel, Shanghai, 

China) was connected to the cellular network at 50 Mbps and delivered downlink data at 150 Mbps. 

A 9 V to 12 V DC voltage booster module (Shenzhen iSmart, Guangdong, China) was connected to 

a 9 V, 600 mAh Li-ion rechargeable battery and two 9 V, 3 W solar panels connected in series to 

power the LG01 gateway at 12 V. Li-ion batteries have several advantages over other types of 
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batteries, but the most important reason they were chosen to power the gateway is their high voltage 

capacity and longer life. The software that controls the gateway is written in the C programming 

language in an open source Arduino Integrated Environment (IDE), downloaded from the Arduino 

website (Arduino Somerville, MA, USA). The gateway relays data to the local server using the 

message queuing telemetry transport (MQTT) protocol. The protocol is well suited to the size and 

format of the message sent to the server, as well as the processing devices [172], [173]. The 

messages are formatted in JSON format for ease of reading and to reduce server load. Figure 3.2 

depicts the scheme used to collect and relay data from the field to the network server. The 

configurations for the gateway and the 4G LTE USB dongle were completed on a Linux-based 

console using a secure shell connection (SSH), web user interface, and AT command (via the default 

IP address 10.130.1.1). 

 

 

Figure 3.2 The functional scheme of data gathering and storage. 
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3.2.2.2 FIELD SENSOR MODULE HARDWARE AND PROGRAM 

An Arduino Uno R3 microcontroller (MCU) served as the foundation for the field-sensing node 

(Figure 3.3). The MCU board communicates with the LoRa transceiver version 1.4 (Dragino, 

Shenzhen, Guangdong, China) and the micro SD card unit (Robotdyn, Zhuhai, GD, China) via the 

serial peripheral interface (SPI) and input-output (I/O) lines. 

The Arduino Uno also communicates with the two pressure sensors and the external DS3231 real-

time clock (RTC) module (Maxim Integrated, San Jose, CA, USA) via the I2C bus lines. The solar 

energy harvester module (Heltec, Chengdu, China) is linked to the 3.7 V, 5000 mAh rechargeable 

LiPo battery, which supplies voltage to the MCU. The first sensor of the field node is a low power, 

high-resolution pressure sensor breakout MS5803-14BA (SparkFun, Colorado, USA) that measures 

the pressure exerted by the water above it. The second sensor is a low power, humidity, barometric 

pressure, and temperature MBE280 sensor breakout (Adafruit, New York, USA), which linked to the 

3.7 V, 5000 mAh rechargeable LiPo battery, which supplies voltage to the MCU which is used to 

compensate for atmospheric pressure. The MS5803-14BA (MS) has a maximum voltage of 3.3 V, 

whereas MBE280 (MB) has an operating voltage range of 3.3 V to 5 V. The RTC clock generates a 

high-precision and reliable date and time using a separate power source from a long-lasting 3 V 

lithium coin cell battery [174], [175], whereas the micro SD card (SD) module is powered through a 

3.3 V pin of the MCU. The ATmega328P microcontroller was embedded in an Arduino UNO (R3). 

R3 has a voltage rating of 3.3 V to 5 V and a maximum current of 50 mA, according to the 

datasheet. 
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Figure 3.3 Block scheme of the LWNGM’s field node architecture. 

 

The RFM95W module on-board the Dragino transceiver (version 1.4) is specified to accept 3.3 V or 

5 V input volt- age. In this case, a 3.3 V supply is used to meet the low-power scheme. The entire 

field node is powered by a rechargeable 3.7 V, 5000mAh LiPo battery via a 3.7 V to 5 V DC power 

boost converter (Shenzhen iSmart, Guangdong, China), which is supplemented by a 6 V, 3 W solar 

energy harvester. Because the applied power level (less than 12 V) is safe for the MCU, it is fed to 

the Arduino via a 5 V pin, avoiding any potential voltage regulator losses. The program that controls 

the end-node was also developed using the C language in Arduino IDE, Arduino, Somerville, MA, 

USA. The Arduino UNO microcontroller is programmed to spend most of the time sleeping to save 

power and meet low-power operational constraints. Every six hours (6 h), the RTC sends triggers 

(programmable interrupts) to wake up the MCU, allowing the water table depth sensor and 

atmospheric pressure sensor to perform measurements (see Figure 3.2). Before the data was 

temporarily logged into the SD card (16 GB ScanDisk) as a CSV file, each record was time stamped 
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and the measuring node identification number was attached. The end node returns to sleep. The RTC 

wakes up the MCU every twelve hours (12 h) to initialize and read data from the SD card. The LoRa 

shield is then activated to send values to the gateway. After successfully sending the data, the LoRa 

radio is turned off. Then the end-node returns to sleep. In this scheme, the end node spends the 

majority of its time in the low-power mode. 

3.3.3 Preparation of Water Table Depth Probe 

 The following procedure was used to adapt the MS 5803-14B sensor (TE connectivity) for the 

desired task. To make the sensor and the I2C differential connector (PCA9615) waterproof, they 

were potted in epoxy resin. Following the wired connection of the PCA9615 and the MS5803 

sensor, both devices were enclosed in a watertight metallic tube measuring 9.5 cm (3.74 in) length 

and 4.5 cm (1.772 in) diameter for waterproofing reinforcement. A 6 mm hole was drilled at one end 

of the metallic tube to expose the pressure measuring diaphragm to the water in the well. Another 6 

mm hole was drilled on the opposite end of the tube to allow us to draw in the UTP cable that 

connects to the differential I2C breakout that uses the PCA9615 integrated circuit, as shown in 

Figure 3.4(a). This cable connects the sensor to the microcontroller board via two I2C extenders 

(PCA9615 converters). The tube was also potted to prevent water from leaking through the joints 

and drilled holes. The MBE280 climatic pressure sensor was epoxy-potted and hung 3 m from the 

top of the well casing in the bored well. As shown in Figure 3.4(b), the Arduino UNO board, LoRa 

shield, and all connected electronics were enclosed in a waterproof PVC enclosure. The unit was 

mounted on a pole 1.5 m above the ground, corresponding to the height of the end node. This 

position allowed the 868 MHz LoRa board’s 3 dBi gain antenna to establish a line of sight with the 

868 MHz GL01-P LoRa gateway’s 3d Bi antenna, which was positioned 3 m above the ground. The 

three common bus protocols for communications between digital sensors and microcontrollers are 

the serial peripheral interface (SPI), one-wire, and integrated-integrated communication (I2C). All of 

these protocols are supported by both hardware and software libraries. The SPI and one-wire 

protocols can transfer large amounts of data at higher data rates, but they have drawbacks such as the 

SPI requiring dedicated communication pins and a one-wire with complex data synchronization at 

the receiver side. Moreover, the one-wire scheme is unpopular among hardware manufacturers and 

is susceptible to cable capacitance and noise. Despite the fact that the I2C has slow data and a 

shorter data transfer distance (<1 m) [49], we chose it for prototyping because of its ability to share 

and save communication pins. The most difficult task in the redesign and preparation of the end 
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device was to pot the sensor and the I2C differential interface with epoxy for underwater 

applications. Although the diaphragm of the MS5803 is contained and protected by a stainless steel 

cap, it may be easily damaged if it comes into contact with glossy and sticky materials such as the 

potting epoxy resin during the potting process. Several devices were damaged during the potting and 

testing phases before we came up with a viable solution. For example, when we potted and enclosed 

the MS sensor in a plastic container and housed the container in a PVC cylinder (see Figures 3.4(c) 

and 3.4(d)), the attempt was unsuccessful, allowing water to enter and damage it. The I2C converters 

(Sparkfun, Electronics, Colorado, USA) were used on Cat 6, UTP cable to overcome the limitation 

of the I2C protocol (capacitance effects on the signals increase with cable length). To extend the 

wire up to 25 m, one differential convertor was attached at each end of the cable (see Figure 3.5). 

Unlike most of the studies that used the MS5803 sensor family with cable length <10 m [176], [49], 

[177], this study successfully applied MS5803-14BA with a cable length of 25 m and overcome the 

limitations of the I2C protocol. As a result, a high-pressure sensor (MS5803) could be installed in 

the borehole at a depth of 15 m below ground. RJ45 connectors were used to connect the PCA9615 

devices to both ends of the UTP cables. The serial data line (SDA), serial clock line (SCL), 3.3 V 

input line, and ground terminal point (GND) on the PCA9615 device correspond to the four 

connection pins on the MS5803 sensor. Hence, only four of the eight cores of the UTP cables were 

used to transfer data between the sensor and the UNO board via PCA9615 devices using the I2C 

protocol. Likewise, MBE280 used the same connection arrangements and protocols. 
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Figure 3.4 The LWNGM field node (a) the potted MS5803-14A and protected in aluminum cylinder (b) the field-node circuitry in a 

water-proof enclosure (top removed) (c) the MS5803-14A potted in a plastic container, housed in a PVC cylinder (d) the damaged 

MS5803-14A sensor in a potted plastic container. 

 

 

Figure 3.5 The I2C differential interfacing connectors attached to each end of the Cat 6 UTP sensor connection cable (25 m). 
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Potting was done to protect the sensor from water and moisture during the construction of the 

barometric pressure probe using a BME280 sensor (MBE), but the length of the cable was set to 10 

m, which is significantly shorter than the length of the underwater MS5803 cable. This is primarily 

due to the fact that the BME280 for atmospheric pressure measurement is hung inside the borehole 

three meters (3 m) from the borehole casting rather than being submerged in water. 

3.3.4 Data Correction and Storage Description 

 The local server (LS) receives sensor data from the LG01 gateway twice a day via a wired 

connection. When data are received from the gateway, the Python script written in Python 3.6.6 

Integrated Development Environment (IDE) runs to perform data processing by computing daily 

averages from raw data and then correcting the data for the influence of cable length and barometric 

pressure. The calculations of the measured water table depths were carried out in the following 

manner. Each averaged value of the water column pressure was first compensated for the average 

value of the atmospheric pressure using (3.1). 

 

𝑊𝑑(𝑡) = 𝑃𝑤(𝑡) − 𝑃𝑏(𝑡)                                                       (3.1) 

Where, 𝑊𝑑(𝑡) refers to the depth of the water at time t, 𝑃𝑤(𝑡) the water column pressure on the 

submersible sensor at time t, and   𝑃𝑏(𝑡) ambient pressure at time t. We also need to calculate the 

actual length of the cable attached to the sensor. The (𝐶𝑙) is computed in (3.2). 

 

𝐶𝑙(0) = 𝑃𝑤(0) + 𝐷𝑤(0)                                                       (3.2) 

Where, 𝐶𝑙(0) is refers to the length of the cable at time t = 0, 𝑃𝑤(0)  pressure of water column above 

the submersible sensor at time t = 0, and 𝐷𝑤(0) the depth to water at time t = 0. From equation 3.1 

and 3.2, the actual water table height is subsequently obtained as follows: 

𝐴ℎ(𝑡) = 𝑆𝑑 − 𝐶𝑙(0) + 𝑊𝑑(𝑡)                                                 (3.3) 

Where, 𝐴ℎ(𝑡)  refers to the actual depth of the water table at time t, 𝑆𝒅 the average sea level datum in 

the study area. 

The processed groundwater data are saved in the MySQL database. MySQL is a well-known, open-

source, high- performance database that can be used for both on-premises and cloud-based IoT 
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applications [178]. The data are then copied and uploaded to cloud storage for backup, sharing, and 

visualization (as explained in the next subsection). The database design allows for scalability, allowing 

for the addition of data from new observational stations. It can handle data from multiple stations while 

requiring only minor changes to the database configurations. 

