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Abstract
This dissertation is composed of four papers in algebraic combinatorics related

to Coxeter groups.
By a Coxeter group, we mean a group W generated by a subset S ⊂ W such

that for all s ∈ S , we have s2 = e, and (ss′)m(s,s′) = (s′s)m(s,s′) = e, where m(s, s′) =
m(s′s) ≥ 2 for all s � s′ ∈ S . The condition m(s, s′) = ∞ is allowed and means
that there is no relation between s and s′. There are some partial orders that are
associated with every Coxeter group. Among them, the most notable one is the
Bruhat order. Coxeter groups and their Bruhat orders have important properties
that can be utilised to study Schubert varieties.

In Paper I, we consider Schubert varieties that are indexed by involutions of a
finite simply laced Coxeter group. We prove that the Schubert varieties which are
indexed by involutions that are not longest elements of some standard parabolic
subgroups are not smooth.

Paper II is based on the Boolean complexes of involutions of a Coxeter group.
These complexes are analogues of the Boolean complexes invented by Ragnarsson
and Tenner. We use discrete Morse theory to compute the homotopy type of the
Boolean complexes of involutions of some infinite Coxeter groups together with all
finite Coxeter groups.

In Paper III, we prove that the subposet induced by the fixed elements of
any automorphism of a pircon is also a pircon. In addition, our main results are
applied to the symmetric groups S 2n. As a consequence, we prove that the signed
fixed point free involutions form a pircon under the dual of the Bruhat order on
the hyperoctahedral group.

Let W be a Weyl group and I denote a Bruhat interval in W. In Paper IV, we
prove that if the dual of I is a zircon, then I is rationally smooth. After examining
when the converse holds, and being influenced from conjectures by Delanoy, we are
led to pose two conjectures. Those conjectures imply that for Bruhat intervals in
type A, duals of smooth intervals, zircons, and being isomorphic to lower intervals
are all equivalent. We have verified our conjectures in types An, n ≤ 8, by using
SageMath.
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Populärvetenskaplig sammanfattning
Denna avhandling består av fyra artiklar inom algebraisk kombinatorik med

kopplingar till Coxetergrupper. Informellt kan Coxetergrupper sägas vara ett sätt
att beskriva och förklara symmetrier, exempelvis hos geometriska objekt som
reguljära polyedrar. En del Coxetergrupper är ändliga, en del oändliga. Per-
mutationsgrupper och hyperoktahedrala grupper är klassiska exempel på ändliga
Coxetergrupper, medan symmetrierna hos tesselleringar av planet utgör exempel
på oändliga.

Coxetergrupper dyker upp inom olika områden av matematiken, som algebraisk
geometri, kombinatorik och Lieteori. Inom dessa fält är objekt vid namn Schubert-
varieteter välstuderade. En del är släta, vilket ungefär betyder att de lokalt ser ut
som euklidiska rum, en del är det inte; de kallas singulära. Inom algebraisk kombi-
natorik studeras sätt att med hjälp av Coxetergruppers kombinatoriska egenskaper
beskriva singulariteter hos Schubertvarieteter. I denna avhandlings första artikel
visas att för en viss klass av Coxetergrupper gäller att, frånsett en på förhand
självklar uppsättning undantag, alla Schubertvarieteter som hör till involutioner i
gruppen är singulära.

I den andra artikeln studeras vissa klasser av booleska cellkomplex, alltså reg-
uljära cellkomplex vars sidopomängder är simpliciella. Löst uttryckt innebär det
att ett booleskt cellkomplex uppstår genom att foga samman simplex längs gemen-
samma sidor. De komplex som studeras i artikeln associeras med booleska invo-
lutioner i Coxetergrupper. Det visas att för alla ändliga, och för många oändliga,
Coxetergrupper är dessa komplex homotopiekvivalenta med buketter av sfärer.
Det betyder ungefär att de kan deformeras, på ett som inte river upp eller fyller
igen hål, till en uppsättning sfärer sammanfogade i en gemensam punkt.