3.3.5 Cloud Server and Data Visualization 

Sharing information among stakeholders and end users is a significant step toward resource 

management coherence [176]. The LGWMN cloud-based web portal was created to allow data sharing 

with potential stakeholders. The MySQL-powered website was created using the PHP and Java scripts. 

The monitoring dashboard has four primary functions: A map that allows the user to navigate the 

location of the borehole well, charts that show the trends and patterns of the water table depth 

variations over a specified period, and downloadable data in a CSV file format. The database also 

includes a configuration with information about the location and data rendering. 

3.3.6 Energy Autonomy of the LWNGM 

Energy autonomy is a critical requirement for IoT systems, particularly those deployed in remote and 

difficult-to-reach locations [179]. The chosen solar panels have a 3 W, 6 V solar charger that serves as 

a backup to a 3.7 V, 5000 mAh LiPo battery (Figure 3.6) that powers the end node. The gateway is 

powered by a DC-to-DC power booster with a constant output voltage of 12 V and a current rating of 1 

A. This booster is linked to a 9 V, 600 mAh Li-ion battery, which is recharged by two mini solar 

panels (6 V, 3 W each) connected in series to produce a total output voltage of 12 V. 

 

Figure 3.6 Solar devices for powering the nodes (a) 3.7V LiPo battery (b) solar panel (c) charger unit for batteries. 
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Despite the fact that we have two solar energy harvesters, we now only consider the estimation of 

charge and discharge statistics for the end node solar panel and battery. The CN3791 charger module 

charges the LiPo battery via a connected solar panel. The module also protects the battery from 

overcharging. The open circuit voltage (Vcc) of the solar panel is 6 V, the specific load voltage (Vl) 

is 4.2 V, the short circuit current (Icc) is 2000 mA, the typical current at load (Il) is 500 mA, and the 

maximum power is 3 W. When fully charged, the LiPo outputs 4.2 V, which is connected to the 

Arduino board’s 5 V pin. This pin was selected as the power input pin for the microcontroller. 

Weather conditions are one of the most important factors influencing the performance of solar panels 

[85]. According to the data we collected on the power efficiency of the solar panel connected to the 

end-node, the panel operates at 5.5 V/338 mA, 4.3 V/205 mA, and 4.0 V/123 mA for sunny, cloudy, 

and rainy hours, respectively. Tanzania has a high level of solar energy, with 2800-3500 hours of 

sunlight per year and global horizontal radiation ranging from 4 to 7 kWh per m2 per day [85]. Based 

on this information, we assume that the study site has an average of eight sunny, one cloudy, and one 

rainy hours per day. The average energy (Cav) produced by the solar panel is then calculated using 

our solar performance data, as given in (3.4). 

𝑪𝒂𝒗   = [(5.5 V x 338 mA x10-3 x7) + (4.3 V x 205 mA x 10-3 x 2) + (4.0 V x 123 mA x 10-3 x 1)] x 

3600                                                                                                                                         (3.4) 

         = 54,964.8 J 

The results computed in (3.4) can be used to estimate the time required to charge the battery (tch); 

however, we must first calculate the amount of energy produced by the battery. Given a battery with a 

charge capacity (Battcap) of 5000 mAh and a voltage rating (Battvt) of 3.7 V, the energy of the battery 

(Batten) as a function of Battcap and battery voltage Battvt is computed as given in (3.5). 

Batten = (Battcap × Battvt × 60s × 60s)                              (3.5) 

                                                                   = 66,600 J                          

The 𝑡𝑐ℎ  is then calculated by dividing the battery energy by the energy produced by the solar panel, as 

shown in (3.6). 

                           𝑡𝑐ℎ  =  
𝐵𝑎𝑡𝑡𝑐𝑎𝑝

𝐶𝑎𝑣  
                                                                   (3.6) 

                                                                    = 
(5000mAh x 3.7 x 60 x 60)

54964.8 𝑥1000
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                                                                     = 1.212 days 

According to the calculation in (3.6), it takes approximately 1.212 days (29.080 h) for the solar energy 

harvester to fully charge the battery. As a result, the LGWMN will be powered on a daily basis by this 

power source (solar charger). The LWNGM architecture is depicted in Figure 3.7, with the sensor 

devices connected to the microcontroller board via I2C differential interfacing and the RTC directly 

connected to the microcontroller’s I2C connections. The SPI bus connects the micro SD card 

component and the LoRa breakout to the MCU. Underwater and ambient pressure sensors were 

installed in the well. A LoRa-based connection is provided between the LoRa breakout and the 

gateway. The GW is outfitted with a 4G LTE dongle that connects it to the network server, which is 

linked to the cloud-based application server. Rechargeable solar-powered batteries power the nodes. 

The local server handles data processing, whereas the cloud server handles data backup, sharing, and 

visualization. 

 

   Figure 3.7 LWNGM platform: the well, devices, sensors, power source, and communication protocols deployment. 

3.4. Experiment Evaluation and Test Results 

This section describes the process and results of an experiment related to this case study in the 

adoption of low-cost, low-power WSN-based equipment. The end node, gateway, and web dashboard 

were designed, built, programmed, and tested to realize the proposed LWNGM prototype. After the 
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system was deployed in the field, it was evaluated. At the time of our prototype’s deployment, there 

were no sensors in the case study, and monthly measurements were taken with a beeper tap. The tap is 

normally lowered into the borehole and makes a sound when it comes into contact with water. We 

used a beeper tap to measure the depth to water prior to installing the electronic sensor in the 

Bandamaji observation well to establish a reference point for automatic measurements. Each water 

table depth and air pressure measurement, as well as the identification number of the associated 

measuring sensor and the timestamp generated by the DS3231 clock, are temporarily logged into the 

SD card memory by the node. The recorded values are then relayed to the gateway at the scheduled 

time before the data are transmitted from the gateway to the network server. 

3.4.1 LWNGM System Deployment  

The LoRa-GSM-based logger was deployed between May 2 and 15, 2021. The system continuously 

sampled and transmitted data to the local server over a two-week period. The locations of the end-node 

and the gateway were carefully chosen to provide the best possible line of sight through the area with 

minimal vegetation at the study site. At the distance of 125 m from the end-node, the gateway is 

located in the doors near an open window (shown in Figure 3.8(a)). The vegetation and tall trees 

slightly shaded the line of sight between the gateway and end nodes. The line of sight is clear in most 

of the time. Figure 3.8(b) depicts the field node of the deployed system. The deployment also 

considered the possibility of scaling up the network while retaining the single-hop topology. This 

allows for the addition of more end nodes to share the gateway while ensuring network longevity. To 

maximize the energy of the system, the solar energy harvesters were placed in areas where there was 

no shade or materials such as tree leaves that could block the surface of the solar panels. 
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(a) 

 

 

 

                                                                       (b) 

Figure 3.8 Field deployment of LWNGM (a) LG01-P long-range gateway with 4G LTE USB dongle (b) field node in a waterproof 

enclosure with mini solar panel deployed mounted to a pole at Bandamaji monitoring well. 
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3.4.2 Configuration, Key Parameters, and Network Performance 

The optimal efficiency for the LoRa link was achieved with key parameter settings of 14 dB, 4/5, 868 

MHz, 125 kHz, and 7, respectively, for transmission power, coding rate, transmission frequency, 

bandwidth, and spread factor (see Table 3.2).  

 

                                                           Table 3.2 Configured LoRa transmission parameters 

Parameter  Value 

Transmission power  14 dBm  

 

Bandwidth 125 kHz 

Frequency 868 MHz 

 

Spread factor SF 7  

Coding rate 4/5 

  

 

To evaluate the performance of our network, we sent a series of packets from the end node to the 

gateway and computed the packet delivery ratio (PDR) for those packets. The PDR is calculated as the 

ratio of the total number of packets that successfully arrive at the receiver (gateway) to the total 

number of packets that leave the source (end node). We also measured the received signal strength 

(RSSI) and airtime for packet transmission in addition to the PDR. Table 3.3 shows the average of the 

LoRa radio performance values. 

 

Table 3.3 Performance metrics for the LGWMN LoRa network 

PDR  (%) 
RSSI (dB) Airtime (ms) 

84.4600  -83 37.1300 
   

 

3.4.3 System Testing and Data  

The deployment in the field allowed the LWNGM to be tested. The mean water level was calculated in 

six-hour (6 h) intervals of data sampling cycle and twelve-hour (12 h) intervals of data forwarding 

cycle to provide daily average levels. Each send had an average airtime of 19 ms.  The obtained test 

results were compared to those of previous studies. Figure 3.9 compares the performance of LoRa 
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radio links demonstrated by our proposed system (LWNGM) to studies conducted by Codeluppi et 

al. [180], Yousuf et al. [82], Cattani et al. [181], and Augustin et al. [75]. During the field 

deployment of the LWNGM system, sampled data were recorded and visualized using a web 

dashboard. Figure 3.10 (a) depicts the daily average water table depths recorded over a two-week 

period, and Figure 3.10 (b) depicts a web dashboard that updates groundwater depth data every six 

hours. 

 

Figure 3.9 Comparison of LoRa radio performance statistics in terms of RSSI, PDR, and airtime for various studies. 
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Figure 3.10 (a) A plot of daily average water depths at bandamaji monitoring well over a two-week deployment period. 

 

 

 

Figure 3.10 (b) Web dashboard for LWNGM showing a plot of two weeks data from Bandamaji station at 6-hour intervals. 
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The front and back ends of the LWNGM web portal were designed to be flexible enough to 

accommodate data from additional observational stations. The user interactive map is being 

developed, which will allow the navigation and visualization of data from multiple stations. 

3.4.4 Cost and Simplicity of the Systems  

The costs of the components used to construct the LGWMN are summarized in Table 3.4. It is worth 

noting that the prices of these devices vary depending on the supplier chosen. These prices include 

shipping costs. The system is simple and easy to replicate. Although the project consists of multiple 

domains, a moderate wireless network and electronics skills and tools can accomplish the 

development of the system presented here. The total cost of the components used to construct the 

LWNGM was USD 310.168. This means that this system can be built for less than 400 USD. 

 

 

 

 

                                           

Table 3.4 Summary of the quantity and pricing of the LWNGM components 

Component Number Unit Price ($) Total Price ($) 

Arduino board 1 26.6200 26.6200  

MicroSD card 

shield  

1 2.7900 2.7900 

MicroSD card 1 4.5950 4.5950 

Pressure sensor 

MS5803-14BA 

1 22.0400 22.0400 

LiPo 1 6.7000 6.7000 

 

LoRa gateway 1 96.8300 96.8300 

Solar energy 

harvester 

1 53.8500 53.8500 

Real-time clock 1 4.7000 4.7000 

Sensor connection 

cable 

35 m 0.4330 15.1500 



60 

 

I2C differential 

interface 

2 9.5290 19.0580 

LoRa breakout 

shield 

1 38.1250 38.1250 

4G LTE USB 

modem 

1 9.8900 9.8900 

DC to DC converter 1 3.1300 3.1300 

 

3.4.5 Energy and Lifetime of the End Node 

The experimental evaluation of energy dissipation by the sensors and the general network is 

explained below. In all scenarios, we estimated the average power expense (data sampling state, data 

transmission state, and deep sleep state). We also estimated the lifespan of the battery that powers 

the end node. A battery that powers the end-node has voltage rating of 3.7 V at power capacity of 

5000 mAh. To calculate the energy expended by the end node, we consider the current drawn by 

each of the individual components at the various aforementioned states. According to the current 

ratings of the devices, the standby current of the pressure sensors is less than 0.15 µA for MS5803 

and 0.5 µA for MBE280. The MCU’s standby current was 28 mA. The RTC was powered by a 

backup coin cell at 3 V, 0.19 A. The sleep currents for the UNO board, MBE280, MS5803-14BA, 

and LoRa transceiver breakouts are 27.9 mA, 0.1 µA, 0.1 µA, and 1 mA, respectively.           