En speciell matchning på en pomängd (partiellt ordnad mängd) är ett sätt att
para ihop elementen som i en viss bemärkelse respekterar ordningen. En zirkon är
en pomängd som är sådan att varje delmängd som består av allt som är mindre
än ett fixerat element har en speciell matchning. På likartat sätt definieras en
pirkon, utom att det räcker med speciella partiella matchningar (vissa element
behöver inte paras ihop med något). Viktiga exempel på båda dessa klasser av
pomängder har att göra med så kallade Bruhatordningar på Coxetergrupper. I
avhandlingens tredje artikel visas att för vilken som helst pomängdssymmetri hos
en pirkon bildar de av symmetrin fixerade elementen själva en pirkon; motsvarande
resultat var förut endast känt för zirkoner. Som en följd beskrivs tidigare okända
pirkoner i hyperoktahedrala grupper.

I den fjärde artikeln betraktas intervall i Bruhatordningen på en Coxetergrupp.
Det visas att om dualen till ett intervall (alltså intervallets element med omvänd
ordning) är en zirkon, så är intervallet rationellt slätt. I vissa Coxetergrupper har
omvändningen förmodats av Delanoy. I artikeln generaliseras hans förmodan för
permutationsgrupper och generaliseringen styrks av datorberäkningar.
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Introduction





1 – Partially ordered sets

We recall some preliminaries on partially ordered sets that shall be used in
other chapters of this thesis. For more details about partially ordered sets, we
recommend the reader to consult [22].

By a partially ordered set or (poset), we mean a set P, together with a binary
operation “≤” such that for all x, y, z ∈ P:

(1) x ≤ x (reflexive),

(2) If x ≤ y and y ≤ x then x = y (antisymmetric),

(3) If x ≤ y and y ≤ z then x ≤ z (transitive).

Let x, y ∈ P. If x ≤ y and x � y, we write x < y.

Definition 1.0.1 Let x < y in P. Then, if there is no z ∈ P such that x < z < y,
we say that x is covered by y (or y covers x), and write x � y (or y � x).

Definition 1.0.2 Let P be a finite poset. The Hasse diagram of P is the directed
graph having P as vertex set and the cover relation as edge set, drawn in such a
way that if x � y, then x is below y.

A maximum 1̂ ∈ P is a unique element that satisfies x ≤ 1̂ for all x ∈ P. Similarly, a
minimum 0̂ ∈ P is a unique element that satisfies 0̂ ≤ x for all x ∈ P. By an induced
subposet of P, we mean an ordered subset R ⊆ P so that for all x, y ∈ R, x ≤ y in R
if and only if x ≤ y in P. The subposet of P induced by [x, y] := {t ∈ P| x ≤ t ≤ y} is
called a (closed) interval.

Definition 1.0.3 An induced subposet I of P satisfying the property that, for each
t ∈ I, all elements x below t (i.e., x ≤ t) are also in I, is called an order ideal.

An order ideal having a maximum is said to be principal.

Definition 1.0.4 Let P1 and P2 be posets. A function φ : P1 → P2 is called
an order-preserving map if for all x1, x2 ∈ P1 with x1 ≤ x2 in P1 it holds that
φ(x1) ≤ φ(x2) in P2.

A bijective order-preserving map φ : P1 → P2 whose inverse φ−1 : P2 → P1 is
order-preserving is called an isomorphism of posets. An automorphism of a poset
P is an isomorphism from P to itself.
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2 – Coxeter groups and Schubert
varieties

In this chapter we recall some properties of Coxeter groups and Schubert vari-
eties. For more on these subjects, see [4], [17] and [3].

2.1 Coxeter groups

A Coxeter group is a group W generated by a set of simple reflections S ⊂ W,
under relations of the form s2 = e for all s ∈ S , and

(ss′)m(s,s′) = (s′s)m(s,s′) = e,

where m(s, s′) ∈ {2, 3, . . .}∪{∞} for all s � s′ ∈ S . If it happens that m(s′, s) = ∞, then
it means that there is no relation between s and s′. Here, e stands for the identity
element in W. The pair (W, S ) is called a Coxeter system and the cardinality |S |
is called the rank of (W, S ). Every w ∈ W is a product of simple reflections from
S . This means that w = s1s2 · · · s j for some si ∈ S . Among all such expressions for
w, let s1s2 · · · s j be some expression for which j is minimal. Then j is the length
of w (denoted by �(w) = j) and the expression s1s2 · · · s j is reduced. If W is finite,
then there is an element w0 ∈ W, called the longest element, with the property
that �(w0s) < �(w0) for all s ∈ S and �(w0) ≥ �(w0w) for all w ∈ W.

Definition 2.1.1 A subgroup of W generated by a subset J ⊆ S is called a stan-
dard parabolic subgroup of W.

Let WJ = 〈J〉 be a standard parabolic subgroup of W. Then, (WJ , J) is a Coxeter
system. If WJ is finite, it has a longest element denoted by w0(J).

Definition 2.1.2 A Coxeter system (W, S ) for which m(s, s′) ≤ 3 for all s, s′ ∈ S
is called simply laced (or (W, S ) is said to be of simply laced type). Otherwise, it
is called a multiply laced Coxeter system.

We often abuse notation and refer to Coxeter groups even though we really have
an entire Coxeter system in mind.

For example, the symmetric group S n generated by simple transpositions si =

(i, i + 1) for all i = 1, 2, . . . , n − 1 is of finite simply laced type (this is a Coxeter
group of type An−1; see e.g. [4]). Other important examples of finite simply laced
Coxeter groups are of types Dn, E6, E7, and E8 as described in the classification
below.

5



6 2.1 Coxeter groups

2.1.1 Classification of finite Coxeter groups
Coxeter groups can be represented by their Coxeter graphs (Coxeter diagrams).
By the Coxeter graph of W, we mean the simple graph whose set of vertices is
S and whose edges are unordered pairs {s, s′} if m(s, s′) ≥ 3. If m(s, s′) ≥ 4, we
label the edge {s, s′} by that number, and if m(s, s′) = 3 the edge has no label.
Note that if m(s, s′) = 2 (i.e., s and s′ commute), then there is no edge between s
and s′. A Coxeter group whose Coxeter graph is connected is called irreducible.
Finite irreducible Coxeter groups have been classified (see [4] and [17]). In that
classification we have:

(1) Three classical families of types An (n ≥ 1), Bn (n ≥ 2), Dn (n ≥ 4),

(2) Six exceptional groups of types E6, E7, E8, F4, H3 and H4,

(3) One family of dihedral groups of type I2(m), m ≥ 3.

The Coxeter graphs are recorded in Figure 2.1. Note that I2(3) = A2 and
I2(4) = B2.

2.1.2 Bruhat order and Bruhat graphs
Let T := {wsw−1| s ∈ S ,w ∈ W} be the set of reflections in W. For u,w ∈ W, write
u→ w if there is t ∈ T such that w = tu and �(w) > �(u).

Definition 2.1.3 The partial order relation on W defined by u ≤ w if there is a
sequence u = w0 → w1 → · · · → wm = w, is called the Bruhat order on W.

Let Br(W) denote the Bruhat order on W.

Definition 2.1.4 The directed graph with vertex set W and with edge set

{(v,w)| v→ w}

is called the Bruhat graph of W. We denote the Bruhat graph of W by BgS (W).

Note that in Paper IV of this thesis, we think of Bruhat graphs as being undirected.

Definition 2.1.5 Let u ≤ w in Br(W). Then [u,w] := {v ∈ W |u ≤ v ≤ w} is called a
Bruhat interval.

The identity element is the minimum of Br(W). If W is finite, w0 is the maximum.

Definition 2.1.6 For any w ∈ W, [e,w] := {v ∈ W |e ≤ v ≤ w} is called a lower
Bruhat interval.

Theorem 2.1.7 (Subword property) Let u,w ∈ W, and s1s2 · · · sn be a reduced
expression for w. Then u ≤ w if and only if s j1 s j2 · · · s jk is a reduced expression for
u, for some 1 ≤ j1 < j2 < · · · < jk ≤ n.

For any Coxeter group W, the map given by x �→ x−1 is an automorphism of the
Bruhat order of W. For example, this follows from Theorem 2.1.7 since if we
reverse an expression for x, we get an expression for its inverse. That is,
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s1 s2
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Figure 2.1: The finite, irreducible Coxeter groups.



8 2.3 Reflection subgroups of a Coxeter group

Lemma 2.1.8 For all x, y ∈ W, x < y if and only if x−1 < y−1.

Theorem 2.1.9 (Chain property) Let u < w. Then, there exists a chain

u = u0 < u1 < · · · < un = w

such that �(ui) = �(ui−1) + 1 for all 1 ≤ i ≤ n.