The MBE280 sensors have an average data sampling duration of 1 s at 1.8 µA and the MS5803-

14BA sensors have an average data sampling duration of 1.1 ms at 1 µA. Unlike writing to an SD 

card, the UNO takes an average of 7 ms to complete at a current of 31 mA. In contrast, the SD card 

draws an average of 0.11 mA while sleeping. The sleep state consumed a total current of 28.0112 

mA in this case. The node remained in deep sleep (tsleep) for 3598.653 s. We can calculate the 

amount of charge consumed as the product of sleep duration and the current drawn while sleeping. 

As a result, the charge expended (Csleep, in mAs) was 100,801.869 mAs. Similarly, the end node 

enters a data sampling state for a sampling time (tsamp) of 1.007 s and the consumption (Csamp) of 

31.282 mAs. Here, we define the data-sampling state as the process of measuring data and logging it 

to an SD card. Furthermore, relaying the sampled data to the gateway consumes an average current 

of 28 mA at a transmission time (ttx) of 0.34 s, with a total charge consumption (Ctx ) of 9.52 mAs. 

The complete cycle of the operation includes both the active and sleep times of the end node. During 
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duty cycle d, the amount of energy consumed by this node reaches a maximum value, which is given 

as. 

𝑑 =
𝑡𝑎𝑐𝑡

𝑇
                                                                                      (3.7) 

where T refers to the total time spent in the entire cycle, tact denotes the time at which the device is in 

the wake state. The LGWMS records two (2) measurements (Nsamp) in each data-sampling period, 

with an average sampling time (tavsamp) of 0.34 s. The total charge consumption over the cycle 

(OCcycle) is expressed in (3.8) and the battery cycle in (3.9). 

𝑂𝐶𝑐𝑦𝑐𝑙𝑒 = 𝑁𝑠𝑎𝑚𝑝. 𝐶𝑠𝑎𝑚𝑝(𝑡𝑠𝑎𝑚𝑝) + 𝑁𝑠𝑎𝑚𝑝. 𝐶𝑠𝑙𝑒𝑒𝑝(𝑡𝑠𝑙𝑒𝑒𝑝)           (3.8) 

The number of battery cycles that would be performed on this battery with a given battery capacity 

(Battcap) is. 

𝐵𝑎𝑡𝑡𝑐𝑦𝑐𝑙𝑒 =
𝐵𝑎𝑡𝑡𝑐𝑎𝑝

𝑂𝐶𝑐𝑦𝑐𝑙𝑒
                                                                        (3.9) 

 

Because we need to estimate the battery’s lifespan (Lbatt), the number of battery cycles (Battcycle) must 

be multiplied by the battery cycle time (tcycle). The cycle time is defined as the sum of the sleep time 

(tsleep), measurement time (tsamp), and data transmission time (ttx) in seconds (3.10). 

𝑡𝑐𝑦𝑐𝑙𝑒 = 𝑁𝑠𝑎𝑚𝑝. 𝑡𝑠𝑙𝑒𝑒𝑝 + 𝑁𝑠𝑎𝑚𝑝. (𝑡𝑠𝑎𝑚𝑝 + 𝑡𝑎𝑣𝑠𝑎𝑚𝑝) + 𝑡𝑡𝑥               (3.10) 

𝐿𝑏𝑎𝑡𝑡 = 𝑂𝐶𝑐𝑦𝑐𝑙𝑒. 𝑡𝑐𝑦𝑐𝑙𝑒 =
𝐵𝑎𝑡𝑡𝑐𝑎𝑝

𝑂𝐶𝑐𝑦𝑐𝑙𝑒
. ( 𝑁𝑠𝑎𝑚𝑝. (𝑡𝑠𝑙𝑒𝑒𝑝 + 𝑡𝑠𝑎𝑚𝑝 + 𝑡𝑎𝑣𝑠𝑎𝑚𝑝) + 𝑡𝑡𝑥 )   (3.11) 

By substituting (3.8), (3.9), (3.10), and (3.11), the life span of the battery (Lbatt) that provides energy 

to the end node is calculated as follows. 

𝐿𝑏𝑎𝑡𝑡 =
𝐵𝑎𝑡𝑡𝑐𝑎𝑝. (𝑁𝑠𝑎𝑚𝑝. (𝑡𝑠𝑙𝑒𝑒𝑝 + 𝑡𝑠𝑎𝑚𝑝 + 𝑡𝑎𝑣𝑠𝑎𝑚𝑝) + 𝑡𝑡𝑥)

𝑁𝑠𝑎𝑚𝑝. (𝐶𝑠𝑎𝑚𝑝 + 𝐶𝑠𝑙𝑒𝑒𝑝) + 𝐶𝑡𝑥

       (3.12) 

Using the capacity of the battery used in the experiment and previous numerical values, (3.12) 

produces 177.948 h, which is approximately equivalent to 8 days for the estimation of the battery’s 

lifetime in hours. The total energy expended by the end node (ET) is the sum of the energy expended 
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in data sampling (Esamp), data transmission (Etx), and sleep mode (Esleep). Given that the end-node is 

powered by a 3.3 V supply voltage and that the average sampling time is 1.007 s, the energy 

expended in data sampling will be. 

𝐸𝑠𝑎𝑚𝑝 = 31.0028 mA x 1.0028 s x 3.3 V x 24 

                                                           = 24.623 J 

For the transmission duration of 0.34 s, the energy consumed for relaying data to the gateway is 

calculated as given below. 

𝐸𝑡𝑥 = 28 mA x 0.34 s x 3.3 V x 24 

                                                                = 0.754 J 

Because the node sleeps for 3598.653 s, the energy spent while sleeping is. Esleep 

𝐸𝑠𝑙𝑒𝑒𝑝 = 27.9 mA x 3598.653 s x 3.3 V x 24 

                                                            = 7951.872 J 

 

Consequently, the total energy spent by the end node (ET) per day is. 

𝐸𝑇 =  𝐸𝑡𝑥  +  𝐸𝑠𝑎𝑚𝑝  +  𝐸𝑠𝑙𝑒𝑒𝑝                                        (3.13) 

                        = 24.623 J + 0.754 J + 79518.72 J 

                                                                = 7977.249 J 

Based on the energy calculations, the end node’s total daily energy consumption in both active and 

sleep modes was 7977.249 J. 

3.5 Discussion  

Groundwater monitoring on a regular and affordable cost serves as the foundation for estimating, 

assessing, and forecasting the quantity of this resource. The high cost of commercial instrumentation 

is one of the major impediments to the rapid adoption of WSNs in wider hydrologic applications, 

particularly in developing countries [182], [183], [184]. Ordinary water depth electronic sensors are 

relatively expensive. For example, the Van Essen diver sensor costs approximately $830, and the 

HOBO water depth probe costs approximately $495 per unit. Our redesigned water table depth 

probe, on the other hand, costs approximately $55. The use of potting of high precision electronic 
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sensors and I2C extenders is essential for the success of the construction of water-depth probes for 

the LWNGM system. Moreover, the application of free and open source software has also reduced 

the establishment and operational cost for and may improve sustainability aspect of the LWNGM. 

This finding is consistent with the one reported in [84]. Furthermore, the LWNGM development 

procedure is relatively simple and does not require advanced technical skills. 

Incorporating user-redesigned LoRa tools in the monitoring of environmental phenomena, on the 

other hand, lowers the overall cost of the system while improving efficiency and reliability. The 

game changer that has provided a wider community with LoRAWAN tools is an open-source 

instrument and software [82]. The redesign of off-the-shelf instruments and the deployment of low-

cost WSNs allow communities and organizations with limited resources to adopt this technology 

more efficiently. The LWNGM offers another opportunity for wider adoption in hydrology and other 

fields at a cost less than ($500) comparable commercial solutions (i.e., monitoring systems that use 

the Van Essen water depth probe, which costs approximately ($830). Sending the sensor node into a 

sleep state lowers the duty cycle and increases battery life, which is especially important in low-cost 

and low-power nodes. Ideally, with a sleep mode that brings low duty cycle (<1%), our system used 

approximately 1.343 percent of the battery energy. This is consistent with the findings in [85]. 

Although it takes approximately 1.212 day to fully charge the chosen battery using a mini solar cell, 

it can power the end node for approximately 8 days before it needs to be recharged. Connecting two 

6 V panels in series to charge the 9 V battery that powers the gateway via a 9 V-to-12 V booster, on 

the other hand, produced a promising resource optimization result. This not only saved money, but 

also allowed the gateway to be deployed in off-grid areas. This dependable source of power also 

allows for the prevention of data loss due to power outages. 

Fine-tuning and configuration of network parameters can result in the effective use of LoRa 

technology for efficient communication. The tuning parameters, among other things, allow for the 

optimization of power consumption, signal distance, and data rate. The greater the SF, the greater the 

PDR, and the greater the observed airtime. Similarly, as the airtime lengthens, so does the power 

budget [82].  

Furthermore, the topography and local environment at the site influence signal reception quality. 

Despite its strong modulation technique, LoRa is sensitive to the presence of reflections and 

obstacles. Mnyimbi is a rural area with little vegetation and fewer signal obstacles and reflectors. 



64 

 

These favorable conditions allowed for the majority of the time to be spent installing LWNGM 

nodes in positions that maintain a clear line of sight between LWNGM nodes. The line of least 

resistance to tree leaves was established at 1.5 m for the end node and 3 m for the LoRa-4G-based 

gateway. Despite the slight signal attenuation (due to the tree branches moving with the wind), the 

LoRa signal was found to be stable and reliable. No significant impact on the received signals was 

observed due to the moderate weather conditions, with the mean air temperature and onboard 

temperature both below 40◦C and rain rates below 100 mm/h. The results of our experiments show 

that signals from the LWNGM’s end node arrive at the gateway node correctly (RSSI=83 percent) 

with a low number of retransmissions. The vast majority of packets arrive at the gateway correctly 

(PDR > 80%) and with a reasonable airtime (40 ms). This was accomplished with SF7, CR4/5, a TX 

of 14 dB, a BW of 125, and the CRC enabled. As shown in Figure 3.9, the system reliability level 

demonstrated by the proposed LWNGM is more promising than that presented in [75], [82], [180], 

[181]. 

Two possible explanations for these results are the distance (125 m) and the slightly clear line of 

sight (light vegetation) between the gateway and the end node. The accuracy of the samples 

collected by the sensors has a direct impact on the measurement quality. According to the results, the 

MS5803-14BA sensor data deviated by 1.1 % from the standard measurement performed with a 

beeper. Furthermore, the MBE280 data deviated from standard atmospheric pressure by 0.37 %. The 

linear calibration produced the most accurate results in filling the gaps between the standard 

measurements and the Arduino-based measurements in this case. As a result, data collected by the 

LWNGM system has become more reliable. This is consistent with the results of the study in [84], 

which confirms the applicability of linear calibration in sensor data correction. Furthermore, in order 

to maintain the accuracy of the measurements over time, the effective cable length must be 

recalculated every six months [185]. 

Unlike manual data collection, where the cost of labor and field visits is a significant barrier to 

informed groundwater management, low-cost, automated monitoring with energy harvesting creates 

the potential for continuous observations, especially in low- and middle-income countries. Similarly, 

the quality and reliability of data collected by LWNGM are far superior to data collected using 

traditional methods. This is due to the fact that in traditional data collection practices, errors are 

easily introduced, and missing data points are a common occurrence. 
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3.6 Conclusion  

This chapter has described the design, development, application, and evaluation of an autonomous 

low-power, low-cost IoT-based system with energy harvesting to provide a proof-of-concept for 

practical monitoring of water table depths. The developed LWNGM system consists of four parts: 

data acquisition, data management, energy harvesting and management, and data storage and 

visualization. The developed low-cost solution is built on an open platform. The LWNGM generates 

critical information for more efficient assessment and management of groundwater tables. 