For w ∈ W, let DL(w) := {s ∈ S | �(sw) < �(w)}, and DR(w) := {s ∈ S | �(ws) < �(w)}.
We call DL(w) the left descent set of w, and DR(w) the right descent set of w
respectively.

The following lemma due to Deodhar is known as the lifting property.

Lemma 2.1.10 ([10]) Let v < w and s ∈ DR(w) \ DR(v). Then v ≤ ws and vs ≤ w.

Note that the left hand version of Lemma 2.1.10 holds too. Using the above lemma,
one can show that for any u and v in W, there exists w ∈ W such that u ≤ w and
v ≤ w . This implies that Br(W) is always a directed poset, even if W is infinite.

2.2 Reflection subgroups of a Coxeter group
In this section we recall important results due to Dyer [12] on subgroups generated
by reflections. Suppose that W ′ is a subgroup of W. Recall that T is the set of
reflections of W.

Definition 2.2.1 If W ′ = 〈W ′ ∩ T 〉, then W ′ is a reflection subgroup of W.

Definition 2.2.2 If W ′ = 〈t, t′〉 for t � t′ ∈ T , W ′ is called a dihedral reflection
subgroup of W.

From Definitions 2.2.1 and 2.2.2, it is clear that every dihedral reflection subgroup
of W is also a reflection subgroup of W. However a reflection subgroup need not
be dihedral.

Theorem 2.2.3 ([12]) Let t1, t2, t3, t4 ∈ T and t1t2 = t3t4 � e. Then, 〈t1, t2, t3, t4〉 is
a dihedral reflection subgroup of W.

Let N(w) := {t ∈ T | �(tw) < �(w)}, and Y := {t ∈ T |N(t) ∩W ′} = {t}. Then Y is a
set of simple reflections for W ′:

Theorem 2.2.4 ([12]) If W ′ is a reflection subgroup of W, then (W ′,Y) is a Cox-
eter system.

If R is an arbitrary subset of W, we let BgS (R) denote the directed subgraph of
BgS (W) induced by R. Being a Coxeter system, (W ′,Y) has a Bruhat graph of
its own, while W ′ also induces a subgraph of BgS (W). However, the two graphs
coincide:

Theorem 2.2.5 ([12]) If W ′ is a reflection subgroup of W, then BgS (W ′) = BgY (W ′).
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2.3 Schubert varieties
We now describe how Bruhat graphs of Coxeter groups can be utilized to study
the geometry of Schubert varieties. For more preliminaries and background on
Schubert varieties, one can consult [3].

Consider a semi-simple, simply connected algebraic group G defined over the
field of complex numbers C. Let T be a maximal torus contained in a Borel
subgroup B of G. Let W = N(T )/T be the Weyl group, where N(T ) is the nor-
malizer of T in G. In fact, a Weyl group is a finite Coxeter group. For example,
if G = SLn(C), W is of type An−1. The flag variety is G/B, and it decomposes as

G/B =
⊎

w∈W
BwB/B (i.e, disjoint union).

Each set BwB/B is a Schubert cell. The closure BwB/B is a Schubert variety. Let
X(w) denote the Schubert variety corresponding to w ∈ W (i.e, X(w) = BwB/B).
The Bruhat order on W controls containment of these varieties. That is, v ≤ w if
and only if X(v) ⊆ X(w).

Let BgS (v) := BgS ([e, v]) for some lower interval [e, v] in Br(W), and let y be a
vertex in BgS (v).

Definition 2.3.1 The degree of y in BgS (v) is the number of edges that are inci-
dent to y (regardless of the directions).

Let dege,v(y) denote the degree of the vertex y in BgS (v). The following theorem
which is a result from [13] bounds this degree. For special classes of Coxeter
groups, this theorem can also be found in [20, 7].

Theorem 2.3.2 ([13]) For every y ≤ v, dege,v(y) ≥ �(v).

We say that BgS (v) is regular, if for every vertex y in BgS (v), dege,v(y) = dege,v(v).
In fact, dege,v(v) = �(v) for every v ∈ W.

Rational smoothness is a weaker notion than smoothness which informally
means that a variety looks like a smooth variety up to local cohomology. See
e.g. [3] for details. In this thesis, we take Theorem 2.3.3 as the definition of ratio-
nal smoothness of a Schubert variety.

Theorem 2.3.3 (Carrell-Peterson [7]) Let v ∈ W. Then X(v) is rationally
smooth if and only if BgS (v) is regular.