Furthermore, the system’s information down streaming capability allows for additional research in 

the fields of hydrology and sensor networks. 

We potted the electronic sensor and extended the I2C-enabled communication channel up to 25 m 

via a PVC cable, for underwater application in the borehole. The system runs on batteries supported 

by the reliable tiny solar cells. The outstanding efficiency and low cost of redesigned sensor nodes 

and energy harvesters have been evaluated to be the promising alternatives to conventional 

instruments. The prototype system was used to monitor groundwater wells at the Bandamaji station 

in Zanzibar, Tanzania. The system is easily transferable, even to least developed countries, because 

it is built with low-cost components and does not require advanced technical skills. The system 

performed admirably and allowed for near real-time monitoring of changes in water table depth. 

Additionally, the groundwater monitoring network can be expanded to a larger area or even the 

entire country thanks to the inexpensive and simple-to-deploy system that is being proposed. This 

can be done by setting up multichannel outdoor LoRa gateways to link numerous end nodes spread 

throughout the nation. In order to improve the monitoring and evaluation of the aquifers, the system 

also offers the possibility of integrating low-cost water quality sensors.  
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CHAPTER 4 

LONG-TERM GROUNDWATER LEVEL PREDICTION MODEL 

BASED ON HYBRID KNN-RF TECHNIQUE 

 

4.1 Introduction  

This chapter describes the development and evaluation of a hybrid KNN-RF machine learning 

technique that implements research objectives four and five, which state: To develop an efficient 

machine learning model for seasonal prediction of groundwater levels, and To evaluate the 

developed machine learning model using appropriate performance metrics. 

In order to achieve the aforementioned objectives, an ensemble KNN-RF with time series 

preprocessing was developed to predict seasonal variations in groundwater table levels in a data-

scarce environment. Provided with limited and noisy examples, we harness the merits of both 

techniques by combining them in a hybrid manner. Reliable seasonal prediction of groundwater 

levels is not always possible when the quality and the amount of available on-site groundwater data 

are limited. In this chapter, a hybrid K-Nearest Neighbor-Random Forest (KNN-RF) is used for the 

prediction of variations in groundwater levels (L) of an aquifer with the groundwater relatively close 

to the surface (<10 m) is presented. First, the time-series smoothing methods are applied to improve 

the quality of groundwater data. Then, the ensemble K-Nearest Neighbor-Random Forest (KNN-RF) 

model is treated using hydro-climatic data for the prediction of variations in the levels of the 

groundwater tables up to three months ahead. Climatic and groundwater data collected from eastern 

Rwanda were used for validation of the model on a rolling window basis. Potential predictors were: 

the observed daily mean temperature (T), precipitation (P), and daily maximum solar radiation (S). 

Previous day’s precipitation P (reference day(t) − 1), solar radiation S (t), temperature T (t), and 

groundwater level L (t) showed the highest variation in the fluctuations of the groundwater tables. 

The KNN-RF model presents its results in an intelligible manner. Experimental results have 

confirmed the high performance of the proposed model in terms of root mean square error (RMSE = 

0.0031), mean absolute error (MAE = 0.0022), Nash–Sutcliffe (NSE = 0.9346), and coefficient of 

determination (R2 = 0.9387) at 90-day lead-time. 
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The chapter also describes the context of the research, preparation of the data, and the metrics used 

to assess the performance of the hybrid KNN-RF model. It also explains the development, tuning 

and testing of this model as well as the obtained outcomes.  

4.2. Contributions 

The work described in this chapter has made the following contributions: first, it devised and tested 

the performance of the KNN-RF ensemble scheme with limited data; second, it characterized the 

seasonal response of the permeable fractured aquifer in a temperate region with limited groundwater 

studies; and third, it compares the proposed KNN-RF model to conventional groundwater modeling 

techniques (SVM, RF, KNN, and ANN). In doing so, the chapter provides Rwanda's first ML-based 

seasonal approximation of groundwater level. It also sheds light on the novel KNN-RF approach's 

suitability for sub-Saharan semi-arid conditions. 

4.3 Case Study and Data Processing 

This section discusses the characteristics of the area under investigation, the sources, the nature of 

the research data, the preparation of the data, and the evaluation metrics used for the current 

exploration. 

4.3.1. Study Area and Data 

The investigated well is found in eastern Rwanda, which lies between 29.86875E–29.90625E and 

2.30625S–2.26875S with a total area of 9813 km2 (3789 sqmi). This region is relatively flat with the 

altitude ranging between 1000 and 1500 m [186]. During the study period between December 2016 

and December 2018, the majority of the rain showered in the wet season between March and May 

(90%), with rainfall ranges between 450 mm and 500 mm. This is less than when compared to other 

parts of the country, that receive on average between 600 mm and 800 mm annually [187]. The 

eastern province is characterized by the highest evapotranspiration rate in Rwanda. The average 

annual temperature varies between 15.70 °C and 24.20 °C. The average minimum temperatures 

(13 °C–16.65 °C) are recorded in May and June, while the maximum average temperatures 

(24.3 °C–30.3 °C) are recorded in July and September [187]. The eastern province is the most 

populated area in Rwanda [188], and is heavily reliant on groundwater as a source of fresh water. 
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The groundwater abstraction rate is 742 m3/h, while the demand is estimated to be between 3069 and 

7672  m3/h [189]. This area has highly heterogeneous types of aquifers. Those aquifers range from 

low permeable fractured (schist), which is located in Rugarama; permeable fractured (quartzite) 

located in Mukarange; and fractured (granite), which is found in Ruhuha. The Rwanda Water and 

Forestry Authority (RWFA) has groundwater stations in each of those three aforementioned areas. A 

summary of the monitoring well and its features are shown in Table 4.1. 

Table 4.1 Summary of the selected monitoring well and its main features 

Station ID    Name  Latitude Longitude   Aquifer   Availability of  

data 

Data 

time resolution 

 F6  Kayonza-   

Mukarange 

1.89874154 30.5065299 Permeable 

Fractured 

 Dec 3, 2016- 

Dec 30, 2018  

               Daily 

 

Groundwater data for 2016, 2017, and 2018 were gathered from the Rwanda Water and Forestry 

Authority (RWFA). Weather records (precipitation, solar radiation, and temperature) are available 

for a longer period, and researchers decided to use only data matching to the observational period of 

the groundwater level. Weather data (precipitation, solar radiation, and temperature) for the period of 

two years, from 3 December 2016, to 30 December 2018, were obtained from nearby weather 

stations (Kawangire, Kibungo, and Nyagatare) that are operated by the Rwanda meteorological 

agency (Meteo-Rwanda). Temperature is a daily minimum and maximum observed metric measured 

in Celsius, daily precipitation is recorded in millimeters, while groundwater level is measured in 

centimeters obtained from two measurements of groundwater depth per day. For consistency 

reasons, the groundwater unit was converted into meters. Solar radiation is measured in watt per 

meter square (W/m) and is included in the study because it influences the evaporation and 

evapotranspiration [190]. The locations of the groundwater and weather stations in the case study are 

depicted in Figure 4.1. 
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Figure 4.1 Map of Rwanda shows the location of the groundwater monitoring wells and weather stations in the eastern province. 

 

The eastern province has the highest number of boreholes and shallow wells in Rwanda. Generally, 

the eastern part has high-localized fractured aquifers with moderate groundwater yields, as 

represented in Figure 4.2. Alluvium based aquifers are mostly connected to fast-flowing rivers. 

These aquifers exhibit high groundwater potential in the eastern province [189]. The studied aquifer 

(Mukarange) is made of quartzite rocks fused on a schist base with a relatively high yield. 
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Figure 4.2 Eastern Province, Rwanda. Map shows hydrogeological features of the study area [76]. 

4.3.2 Data Preparation 

The state of the input data is one of the key factors that determines the level of accuracy of ML-

based predictions. Preprocessing and rectification of the variables ensure that all features receive 

equal attention throughout the training process [117][136][141]. A total of 759 daily observations 

from each of the above-mentioned stations were analyzed and prepared before application to the 

designated task [191]. Water level data were available on 12 h intervals and precipitation and 

temperature data were on a 24 h basis. In order to set common time intervals, we converted 

temperature and levels to daily averages. Data preparation was carried out with Python (3.6.6) 
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programming language using Pandas, Numpy, Matplotlib, and SciPy data analysis libraries [192]. 

The RF, SVR, ANN, KNN, and KNN-RF models for prediction of groundwater levels were also 

realized in Python using the Scikit-Learn machine learning library (version 0.20) [193]. 

Water level data were available between 3 December 2016, and 30 December 2018. Weather data, 

including precipitation, temperature, and solar radiation data between 2010 and 2018 were acquired, 

and weather data between December 2016 and December 2018 that correlated to the water level data 

were utilized in the experiment. Evapotranspiration is one of the key factors that influence 

groundwater level oscillations [117]. Since evapotranspiration data were not available, solar 

radiation data were successfully substituted instead, as suggested in [194], [195]. Temperature and 

groundwater level (GWL) data were converted to mean values to reduce variance among data points 

as recommended by  [196], [197]. During the analysis of the data, it was discovered that 

groundwater data had irregular patterns. Then, the time-series data filtering method (exponential 

moving average) was also used to improve the quality of that data. The exponential weighted 

moving average (rolling mean) produced a superior output of the groundwater level samples. This 

not only filtered the data, but also revealed long term trends from the data. The exponential rolling 

mean of a sequence 𝑆 = (𝑥1, 𝑥2, . . . , 𝑥𝑘), is: 

𝑆𝑘 = 𝛼 ∑𝑘
𝑗=1 (1 − 𝛼)𝑗𝑥[𝑘 − 𝑗],                                         (4.1) 

 𝛼 = 1/(1 + 𝑖𝑑𝑐), 𝑖𝑑𝑐 ≥ 0,                                                    (4.2) 

 

where 𝑆𝑘 is the filtered data, 𝑘 is the size of 𝑆, 𝛼 is the decay in the interval [0,1], 𝑖𝑑𝑐 is the initial 

value of the decay and 𝑥 is the input data. As the exponential weighted average is calculated, the 

decay 𝛼 value decreases exponentially in such a way the most recent observations are assigned 

higher weights than the old ones. For proper scaling of the time-series data, for each stage the 

features(𝑋𝑗) were converted in the range between -1 and 1 with the formula: 

𝑋𝑠 =
𝑋𝑗−𝑋𝑚𝑒𝑎𝑛

2𝑋𝑚𝑎𝑥
,                                        (4.3) 
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where, 𝑋𝑠 stands for standardized value, 𝑋𝑚𝑎𝑥, and 𝑋𝑚𝑖𝑛 is the maximum value and minimum value 

of the features to be scaled, respectively. Despite the effort made to improve the samples, data from 

two of the observation boreholes (Ruhuha and Rugarama) found to be incurable. Therefore, only one 

borehole (Mukarange) with 759 observations is considered for the current investigation. Then this 

groundwater level data was matched with weather data recorded in the same time period (2016-

2018) from the nearby station located between -1.81 latitude and 30.43 longitude in Kawangire. The 

useful preprocessed dataset is shown in the pair-wise plots in Figures 4.3, 4.4, and 4.5. The time 

lagged water table predictors have great positive effects on the estimated levels [198]. Thus, the 

smoothed Mukarange data was then converted into four days time lags (𝑡 − 1, 𝑡 − 2, 𝑡 − 3, and 𝑡 −

4) for better comparison of all the models. More details about these lags is given in the methodology 

section. 