Theorem 2.3.4 ([8]) Let W be a finite simply laced Coxeter group and w ∈ W.
Then, X(w) is rationally smooth if and only if it is smooth.

Note that in general a rationally smooth Schubert variety need not be smooth.
For example, if W is of type B2 = 〈s1, s2〉 where s2 corresponds to the short root,
then X(s2s1s2) is rationally smooth but not smooth. We now have the following
corollary.

Corollary 2.3.5 Suppose that W is a finite simply laced Coxeter group, and let
v ∈ W. Then, X(v) is smooth if and only if BgS (v) is regular.
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e

s1 s2 s3

s2s1 s2s3 s1s3s1s2 s3s2

s2s1s3 s2s3s2s2s1s2 s1s3s2

s2s1s3s2

Figure 2.2: BgS (s2s1s3s2) for s2s1s3s2 ∈ A3

Example 2.3.6 Consider a Coxeter group of type A3 whose Coxeter graph is as
in Figure 2.1 for n = 3. The directed graph BgS (s2s1s3s2) is not regular (see Figure
2.2). Using Corollary 2.3.5, we have that X(s2s1s3s2) is not smooth. However X(v)
is smooth for every v < s2s1s3s2. Note also that, if we ignore the dashed edges
and arrowheads in BgS (s2s1s3s2), we get the Hasse diagram of the lower Bruhat
interval [e, s2s1s3s2].



3 – Zircons and pircons

In this chapter, we recall the definitions of zircons and pircons and some of
their properties.

3.1 Zircons
Let P be a poset and M : P → P be an involution. Then, M is called a matching
of P if M(x) � x or x � M(x) for all x ∈ P. Definition 3.1.1 is due to Brenti, and
can be found in [5, 6].

Definition 3.1.1 Let M be a matching of P. Then, M is called special if for all
x, y ∈ P with x � y, either M(x) = y or M(x) < M(y).

For x ∈ P, let P≤x := {q ∈ P| q ≤ x}.

Proposition 3.1.2 ([6]) Let M be a special matching of a poset P, and M(x) � x
for some x ∈ P. Then M restricts to a special matching of P≤x .

If a poset is Eulerian, a special matching is equivalent to a compression labelling
as was independently invented by du Cloux [11]. See e.g. [22] for the definition of
the Eulerian property. Note that Bruhat orders are examples of Eulerian posets.

Lemma 3.1.3 below is called the Lifting property for special matchings. It is
essentially due to Brenti [6] who stated it under a gradedness assumption. A proof
without this assumption appears in [16].

Lemma 3.1.3 Let M be a special matching of a locally finite poset P. Let also
y, z ∈ P be such that y < z and M(z) < z. The following conditions are satisfied.

(1) M(y) ≤ z,

(2) M(y) < y⇒ M(y) < M(z).

Definition 3.1.4 ([16]) A zircon is a poset P, such that for every non-minimal
element x, the principal order ideal P≤x is finite and has a special matching.

Originally, zircons were introduced by Marietti in [18] in a different way. However,
as was proved in [16], those two definitions of zircons are equivalent.

For example, let W be a Coxeter group. Every lower Bruhat interval [e,w] is
finite and, if e � w, has a special matching given by multiplication by any descent
element of w. Hence, the Bruhat order of any Coxeter group is a zircon.

The following lemma is one of the main results from [16].

Lemma 3.1.5 If Z is a zircon with an automorphism, then the subposet of Z
induced by the fixed points of the automorphism is itself a zircon.

11
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Example 3.1.6 Consider the Coxeter group of type A3. We have that Br(A3) is
a zircon, and that the map x �→ x−1 is an automorphism of Br(A3). Hence, the
subposet FI(A3) induced by the fixed points of that automorphism is a zircon. Note
that the fixed points are the involutions. The Hasse diagram of FI(A3) is presented
in Figure 3.1 where the dashed lines indicate a special matching on FI(A3).

e

s1 s2 s3

s1s3 s1s2s1 s2s3s2

s1s2s3s2s1 s2s3s1s2

s1s2s1s3s2s1

Figure 3.1: The Bruhat order on the involutions of A3.