 

 

Figure 4.3 Time series plot of precipitation and groundwater level collected from the Mukarange monitoring borehole. 
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Figure 4.4 Time series plot of temperature and groundwater level collected from the Mukarange monitoring borehole 

 

 

Figure 4.5 Time series plot of solar radiation and groundwater level collected from the Mukarange monitoring borehole 
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From Figure 4.3, Figure 4.4 and Figure 4.5, it is quite clear that in dry periods (June–August and 

January–February) there are noticeable declines in groundwater level (GWL), during the study 

interval (December 2016 to December 2018). This could be connected to the higher evaporation rate, 

reduced replenishment, and increased groundwater withdrawals due to excessive temperatures in the 

studied area. Conversely, higher GWLs are observed during wet periods (March–May and 

September–December), which can be attributed to increased groundwater restoration and reduced 

abstractions. 

 

4.3.3 Model Performance and Evaluation Measures 

It is important that the prediction model is properly evaluated to assess its performance [199], [200]. 

We estimated the predictive ability of the KNN-RF ensemble model on groundwater levels and 

evaluated it against SVM, KNN, RF, and ANN models based on mean absolute error (MAE), root 

mean square error (RMSE), the Nash–Sutcliffe efficiency coefficient (NSE), and the coefficient of 

determination (R2). MAE, RMSE, and R2 were selected because they limit the bias of models against 

acute events [200]. In addition, MAE and RMSE provide a finer comparison between models, 

especially in data-scarce situations [200]. NSE is another efficient coefficient used to gauge the 

relative magnitude of residual variance against the variance of observational data [201][200][202]. 

MAE, RMSE, and R2 range between 0 and 1, while NSE is between −α and 1. The highest 

agreement between the estimated and observed values is reached when MAE = 0, RMSE = 0, NSE = 

1, and R2 =1. All measurements of the performance of the models were conducted using the 

hydrostats library (a Python package designed distinctively for hydrology studies) [203]. MAE, 

RMSE, NSE, and R2 are defined as: 

𝑀𝐴𝐸 =
1

𝑛
∑𝑛

𝑖=1 |𝑄𝑖
𝐸 − 𝑄𝑖

𝐴|,                                            (4.4) 

 

                                                       𝑅𝑀𝑆𝐸 = √∑𝑛
𝑖=1 (𝑄𝑖

𝐸 − 𝑄𝑖
𝐴)2,                                   (4.5) 

 

                                                       𝑅2 =
∑𝑛

𝑖=1 [(𝑄𝑖
𝐸−𝑄𝑖

𝐸
)(𝑄𝑖

𝐴−𝑄𝑖

𝐴
)]2

∑𝑛
𝑖=1 (𝑄𝑖

𝐸−𝑄𝑖

𝐸
)2 ∑𝑛

𝑖=1 (𝑄𝑖
𝐴−𝑄𝑖

𝐴
)2

,                                (4.6) 
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𝑁𝑆𝐸 = 1 −
∑𝑛

𝑖=1 [(𝑄𝑖
𝐸−𝑄𝑖

𝐴)]2

∑𝑛
𝑖=1 (𝑄𝑖

𝐴−𝑄𝑖

𝐴
)2

,                                        (4.7) 

 

where QE is the estimated change in groundwater level, QA is the actual or observed groundwater 

level, and n is the total number of input data points. 

4.4 Realization and Evaluation of the Ensemble KNN-RF Method 

The principal ambition of this study was to propose a decisive model to characterize the seasonal 

response of the fractured aquifer in eastern Rwanda, through quantification of seasonal deviations in 

water table depths in data-scarce situations. There is a requirement [204][205][12] for accessible and 

simple tools that offer actionable insights for the adaptive management of groundwater resources on 

a seasonal basis. With that requirement in mind, we propose to estimate seasonal groundwater levels 

using an innovative ensemble KNN-RF model with an exponentially weighted average preprocess of 

three predictors (solar radiation, precipitation, and temperature). The workflow of predictive 

modeling and validation setup is illustrated in Figure 4.6. 
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Figure 4.6 Flow chart of the KNN-RF method 

 

Potential features are selected from the collected data. Solar radiation, precipitation, temperature, 

and GWL data are refined and scaled for proper format and, subsequently, the candidate machine 

learning models are chosen. The two models (RF and KNN), both of which are non-complex and 

capable of working with both small and big datasets [206][207][126], are combined to overcome the 

disadvantages of small datasets as well as enhance predictive accuracy. In the final step, the models 

are tested and compared against NSE, MAE, RMSE, and R2 using both estimated and observed 

groundwater data. A rolling window testing and validation method is employed and the most 

effective and useful model is determined based on the performance contrasts. This is most suited for 

the temporal nature of time series data[208], since the size of training and validation sets are 

sampled with respect to the desired forecast length (corresponding to 15, 30, 60, and 90 days) at the 

end of the series. A model that can be easily adopted using the available information, particularly in 

resource scarce areas, will be most feasible and practical for sensible decision making on 

groundwater resources. 
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4.4.1 Development of the KNN-RF Ensemble 

Focusing on the improvement of seasonal predictions, a hybrid KNN-RF technique is developed and 

validated. As indicated in the Introduction section, the RF and KNN methods have good data-

representation ability; however, these methods do not perform optimally when fed with tiny datasets. 

To overcome this limitation, we merge the above models in a hybrid manner. The two base 

regressors, KNN, and RF are fitted on the whole training set and, using the test set, the models yield 

predictions individually. The results are then averaged to produce the final result. The final result of 

the KNN-RF ensemble is given by: 

𝜇(𝑥) =
1

𝑁
∑𝑁

𝑛=1 𝜔𝑛𝑝𝑛(𝑥),                                           (4.20) 

where μ(x) is the final weighted average result of the ensemble model, ωn is the weight allocated to 

the nth regressor, which is based on the MSE performance; pn is the prediction from nth model; x is 

the sample data points. The ensemble based on the KNN-RF method enhances predictive 

performance in the following aspects [209]. 

1. Supports using fewer samples to adequately represent data distribution. 

2. Limits the generalization error. 

3. Controls variance in a small dataset. 

4. Relieves the processing burden for model selection. 

Uniform weights are assigned to all estimators in the KNN-RF model. The base RF model is set to 

perform bootstrapping on the training subset, which reduces similarities in the trees. This, therefore, 

benefits the performance of the model provided that a small number of training examples are 

accessible. The KNN base model is set to use the distance between data points as the proximity 

criterion. Tuning parameters for KNN-RF are leaf_size, metric, random_ state, n_jobs, 

n_neighbors, 𝑝, and weights. 

4.4.2 Tuning Parameter and Input Selection 

During the training phase, the appropriate tuning parameters are chosen based on the model 

performance gains to establish the proper architecture for each model. The following describes how 

the optimal model's hyper-parameters and input feature combinations were identified and tested in 

the Scikit-Learn framework. For KNN, the Chebyshev, Minkowski, Euclidean, and Manhattan 
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length metrics were tested. The Minkowski measure emerged as the best choice  [210]. The ideal 

value of K was found using a grid-search procedure [211], and it varied with the sample size, which 

was determined by the prediction range (more details about the portions of the sample used for the 

adjustments and testing of the models are given in the next subsection). For ANN, the trial-and-error 

technique was used to determine the finest number of hidden layer neurons based on the least RMSE 

[147], [212], [213]. Fourteen hidden neurons produce the best output. The adaptive learning (Adam) 

optimization scheme was found to be the most suitable for the dataset used in the current 

investigation [214]. The ReLU, linear, and tanh activation functions were tested and resulted in 

ReLU enumerating the most precise results [132][215]. 

Considering the SVR, the most appropriate values of the epsilon, cost, gamma, and the kernel (rbf, 

poly, sigmoid) were verified using the trial-and-error technique [147] producing the best factors of 

0.01, 1.0, scale, and RBF, respectively [216]. For RF and KNN-RF, the ideal number of estimators is 

calculated using the grid search procedure [217]. The number of learners affects the processing 

speed of the model. Whilst a large number of learners improves the reliability of the model, it also 

slows down processing speed [141]. The ideal number of estimators is 200, max_depth of the trees is 

15, leaf_size is 30, max_feature is n _feature, min_sample_leaf is 1, random_state is none, n_jobs is 

1, and min_split is 2. Similarly, the n_neighbors is 3 when the prediction period is 15 or 30 days, and 

2 when the prediction period is 60 or 90 days, p is 2, metric is Minkowski, random _ state is 0, and 

weights is distance. 

For proper and comparable evaluation of the models, the input series of the time lagged 

precipitation, groundwater level, temperature, and solar radiation were arranged in twelve 

combinations: P (t − 1) L (t) T (t) S (t), P (t − 2) L (t) T (t) S (t), P (t − 3) L (t) T (t) S (t), P (t − 4) L 

(t) T (t) S (t), P (t) L (t) T (t) S (t − 1), P (t) L (t) T (t) S (t − 2), P (t) L (t) T (t) S (t − 3), P (t) L (t) T 

(t) S (t − 4), P (t) L (t) T (t − 1) S (t), P (t) L (t) T (t − 2) S (t), P (t) L (t) T (t − 3) S (t), and P (t) L (t) 

T (t − 4) S (t). Once the best parameters and input arrangements were established, the KNN − RF, 

SVM, ANN, RF, and KNN models were trained as described in the next subsection. 
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4.4.3 Training and Testing of the Model 

When it comes to the training and evaluation of the models, time series predictive modeling has 

numerous distinctive traits and peculiarities that need a different approach to supervised learning 

problems [208]. There are intrinsic interrelationships between the data points measured across time, 

and during the training and testing of the models, the temporal structure of the series needs to be 

maintained. Typically, the arbitrary splitting of the time series dataset from different points in time is 

irrelevant to time-based data because it causes inherent biases [208]. The rolling window or walk-

forward validation is best suited for time series-based forecasting as it facilitates updating of the 

predictions as new data come in. In this approach, the holdout values are sampled at the end of the 

dataset temporally. Figure 4.7 shows a graphic demonstration of the rolling windows validation 

procedure. 

 

Figure 4.7 Diagram of the time series 4-sliding window validation method. Adapted from [208]. 

 

The size of the holdout sample is determined by the prediction scope and, therefore, the width of the 

rolling window is equal to the desired forecast length. The training and validation of the KNN-RF, 

ANN, SVM, RF, and KNN models was conducted with the rolling window technique. It was 

completed using four different portions of training and holdout values corresponding to the 

prediction of 15-day-ahead (t + 15), 30-day-ahead (t + 30), 60-day-ahead (t + 60), and 90-day-ahead 

(t + 90). The training and validation percentages for these prediction horizons were 
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88.1423−11.8577, 92.0949−7.9051, 96.0473−3.9527, and 98.0237−1.9763, respectively. The trained 

models that were used for prediction are explained in the next subsection. 

4.4.4. Prediction of Seasonal Changes in Groundwater Depths 

In this work, seasonal forecasting is the forecast of 90 days lead-time groundwater level variations. 

For comparison, other prediction periods of 15, 30, and 60-day were also evaluated. As previously 

explained, the 15, 30, 60, and 90 days predictions were implemented by changing the size of the 

hold-out sample. 

4.5  Experimental Results and Discussion 

The predictive capacity of the KNN-RF technique was investigated and the results were compared to 

the four general models. The results of the 15, 30, 60, and 90 days lead-time groundwater level 

predictions at the Mukarange borehole using the KNN-RF, RF, SVM, ANN, and KNN models are 

presented in Figure 4.8. According to Figure 4.8, at all horizons the KNN-RF model achieved the 

best performance with respect to NSE,MAE,RMSE and R2 values. For this model, the RMSE values 

range between 0.0030 and 0.0035, while NSE values were between 0.913 and 0.9741 during the 

validation stage. The KNN model obtained the best results for the short term (15–30 day-ahead), 

while RF obtained improved accuracy for long-range (60–90 day-ahead) estimations. The SVR 

model tried to catch up with the long changes of the levels and outperformed the ANN model. 

Similar findings were reported in the studies that compared the above methods for the modeling of 

groundwater tables [218][144][219]. At all lead times, the ANN method overpredicted the observed 

values. The low performance of the ANN method in training and testing phases on small-sized 

samples could be attributed to the data requirements of this model [220]. Compared with the RF, 

ANN, and SVM models, the KNN model had higher performance scores. This is in contrast with the 

outcomes reported by Rahmati et al. [221]. Meanwhile, RF is found to be superior to the SVM 

model, which is consistent with the conclusion made by Naghibi et al. [222]. 
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Figure 4.8 Comparison of the performance obtained by the SVR, ANN, RF, KNN, and KNN-RF models on groundwater level 

prediction for: (a)  15 day lead-time, (b) 30 day lead-time (c) 60 day lead-time, and (d) 90 day lead-time. 

 

From Table 4.2 and Table 4.3, the highest accuracy of the KNN-RF for different horizons was 

achieved with precipitation (P−1), solar radiation S (t), temperature T (t), and groundwater level L (t) 

time-lags in the testing phase. The most accurate outcomes are shown for the prediction at 15-days 

ahead. It is also seen that the accuracy of the forecasted results declines with the length of the 

prediction. These results are in corroboration with the studies in [112], [149]. Conversely, the 90-day 

prediction obtained better results than 60-day prediction. The largest difference between the MAE 

and RMSE values is perceived for the 60-day predictions. The R2 criterion values showed higher 

importance for longer lead-times, while NSE provided the overall description of the predictive 

power of the models. 

 

Table 4.2 Performance evaluation results for 15, 30, 60, and 90 days lead-time groundwater level variations using the KNN-RF model. 
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   L(t+15)       L(t+30)       L(t+60)       L(t+90)    

Input 

arrangement  

 RMSE   MAE   𝑹𝟐   RMSE   MAE   𝑹𝟐   RMSE   MAE   𝑹𝟐   RMSE   MAE   𝑹𝟐  

P(t-1)S(t)T(t)  0.0022   0.0019   0.9791   0.0026   0.0020  0.9619  0.0036 0.0025  0.9185  0.0031 0.0022 0.9387  

P(t-2)S(t)T(t)   0.0061   0.0050   0.8397   0.0069   0.0050   0.7114  0.0068  0.0051  0.7049   0.0065   0.0048   0.7143  

P(t-3)S(t)T(t)   0.0054   0.0043   0.8909   0.0064   0.0047  0.7527   0.0059   0.0044   0.7948   0.0059   0.0044   0.7807  

P(t-4)S(t)T(t)  0.0049   0.0042  0.9179   0.0069   0.0051  0.7739   0.0056   0.0042   0.7989   0.0057  0.0043   0.7882  

P(t)S(t-1)T(t)   0.0060   0.0051   0.8401   0.0067   0.0051   0.7308   0.0064   0.0048  0.7454   0.0061   0.0046   0.7660 

P(t)S(t-2)T(t)   0.0060   0.0051  0.8749   0.0061   0.0048   0.7872   0.0059   0.0047  0.7993  0.0061   0.0046   0.7706  

P(t)S(t-3)T(t)   0.0058   0.0048   0.8639   0.0065   0.0048   0.7438  0.0059   0.0044   0.7948   0.0059   0.0044   0.7783  

P(t)S(t-4)T(t)  0.0058   0.0050  0.8635   0.0062   0.0049  0.7739  0.0061   0.0049  0.7537   0.0057   0.0044   0.7840 

P(t)S(t)T(t-1)   0.0061   0.0050  0.8391  0.0065   0.0049   0.7577  0.0065   0.0049   0.7408  0.0065   0.0048   0.7277 

P(t)S(t)T(t-2)   0.0061  0.0050   0.8411   0.0065   0.0049   0.7601  0.0065   0.0049   0.7518   0.0062  0.0046   0.7553  

P(t)S(t)T(t-3)   0.0058   0.0048  0.8539   0.0064   0.0048  0.7545   0.0062   0.0048   0.7646  0.0059  0.0046   0.7711  

P(t)S(t)T(t-4)   0.0057   0.0047  0.8663   0.0066   0.0049  0.7312   0.0062   0.0048  0.7578   0.0059   0.0045   0.7679  

T represents temperature, L represents groundwater level, S represents solar radiation, and P represents precipitation. The highest R2 

and lowest MAE and RMSE are in bold. 

 

Table 4.3 NSE performance evaluation results for 15, 30, 60, and 90 day-ahead groundwater level predictions using the KNN-RF 

model. 

  L(t+15)   L(t+30)   L(t+60)   L(t+90)  

Input arrangement          

P(t-1)S(t)T(t)   0.9741   0.9540  0.9130   0.9346 
P(t-2)S(t)T(t)   0.7957   0.6792  0.6657   0.6898  

P(t-3)S(t)T(t)   0.8385   0.7239  0.7532   0.7483  

P(t-4)S(t)T(t)   0.8697   0.6798  0.7720   0.7595  

P(t)S(t-1)T(t)   0.7987   0.6977  0.7083   0.7267  

P(t)S(t-2)T(t)   0.8014   0.7458  0.7488   0.7290  

P(t)S(t-3)T(t)   0.8105   0.7136  0.7532   0.7431  

P(t)S(t-4)T(t)   0.8160   0.7373  0.7339   0.7659  

P(t)S(t)T(t-1)   0.7934   0.7168  0.6968   0.6951  

P(t)S(t)T(t-2)   0.7933   0.7173  0.7023   0.7212  

P(t)S(t)T(t-3)   0.8133   0.7256  0.7274   0.7456  

P(t)S(t)T(t-4)   0.8214   0.7055  0.7260   0.7430  
T represents temperature, L represents groundwater level, S solar radiation, and P represents precipitation. The highest 𝑁𝑆𝐸 are in 

bold. 

 

Figure 4.9 delineates the results of the comparison of the relationships between the actual and KNN-

RF estimated groundwater levels for different horizons. These results show that there is high 

association between the actual and estimated levels for all four-time horizons. The 15-day range 

exhibits the largest value of R2, since most of the predictions are closer to the straight line. It was 

also found that the 60-day prediction range showed the relatively lowest value of R2 compared to 
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other ranges. This also supports the results presented in Figure 4.8, which showed higher error 

values for the 60-day prediction stage than those of the other predictions. Similarly, the hydrographs 

in Figure 4.10 show that the KNN-RF technique reproduced and fairly represented the seasonal 

oscillations of the depths of the groundwater tables. However, it is quite obvious that the 60-day 

prediction is not as accurate as the predictions for other time-horizons. 

 

Figure 4.9 Assessment of the actual and the estimated groundwater levels of the optimal KNN-RF model for 15, 30, 60, and 90 days 

(corresponding to a–d, respectively) lead time in the testing phase. 
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Figure 4.10 Comparison of the 15, 30, 60, and 90 days (corresponding to a–d, respectively) estimated and the actual levels yielded by 

the optimal KNN-RF technique 

. 

The results obtained have also demonstrated the significant role of input and tuning parameter 

selection. The combinations of solar radiation, temperature, precipitation, and previous groundwater 

level with an appropriate time-lag improved the seasonal estimation of the groundwater heights. It 

was found that for the KNN-RF technique, the lagged precipitation improved NSE, MAE, RMSE, 

and R2 scores, for 32.6%, 53.19%, 51.57%, and 27.38%, respectively. This suggests that there is a 

huge potential for the infiltrated and percolated rain water to raise the groundwater table for the 

Mukarange aquifer. The hydrographs in Figure 4.10 show high agreement between observed and 

predicted water levels which implies that the KNN-RF has higher level of multi-step prediction 

accuracy. 
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For feature selection, Lindsey et al. [194] and Kelly et al. [195] showed that the use of solar 

radiation as a substitute for evapotranspiration as a suitable option for capturing the dynamics of 

groundwater depth. Our results confirmed the high influence of solar radiation on the long-term 

variability of groundwater levels in the semi-arid area. 

Results also confirmed that tuning parameters have a great influence on the model’s final results. 

These parameters led to an improved generalization capability for all models. Considering the SVR, 

it was found that RBF yielded the best performance, while epsilon and gamma are the most 

influential parameters for the determination of the appropriate architecture of the SVR model. This is 

in corroboration with the findings in [136]. With six (6) input features, the finest number of nodes in 

the hidden layer of the ANN was found to be 14, which is consistent with the conclusion reached by 

Kayzoglu et al. [223]. Whilst the adaptive learning scheme and the ReLU function are commonly 

used with large datasets, our results suggest that these parameters can also work well with a limited 

dataset. One of the possible reasons for this outcome is the sparsity of the available samples. We 

found that limiting the number of learners to 200 and the depth of the trees to 15 had positive effects 

on the generalization ability of the RF model and overcame the overfitting issue on the Mukarange 

dataset. The best results for the KNN-RF, SVM, and ANN methods were achieved with the 

structures presented in Table 4.4. 

Table 4.4 Summary of the selected parameters during training of the SVR, ANN, and KNN-RF models. 

SVR   ANN  KNN-RF 

Epsilon: 0.0100  Epsilon: 1e-04  Epsilon: 0.0100  

Kernel: RBF  Hidden layer: 1  Number of trees: 200 

Gamma: Scale  Hidden layer neurons: 14  Maximum depth: 15  

Soft-margin(C): 1.0000  Activation function: ReLU  Weights: distance  

Support vectors: 137  Learning mode: Adaptive Metric: Minkowski 

Degree: 3  Max-iterations: 500  Number of estimators: 50  

 Training algorithm: Adam  Algorithm: Auto  

 

4.6 Conclusions 

This chapter has described the development and validation of performance and capacity of an 

ensemble KNN-RF regression approach in predicting seasonal groundwater levels for the fractured 

aquifer with limited data. Groundwater level data and its significant meteorological drivers (solar 

radiation, temperature, and precipitation) collected from Mukarange in eastern Rwanda were used 
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for the analysis. From the experimental analysis, it was found that the KNN-RF ensemble approach 

is stable with enhanced generalization competence and prediction accuracy. The results also 

indicated that, by using the sliding window validation procedure, the KNN-RF model captured 

slightly well with the time-based changes in the depths of the groundwater tables. Inclusion of the 

solar radiation as a substitute for evapotranspiration resulted in an improved prediction accuracy. 

The results of the study suggest that KNN-RF is well-suited for the forecasting of seasonal variations 

in groundwater depths with limited samples. The values of the analytical measures showed that, in 

all prediction ranges, the KNN-RF technique achieved the most promising results compared to those 

obtained by the ANN, KNN, SVM, and RF models. The NSE and R2 values of the ensemble KNN-

RF technique were higher than those yielded by the above methods, and the values of RMSE and 

MAE of the ensemble KNN-RF were smaller than those produced by the other methods. The 

research used data from one groundwater observation station over a short duration, and it has been 

concluded that more data could improve the predictive accuracy of the model. This can be achieved 

simply and effectively by updating the model as data become available, since a sliding window 

method has been used. In addition, the KNN-RF model was shown to be an advanced alternative to 

the SVR, KNN, RF, and ANN models. The results from this study would be useful for the planning 

and management of groundwater resources. Our proposed model could be readily transferable or 

adapted to other areas, specifically those with similar aquifers where the availability and quantity of 

data is challenging. 
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CHAPTER 5 

AN ENSEMBLE MODE DECOMPOSITION COMBINED WITH 

SVR-RF MODEL FOR PREDICTION OF GROUNDWATER 

LEVEL: THE CASE OF EASTERN RWANDAN AQUIFERS 

 

5.1  Introduction 

This chapter presents a machine learning predictive technique that combines SVR and RF methods 

with the use of an EEMD preprocessing approach to provide an improved prediction model for 

achieving objectives five and six. The chapter also compares the seasonal prediction performance 

with that of the conventional methods.  