3.2 Pircons
The following definition is taken from [2].

Definition 3.2.1 Let P be a finite poset with 1̂. An involution M : P→ P is called
a special partial matching if:

(1) M(1̂) � 1̂

(2) For all x ∈ P, we have x � M(x), or M(x) � x, or M(x) = x, and

(3) If x � y and M(x) � y, then M(x) < M(y).

Note that a special partial matching without fixed points is a special matching.
We have the following analogue of Proposition 3.1.2.

Proposition 3.2.2 ([2]) Let M be a special partial matching of P and M(y) ≤ y.
If x ∈ P≤y, then M(x) ∈ P≤y. In particular, if M(y) < y, then M restricts to a special
partial matching of P≤y.

The following lemma is the Lifting property for special partial matchings. It
can be found in [1].
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Lemma 3.2.3 Let P be a finite poset with 1̂, and with a special partial matching
M. If x, y ∈ P are such that x < y and M(y) ≤ y, then:

(1) M(x) ≤ y,

(2) M(x) ≤ x⇒ M(x) < M(y),

(3) x ≤ M(x)⇒ x ≤ M(y).

Definition 3.2.4 below is from [1].

Definition 3.2.4 A pircon is a poset P such that for every non-minimal x ∈ P,
the principal order ideal P≤x is finite and admits a special partial matching.

Clearly, every zircon is a pircon. The following are examples of pircons which are
not zircons.

Example 3.2.5 Let (W, S ) be a Coxeter system and J ⊆ S . Then

W J := {w ∈ W |w < ws for all s ∈ J}

is a set of minimal length representatives of the cosets in the parabolic quotient
W/WJ. The Bruhat order Br(W J) is a pircon; see [1].

Example 3.2.6 Consider a Coxeter group of type A2n−1. Let C(w0) be the conju-
gacy class of the longest element w0 ∈ A2n−1. By [2, Theorem 4.3], C(w0) with the
dual of the Bruhat order inherited from A2n−1 is a pircon.

Example 3.2.7 Figure 3.2 illustrates another example of a pircon. A special
partial matching is marked by the dashed lines. Note that the minimum is a fixed
point.

Figure 3.2: A pircon which is not a zircon.





4 – Boolean complexes

We now recall some aspects of CW complexes and regular cell complexes that
are needed in this thesis. More on such complexes can be found in [19] and [23].

4.1 Boolean cell complexes
Consider a point x := (x1, . . . , xn) ∈ Rn, and let:

(1) ||x|| = (
∑n

i=1 x2
i )1/2,

(2) Bn := {x ∈ Rn | ‖x‖ ≤ 1} be the unit n-ball in Rn,

(3) int Bn := {x ∈ Rn | ‖x‖ < 1} be the interior of Bn,

(4) Sn−1 := {x ∈ Rn | ‖x‖ = 1} for all n ≥ 1, be the unit (n − 1)-sphere.

Note that the zero sphere is S0 = {two points}, S−1 = ∅ (i.e., the empty set), and
the zero ball is B0 = {a single point}.

Definition 4.1.1 Let X be a Hausdorff space. An open n-cell (or an open cell of
dimension n) is a subspace of X that is homeomorphic to int Bn.

Let also σ̄ be the closure of σ in X, and σ̇ = σ̄\σ. Let us denote the dimension of
σ by dim(σ). If dim(σ) = 0, we have that σ = σ̄ = {a point}.

Definition 4.1.2 A finite cell complex (or a finite CW complex) Δ is a finite
collection of disjoint open cells σi for which ||Δ|| := ∪σi∈Δσi is a Hausdorff space
such that:

(1) For each open n-cell σi ∈ Δ, there exists a continuous map fi : Bn → ||Δ||
whose restriction fi

∣∣∣
int Bn : int Bn → σi is a homeomorphism.

(2) fi takes the boundary ∂Bn into the union of cells whose dimension is less than
n.

In fact, fi carries Bn onto σ̄i; however Bn and σ̄i are not necessarily homeomorphic.
The map fi is the characteristic map for σi.

By a finite regular cell complex, we mean a finite cell complex Δ for which every
characteristic map fi : Bn → σ̄i is a homeomorphism, and every σ̇ is the union of
cells of Δ.

Definition 4.1.3 Let Δ be a finite regular cell complex. The face poset of Δ is
the poset P(Δ) of all cells of Δ ordered by set inclusion of their closures together
with a minimum element which we refer to as the empty cell.