Modelling and prediction of groundwater table is one of the strategic practices for more effective 

utilization, planning and adaptation of this scarce resource. Machine learning (ML) methods are 

gaining prominence with advance in modelling of water resources. However, there is limited 

practical usage of ML owing to some limitations such as a deficiency of hydrologic data and the 

complexity of groundwater system. This chapter's predictive model used groundwater tables and 

associated weather data from Eastern Rwanda to predict variations in water table depths using a 

hybrid SVR-RF with ensemble empirical mode decomposition (EEMD) preprocessing (EEMD-

SVR-RF). Historical time-series air humidity, temperature, solar radiation, precipitation, and 

groundwater levels from Rugarama and Mukarange observatory stations were utilized to calibrate 

and evaluate the methods. These datasets show high relevance in predicting water table depths up to 

three-month lead time using the proposed methodology. For both sites and all prediction time steps, 

the EEMD-SVM-RF method demonstrated relatively higher accuracy and performance. At 90-day 

lead-time, the enhanced model obtained 0.9608 of the coefficient of determination (R2) compared to 

0.911, 0.9367, and 0.4818 obtained by the EEMD-SVM, EEMD-RF, and EEMD-ANN, respectively. 

Likewise, the proposed method obtained slightly higher Nasch-Schimitt efficiency (NSE) of 0.9586 

compared to 0.8903, 0.4598, and 0.9092 for the EEMD-SVM, EEMD-ANN, and EEMD-RF at 

nighty-day prediction horizon, respectively. These results affirm the applicability of the EEMD-

SVR-RF method to groundwater forecasting even with limited hydrologic data.  
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5.2  Contributions 

The contribution of the work presented in this chapter is two-fold. First, it presents the only attempt 

implementing a hybrid SVR-RF with EEMD preprocess for groundwater prediction. Second, it 

shares the practical application of the ML-based to seasonal prediction in temperate sub-Saharan 

African aquifers. 

5.3  Materials, Tools and Methodology 

5.3.1 Case Study and Available Data 

The study area, Eastern province in Rwanda, lies between   29.86875E – 29.90625E and 2.30625S -

2.26875S and covers 9,813 km2. The weather in the study area between the months of July to 

September, is sunny and dry, with average maximum temperatures ranging between 24.3oC and 

30.3oC, whilst the between May and June the minimum average temperature ranges between 13oC 

and 16.65oC. The period between March and May is the wet season with rainfall ranging between 

450 mm and 500 mm. 

Two observational wells were considered for this study. One of the wells (Mukarange) is in a low 

permeable aquifer in Kayonza, while the other (Rugarama) is found in a permeable aquifer in 

Gatsibo (Figure 5.1). Rwanda Water and Forestry Authority (RWFA) is in charge of these boreholes. 

RWFA provided the water table depths time series from these boreholes for the period from 

December 3, 2016 to October 30, 2020 (see Table 5.1).  The RWFA groundwater measurements 

were taken at 12-hour intervals. Therefore, we transformed these measurements to daily average 

values in order to calculate mean levels. 
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Figure 5.1 Study area and location of groundwater stations (Rugarama and Mukarange) and Kawangire weather station in Eastern 

Province- Rwanda. 
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Weather data for the study period of 2016 to 2020 was acquired from the Kawangire weather station 

(managed by Rwanda Meteorological Agency - MeteoRwanda).This station is common to both 

Mukarange and Rugarama groundwater observatory stations. The data are the minimum and 

maximum air temperature (oC), average daily air humidity (in percentage g/m3), daily precipitation 

(mm) and daily solar radiation (W/m2). Temperature data were converted to mean values to provide 

all data in the same time-interval. Figures 5.2 and 5.3 represent the hydro-climatic data gathered 

from the above mentioned organizations. 
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Figure 5.2 The relationships between Rugarama groundwater level and the weather parameters (a) air humidity (b) solar radiation (c) 

precipitation (d) air temperature 

 

Figure 5.3 The relationships between Mukarange groundwater level and the weather parameters (a) air humidity (b) solar radiation (c) 

precipitation (d) air temperature 

5.3.2 Initial Data Preparation and Tools 

All experiments were carried out in the Python 3.6 environment, and the Numpy, Scikit-learn, 

Hydrostats, Matplotlib, CSV, and Pandas libraries were used.   To reveal the underlying features for 
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the prediction model, the raw data are cleaned and scaled. The features are scaled between -1 and 1, 

using Equation 5.1. After that, the temperature and groundwater measurements were averaged on 

daily basis, using Equation 5.2. 

𝑋𝑐 =  
𝑋𝑟 −  𝑋𝑚𝑖𝑛

2𝑋𝑚𝑎𝑥
                                                                         (5.1) 

       𝑋𝑚 =   
∑ 𝑥𝑖

𝐾
𝑖=1

𝐾
                                                                               (5.2) 

 

where, 𝑋𝑚 is the calculated mean value of the data points, 𝑥𝑖 is the individual data points, and   𝑘  is 

the total number of the data points in the observation. 

5.3.3 Methods 

The development  

5.3.3.1 EEMD –SVR-RF Approach 

The preprocessing of the normalized dataset is performed using EEMD, which extracts suitable 

information from the samples. Thereafter, the transformed and well formatted data with higher 

signal to noise ratio is then fed to the SVR-RF hybrid model as well as the SVR, ANN, and RF 

models for calibration and testing of these models, as depicted in Figure 5.4. The SVR-RF model 

uses the data to predict possible changes in water table depth using Equation 5.3. The outcomes from 

these models are compared to determine the best performing method. 
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Figure 5.4 Schematic layout of EEMD –SVR-RF  method. 

 

 

𝜇(𝑥) =
1

𝐾
∑

𝐾

𝑘=1

𝜔𝑘𝑝𝑘(𝑥)                                                            (5.3) 

where, 𝜇(𝑥) is the final weighted average result of the SVR-RF model, 𝑝𝑘 is the prediction from 𝑘𝑡ℎ 

model,  𝜔𝑘 is the weight allocated to 𝑘𝑡ℎ regressor, and 𝒙 is the sample data points. 

The IMFs of different frequencies extracted from Rugarama and Mularange datasets are depicted in 

Figure 5.5. 
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Figure 5.5  Decomposed levels for (a) Rugarama and (b) Mukarange groundwater data. 
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5.3.3.5 Data Split, Training and Evaluation of the Models 

The EEMD-SVR-RF models with Rugarama and Mukarange water table depth predictors were fitted 

on rolling windows mode (15, 30,60, and 90-day prediction horizons) in turn, and evaluated based 

on Root Mean Squared Error (MSE), Nash-Schmitt efficiency (NSE), Coefficient of determination 

(R2), and Mean Absolute Error (MAE) which are presented in equations 5.4, 5.5, 5.6, and 5.7. The 

hydrostats python library was used to calculate these statistical performance measures. The subsets 

of the training examples and test data are outlined in Table 5.2. 

𝑁𝑆𝐸 = 1 −
∑𝐾

𝑘=1 [(𝑄𝑘
𝐸 − 𝑄𝑘

𝑀)]2

∑𝐾
𝑘=1 (𝑄𝑘

𝑀 − 𝑄𝑘

𝑀
)2

                                                                      (5.4) 

 

𝑅2 =
∑𝐾

𝑘=1 [(𝑄𝑘
𝐸 − 𝑄𝑘

𝐸
)(𝑄𝑘

𝑀 − 𝑄𝑘

𝑀
)]2

∑𝐾
𝑘=1 (𝑄𝑘

𝐸 − 𝑄𝑘

𝐸
)2 ∑𝐾

𝑘=1 (𝑄𝑘
𝑀 − 𝑄𝑘

𝑀
)2

                                                      (5.5) 

 

                                 𝑀𝐴𝐸 =
1

𝐾
∑

𝐾

𝑘=1

|𝑄𝑘
𝐸 − 𝑄𝑘

𝑀|                                                                 (5.6) 

 

𝑅𝑀𝑆𝐸 = √∑

𝐾

𝑘=1

(𝑄𝑘
𝐸 − 𝑄𝑘

𝑀)2                                                                       (5.7) 

Where, 𝑸𝑴 is the item of the measured data, 𝑸𝑬is item of the predicted values, K is the total number 

of the measurements/observations.  

 
 

Table 5.2 Training and test data portions for Rugarama and Mukarange datasets 

 Training(data points) Test(data points) 

T+15 1410 15 

T+30 1395 30 

T+60 1365 60 

T+90 1335 90 
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5.4 Results and discussion  

In this section, the results of the experiment that created and evaluated a hybrid EEMD-SVR-RF 

method are provided and discussed. In that experiment the model was also compared against EEMD-

SVR, EEMD-ANN, and EEMD-RF approaches in terms of MAE, NSE, R2, and RMSE metrics. 

According to Figure 5.6, EEMD-SVR-RF approach achieved relatively superior performance, 

followed by EEMD-RF and EEMD-SVR. With lowest R2 and NSE values, as well as highest MAE 

and RMSE values, ANN is the least effective method on both datasets. This is in corroboration with 

the findings reported in [224]. Moreover, for both aquifers, the results in Figures 5.7, 5.8, and 5.9 

indicate significant correlation between observed and EEMD-SVR-RF estimated water table depths.  

Furthermore, as can be seen in Figures 5.7 and 5.8, the majority of the data points are closer to the 

regression lines, signifying the EEMD-SVR-RF approach’s exceptional skill on both datasets. 

Nevertheless, performance of this approach on Rugarama dataset is slightly better than that on the 

Mukarange dataset. This is also confirmed by the results shown in Table 5.3, which show that the 

model estimation has an RMSE of 0.0011 and R2 value of 0.9608 on Rugarama dataset, compared to 

an RMSE of 0.0032 and R2 value of 0.9375 on Mukarange dataset, at 90-day lead time D(t+90) 

prediction. The EEMD-SVR-RF is more efficient at longer lead times than at shorter lead times, as 

can be observed from Table 5.3, with the best performance at a 60-day lead time.  

In general, the experimental test results demonstrate that the proposed hybrid EEMD-SVR-RF 

produces relatively better estimations of the changes in water table depths compared to conventional 

methods. For example, using Rugarama dataset, at 90-day lead time, the EEMD-SVR-RF 

outperformed EEMD-RF, EEMD-SVR and EEMD-ANN by 2.41%, 4.98%, and 47.9%, respectively. 