15



16 4.2 Boolean cell complexes

By a Boolean algebra, we mean a finite poset consisting of all subsets of
{1, 2, . . . ,m}, for some m, ordered by set inclusion.

Definition 4.1.4 A simplicial poset is a poset in which every principal order ideal
is isomorphic to a Boolean algebra.

Definition 4.1.5 A Boolean cell complex is a finite regular cell complex Δ whose
face poset P(Δ) is a simplicial poset.

Notice that simplicial complexes are special cases of Boolean cell complexes. Note
also that if Q is a simplicial poset, then there is a Boolean cell complex Δ such
that Q = P(Δ), and Δ is unique up to cellular isomorphism. For an example of the
construction of Δ with Q = P(Δ), we refer to the pictures in Figures 4.1, 4.2, 4.3,
and 4.4.

4.1.1 Discrete Morse theory
Let P be a poset with cover relation denoted by �. In this chapter, we allow a
matching M to be an involution P→ P such that for all x ∈ P, either

(1) M(x) = x, or

(2) M(x) � x, or

(3) x � M(x).

If M fixes an element x ∈ P such as in item 1 above, we say that x is critical.
Let H(P) denote the Hasse diagram of P. Let also M be a matching on P,

and HM(P) be the directed graph constructed from the Hasse diagram of P by
reversing every arrow that belongs to M. In other words, the edge set of HM(P) is
{p→ q| q � p and M(q) � p} ∪ {p→ q| p � q and M(q) = p}.

Definition 4.1.6 A matching M : P → P is said to be acyclic if there are no
directed cycles in HM(P).

The reversed arrows from H(P) are said to be upward in HM(P), whereas the non
reversed arrows are said to be downward in HM(P).

Definition 4.1.7 Let {S j} j∈J be some collection of spheres, where J is an indexing
set. Let

∨
j∈J S j denote the space that arises by selecting a point in every sphere

in the collection, taking the disjoint union of the spheres, and identifying all the
selected points. Then,

∨
j∈J S j is called a wedge of spheres.

The following theorem is due to Forman, and is valid for all regular cell complexes.
It is a very useful theorem in discrete Morse theory.

Theorem 4.1.8 [14, Theorem 6.3 ] Let Δ be a Boolean cell complex and let M
be an acyclic matching on the face poset P(Δ). If there are n critical cells, all of
the same dimension m, then Δ is homotopy equivalent to a wedge of n spheres of
dimension m.

Corollary 4.1.9 If M is an acyclic matching with no critical cells on the face
poset P(Δ), then Δ is contractible.



Boolean complexes 17

4.2 Boolean complexes of Coxeter systems
In this section, we recall some properties of Boolean complexes of Coxeter systems.
For more, we recommend the reader to check in [21].

Let (W, S ) be a Coxeter system. Recall that the principal order ideals in the
Bruhat order Br(W) are the lower Bruhat intervals [e,w], w ∈ W.

Definition 4.2.1 If [e,w] is isomorphic to a Boolean algebra, then w ∈ W is called
Boolean.

The subposet of Br(W) induced by the Boolean elements is called the Boolean ideal
of W. Let B(W) denote the Boolean ideal of W.

Definition 4.2.2 ([21]) The Boolean complex of (W, S ) is the Boolean cell com-
plex Δ(W) whose face poset is B(W).

Let C be the Coxeter graph of (W, S ). Let also d be an edge in C. Define:

(1) C/d to be the graph obtained by contraction of the edge d,

(2) C − d to be the subgraph obtained after deletion of d,

(3) C − [d] to be the subgraph obtained after taking away d with its incident
vertices and edges.

Theorem 4.2.3 ([21]) For every Coxeter system of rank n whose Coxeter graph
is C, there exists a non-negative integer β(C) such that Δ(W) is homotopy equivalent
to the wedge of β(C) spheres, all of dimension n − 1. The following equations can
be recursively used to determine the values of β(C).

(1) If d is an edge in C, then β(C) = β(C − d) + β(C/d) + β(C − [d]),

(2) If C is the graph without edges and without vertices, then β(C) = 1,

(3) If C is a graph with some vertices but no edges, then β(C) = 0.

The integer β(C) is called the Boolean number of C. Observe that it does not
depend on the edge labels of C.