Moreover, it reduces the RMSE error by 0.7%, 0.54%, and 0.25% compared to EEMD-SVR, 

EEMD-ANN, and EEMD-RF, respectively. 
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Figure 5.6  Evaluation outcome for the EEMD-SVR, EEMD-ANN, EEMD-SVM and EEMD-SVR-RF models for the nighty-day 

lead-time prediction of groundwater level at Rugarama observatory station: (a) RMSE metric (b) Rsquared metric (c).MAE metric (d) 

NSE metric. 
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Figure  5.7 Mukarange regression (a) at 15- day horizon (b) 30-day horizon (c) 60-day horizon (d) 90-day horizon. 
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Figure 5.8 Rugarama regression (a) at 15-day horizon (b) 30-day horizon (c) 60-day horizon (d) 90-day horizon 

 

(a) 
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Figure 5.9 Observed and estimated water table depth at (a) Rugarama observatory (b) Mukarange observatory station 

 

5.5 Conclusions 

This chapter has described the development, testing, and application of evaluated a hybrid SVR-RF 

method with EEMD preprocess using dataset from Rugarama and Mukarange groundwater 

observatory stations in Eastern Rwanda. The achieved results highlight the significance of 

employing weather data (temperature, solar radiation, humidity, and precipitation) to calibrate and 

evaluate hydrological models.  The EEMD has evaluated to be a suitable data preprocessing strategy 

for improving performance of the hybrid approach. Most importantly, the EEMD-SVR-RF 

outperforms the EEMD-SVR, EEMD-ANN, and RF approaches across all prediction time steps and 

datasets. The SVR-RF with EEMD preprocess has demonstrated to be effective at capturing changes 

in water table depths. As a result, the model has the potential to be a useful tool for hydrological 

management and model selection.  
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CHAPTER 6 

RESEARCH OUTCOMES, CONCLUSIONS, AND 

RECOMMENDATIONS 

 

6.1 Introduction 

This chapter describes the main contributions in relation to the research objectives in Section 6.2, 

some research gaps and blind spots in Section 6.3, suggestions for future directions in Section 6.4, 

and a general conclusion in Section 6.5. 

6.2 Summary of the Outcomes 

The present research sought to develop groundwater management tools based on IoT and ML 

technologies to aid in informed groundwater decisions in Rwanda. Chapter 3 of this thesis has 

presented and evaluated practically an inexpensive, low-power IoT system in relation to the first and 

second objectives of the research. Chapter 4 presents a hybrid ML technique for predicting seasonal 

water table depths using hydro-climatic data, while Chapter 5 presented an ensemble improved ML 

method for more accurate and reliable groundwater depths predictions in relation to the third 

research objective.  

6.2.1 Development of an Affordable IoT System for Groundwater Monitoring  

While Rwanda's current groundwater abstraction rate is estimated to be 80% [9] this rate will 

inevitably rise as water demand rises and the Ministry of Agriculture plans to expand irrigation [11]. 

This necessitates affordable, continuous, and reliable monitoring of this resource in order to improve 

current practice and inform related decisions. In this regard, Rwanda's water management policy 

(2010, revised in 2011) and other stakeholders call for innovative solutions to inform water 

management and plan for sustainable groundwater utilization [10], [16], [205]. 

An inexpensive IoT enabled system for remote and continuous monitoring of the quantity of the 

water tables was realized through the redesign of low-cost high resolution pressure sensors, I2C 

communication scheme, and adoption of non-proprietary software and low-power, long-distance 

communication method. The submersible water depth probe developed in this research costs around 

$55, as opposed to a conventional probe, which costs between $495 and $830. In addition to that, the 
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developed IoT system includes a downstream module that allows multiple stakeholders open access 

to and sharing of groundwater information. This tool was developed in response to the need to 

provide water managers, policymakers, and other interested stakeholders with easily accessible 

information to assist them in making sound groundwater decisions at the appropriate time. 

Furthermore, the tools described here, in terms of design, development, and field deployment, 

contribute to the body of knowledge on the design, development, and evaluation of IoT 

groundwater-based solutions. 

6.2.2 Field Validation and Evaluation of the Affordable IoT Groundwater 

Monitoring System  

Following the development of a low-cost, automatic IoT-enabled aquifer depth monitoring system, a 

field deployment was carried out. Field evaluation results over a two-week period show that the 

collected data are accurate and closely correlate (98.9%) with standard measurements, and consistent 

with the findings of Beddows et al. [49]. The outstanding accuracy of the developed water table 

depth probe suggests a higher level of reliability for the proposed system (LWNGM) for aquifer 

monitoring. These findings also indicated that the system is efficient, with a network reliability of 

around (80% packet delivery ratio and 83% signal strength) and a relatively low daily energy 

consumption (12%). This indicates that the system is has highly reliable network communication. 

The research presented here is the first to present a practical analysis of end-node and LoRa energy 

consumption in the context of groundwater monitoring. Energy consumption is 12% of total battery 

capacity of 66,600J, allowing the system to operate autonomously on solar energy. The analysis 

revealed, on the other hand, that the cellular internet connection between the gateway and the local 

server costs $1.3 per week and $5 per month. Taking into account our hardware cost ($310.168), 

these costs are relatively lower than those reported in other studies. For example, consider the low-

cost solution presented in a recent study by Calderwood et al. [84], which has a weekly cost of $981. 

Additionally, the LWNGM runs on a rechargeable battery for an extended period of time, requiring a 

mini solar panel to be recharged after approximately 8 days of operation.  Unlike the conventional 

systems, which are expensive and have difficult logistics, the LWNGM system’s low cost, 

consistency, and deployment logistics of the LWNGM system enable broader adoption of efficient 

and cost-effective aquifer monitoring, even in low-income areas.  



107 

 

6.2.3 Development of an Efficient Machine Learning Method for Seasonal 

Groundwater Quantity Prediction  

As the data collection is scaled up and for a longer period of time (e.g. using the automated near 

real-time tool described in Chapter 3), the need for efficient, reliable, affordable, and simple tools for 

data analysis grows. Two different MLs were developed in order to meet objective three, which is to 

provide an efficient ML model for seasonal prediction on multiple and varying length of 

groundwater datasets.  

There were some inconsistencies and gaps in the historical groundwater and associated weather data 

collected from multiple organizations (RWFA and Rwanda Meteorological Office). Appropriate data 

preparation procedures were thus implemented in accordance with standard procedure were also 

discovered to have resulted in improved model accuracy. These data preparation methods were used 

to transform the data and overcome the inconsistency. The square root, logarithmic, cube root, 

moving average, max transformation, and weighted moving average are among these methods. The 

weighted moving average produced smoothed data that was more realistic. To determine appropriate 

values for filling gaps in both weather and groundwater level data, a moving average based on 

neighboring (non-gap) values was used. The data was also scaled between -1 and 1 to make the 

features more visible to the prediction models. Additionally, groundwater level data from each 

monitoring station was temporally combined with weather data to form time-series datasets. 

Moreover, combining the RF method with SVR, ANN, and KNN to create KNN-RF and SVR-RF 

hybrid techniques resulted in more robust models with higher accuracy. A dictionary was created for 

each of these ensemble models, and a cross validation method was used to determine the appropriate 

number of base models for each ensemble model. The appropriate hyper-parameters for each base 

model as well as the ensemble models were then determined using a grid search. The final results of 

each hybrid model were obtained by averaging the output of each individual method. Additionally, 

to avoid bias in the predictive analysis, each training phase used a different size of training sample, 

while testing was done using separate portions of the datasets using the sliding windows approach. 

Finally, and most importantly, the development process, as well as the ML methods proposed in this 

research, made use of open source tools, allowing for open and unlimited access to multiple 

hydrology stakeholders.  
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6.2.4 Evaluation of the ML techniques for Seasonal Water Table Forecasting 

The two developed ML techniques were tested on real-world data from the case study of the present 

research. To preserve the time series nature of this data, all training and testing stages were 

completed using a rolling windows method. The first ML technique described in Chapter 4, showed 

promising seasonal forecast accuracy (93.87%), when trained with limited examples. The second 

ML method described in Chapter 5 produces the most accurate predictions (96.08%) on two 

relatively rich datasets. The use of ensemble empirical decomposition for data preparation is one of 

the key improvements to this model that accounts for the more accurate results. 

 

6.3 Limitations of the Research 

At the time of the machine learning predictive method's implementation, the temporal resolution of 

the collected historical water table data was limited. This data came from only three groundwater 

observation boreholes, two of which had many missing values beyond treatment. Ensemble models 

were created and applied to prediction using a limited dataset at first to overcome these constraints. 

Another limitation is that the author's developed IoT system only collected empirical data from a 

single observational well due to various constraints. By the time the groundwater records had grown 

a little, the second ML technique had been developed to overcome the first ML technique's 

limitations and work with a larger dataset. 

On the other hand, the redesigned water table depth probe had a small amount of bias (1.1 %) from 

the standard value. A linear calibration was performed to compensate for this deviation in order to 

ensure more accurate measurements and greater reliability. Moreover, the solar energy harvester is 

normally deprived of an energy source during prolonged cloudy and rainy days. The discussed IoT-

based system is powered by a battery that lasts about 8 days, ensuring that the system operates 

normally even when there is little solar radiation (see Chapter 3 for detailed explanation). This 

preserves the quality and quantity of groundwater data in both sunny and cloudy conditions. 

6.4 The Implications of Affordable IoT and ML technologies Outcomes 

The outcomes of the current study (described in Chapters 3, 4, and 5) are highly significant because 

they provide more affordable and efficient tools and information for the management of precious 
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groundwater resources, theoretical insights into the development and application of IoT and AI 

solutions in hydrology, and policymakers with information. 

The developed low-cost, automated groundwater observation tools because they are important for 

improving groundwater management, particularly in low-income and data-scarce regions. Machine 

learning models are useful and practical tools for forecasting droughts and future changes in water 

availability. 

The outcomes and methodological approaches are most applicable to future research in improving 

tools for monitoring and data collection in hydrology and hydrogeology, as well as predictive 

analysis. 

6.5 Recommendations for LCSN and ML in Groundwater Hydrology and 

Research 

The recommendations of the present study basically focus on the adoption of affordable tools to 

enable effective and continuous monitoring and control of the precious groundwater resources. The 

recommendations are presented in the subsequent subsections. 

6.5.1 Adoption of Affordable and IoT-based Groundwater Management Tools 

Due to the lack of near real-time, continuous and affordable aquifers monitoring tools and effective 

inexpensive groundwater predictive analysis tools data it is recommended that the use of the tools 

discussed in Chapters 3, 4, and 5 be accepted and used for groundwater management and policy 

directives. 

 

6.5.2 Recommendation for Further IoT and ML Research in Aquifer 

Management 

Based on some limitations discussed in the Section 6.3, we encourage further research into the 

application of IoT to provide more sophisticated groundwater management tools at affordable costs 

and facilitate knowledge transfer between countries, particularly in the developing world. In this 

regard, including a variety of experimental setups and user-centered design approaches may be more 

appropriate. We also recommend that more effective energy sources and storage be investigated in 

order to power wireless sensors installed in observational boreholes. Hence, more research is 

required to make IoT-based systems more autonomous and resilient in the face of natural disasters.  
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More research is required on developing physics-guided ML methods that improve learning by 

taking into account both physical and stochastic characteristics of aquifers to improve forecast 

accuracy. 

 

6.6 Conclusion 

This research proposed an ML and IoT enable system in order to put affordable and effective tools in 

the hands of managers, policymakers, and other interested parties in order to equip them with the 

right tools for the right decisions at the right time. These have been realized through the redesign of 

low-cost, low-power sensors as well as open-access tools. The proposed tools have repeatedly 

demonstrated high accuracy and efficacy in the field and real-world data evaluation. An autonomous 

water table monitoring system generates measurements that closely correlate with standard values, 

and the ML has demonstrated consistent performance in seasonal water table forecasting. 

Under the current conditions, these groundwater decision support tools become especially relevant, 

providing instruments for uncertainty quantification and the natural account of fluctuating interfering 

factors influencing the variation in water table depths. 

Finally, the findings of this study help to advance knowledge in both theoretical and practical aspects 

of WSN, IoT, hydrology, machine learning, and environmental management. 
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