Let I, Br(I), and B(w) denote the set of all involutions of W, the subposet of
Br(W) induced by I, and the principal order ideal of Br(I) generated by w ∈ Br(I),
respectively.

Definition 4.2.4 We call w ∈ I a Boolean involution if B(w) is isomorphic to a
Boolean algebra.

Let BI be the set of Boolean involutions, and P(Δinv(W)) be the subposet of Br(I)
induced by BI .

Definition 4.2.5 The poset P(Δinv(W)) is called the Boolean involution ideal.

The poset P(Δinv(W)) is a simplicial poset. Hence there is a Boolean cell complex,
denoted by Δinv(W), whose face poset is P(Δinv(W)).
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Example 4.2.6 Consider a Coxeter group of type A2 whose Coxeter graph is as
in Figure 2.1 for n = 2.

(1) The Boolean ideal B(A2) is depicted in Figure 4.1. Moreover, β(�) = 1, and
hence Δ(A2) (see Figure 4.2) is homotopy equivalent (actually, homeomor-
phic) to the circle S 1.

(2) The set of Boolean involutions is BI = {s1s2s1, s1, s2, e}, and hence the Boolean
involution ideal is as depicted in Figure 4.3. The cell complex Δinv(A2) is
contractible (i.e., homotopy equivalent to a point); see Figure 4.4.
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e

s1 s2

s1s2 s2s1

Figure 4.1: The Boolean ideal of A2

s2s1

s1s2

s2s1

Figure 4.2: The Boolean complex of A2

e

s1 s2

s1s2s1

Figure 4.3: The Boolean involution ideal P(Δinv(A2))

s2s1 s1s2s1

Figure 4.4: The cell complex Δinv(A2)





5 – Summary of papers

5.1 Paper I: Smoothness of Schubert varieties
indexed by involutions in finite simply laced
types

Let (W, S ) be a finite simply laced Coxeter system, and J ⊆ S . In this paper, the
principal result is about Schubert varieties X(w) where w is an involution from
W. The main result generalizes a result of Hohlweg [15] to all finite simply laced
Coxeter groups. In brief, we prove that the Schubert variety X(w) is singular if
w is an involution which is not the longest element in some standard parabolic
subgroup of W. Notice that if W is not simply laced, there are counterexamples.

5.2 Paper II: Boolean complexes of involutions

Suppose that (W, S ) is a Coxeter system of finite rank m. Ragnarsson and Tenner
in [21] introduced the Boolean complex, denoted by Δ(W). They showed that Δ(W)
is homotopy equivalent to a wedge of spheres of dimension m − 1. In this paper,
Boolean complexes of involutions are introduced. These complexes are analogues
of the Boolean complexes introduced by Ragnarsson and Tenner. Let Δinv(W)
denote the Boolean complex of involutions in W. We calculate the homotopy type
of Δinv(W) for all finite Coxeter groups. We also extend our computation to many
Coxeter groups that are not finite. Our proofs are based on Theorem 4.1.8.

5.3 Paper III: Fixed elements of automorphisms
of pircons

Let P be a partially ordered set with a maximum. In this paper, we generalize the
main results of [16] from special matchings to special partial matchings.We show
that if P is finite with a special partial matching, then the subposet of P induced
by the fixed points of any poset automorphism of P also admits a special partial
matching. We also prove that if P is a pircon, then the subposet of P induced
by the fixed elements of any automorphism is also a pircon. We finally apply
our results to the dual of the Bruhat order on the fixed point free involutions in
the symmetric group, leading to the conclusion that the fixed point free signed
involutions form a pircon.
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5.4 Paper IV: Zircons and smooth Bruhat inter-
vals in symmetric groups

Let (W, S ) be a finite simply laced Coxeter system, and [u,w] be a Bruhat interval
in the Bruhat order on W. In [9], Delanoy conjectured that if [u,w] is a zircon, then
it is isomorphic to some lower interval [e, x] where the two intervals are potentially
in different types. In this paper, we prove that if [u,w] is a Bruhat interval in
a Weyl group W and the dual of that Bruhat interval is a zircon, then X(w) is
rationally smooth at the points corresponding to u. We also conjecture that in
type A, the converse of the previous statement holds. In addition, we pose a
stronger conjecture (see Conjecture 4.5 in Paper IV) which generalizes Delanoy’s
conjecture in type A. Using SageMath, we confirm it in types An, n ≤ 8.
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