
AFRICAN CENTER OF EXCELLENCE IN

DATA SCIENCE

COLLEGE OF BUSINESS & ECONOMICS

PRE-TRAINING NEURAL NETWROKS ON

XENO-CANTO AND EBIRD FOR BIOACOUSTIC

CLASSIFICATION MODELS

By

Mikwa Boris Tamanjong

Registration number: 220000188

A dissertation submitted in partial fulfilment of the

requirements for the degree of Master of Data Science

in Data Mining

University of Rwanda, College of Business and

Economics

Supervisor: Emmanuel Dufourq, PHD

September, 2022



Declaration

I declare that this dissertation entitled PRE-TRAINING NEURAL

NETWORKS ON XENO-CANTO AND EBIRD FOR BIOA-

COUSTIC CLASSIFICATION MODELS is the result of my own

work and has not been submitted for any other degree at the University

of Rwanda or any other institution.

Names: MIKWA BORIS TAMANJONG

Signature

ii



Approval sheet

This dissertation entitled PRE-TRAINING NEURAL NETWORKS

ON XENO-CANTO AND EBIRD FOR BIOACOUSTIC CLAS-

SIFICATION MODELS written and submitted by MIKWA BORIS

TAMANJONG in partial fulfilment of the requirements for the degree of

Master of Science in Data Science majoring in Data Mining is hereby

accepted and approved. The rate of plagiarism tested using Turnitin is

18% which is less than 20% accepted by the African Centre of Excellence

in Data Science (ACE-DS).

Supervisor

Head of Training

iii



Dedication

I humbly dedicate this piece of work to my loving parents, Mr. Ndifim-

bui Augustine Mikwa and Mrs. Mikwa Ernestine Ghranui for their endless

guidance and support, to my relatives for their financial and moral sup-

ports, and my friends for their inspiring pieces of advice.

iv



Acknowledgement

My deepest gratitude goes to Dr.Emmanuel Dufourq for accepting to su-

pervise this work, and for his invaluable insights, and pieces of advice through-

out the execution of this project. His code 1 was immensely useful for the

preprocessing of bird vocalizations.

Immense gratitude goes to the entire staff of the African Center of Excel-

lence in Data Science (ACEDS) at the University of Rwanda. Your finan-

cial support, knowledge, pieces of advice, and view of life as a whole played

an important part in the realisation of this dissertation.

A special thank to “The Macaulay Library at the Cornell Lab of Ornithol-

ogy” for providing part of the audio recordings employed in this disserta-

tion. I am also thankful to Xeno-canto, from which we obtained the other

part of our secondary data for making its data freely available for the pub-

lic. My sincere gratitude to Intaka Island Nature Reserve, in Cape Town,

South Africa for granting access and allowing us to record bird vocaliza-

tion.

I thank EdgeAcoustics NPO for providing support in collecting the audio

data and for providing the necessary training in bioacoustic research. I also

want to thank Mark Heerden for funding the AudioMoths and other audio

equipment at EdgeAcoustics NPO which we used in this project.

The Annotation and the verification of the audio data were done by Dr.Emmanuel

Dufourq, Aime Nshimiyimana and myself. This was a huge effort that took

days of work. Thanks for the collaboration.

1Resource:https://github.com/emmanueldufourq/GibbonClassifier

v

Resource: https://github.com/emmanueldufourq/GibbonClassifier


I am thankful to Aime Nshimiyimana for being very resourceful. Thank

you to the entire second cohort of ACEDS; you have been more than a

family to me. Your love, care and support kept me going.

Finally, I can never be grateful enough to my lovely parents, Mr. Ndifimbui

Augustine Mikwa and Mrs. Mikwa Ernestine Ghranui. Many thanks to my

relatives for their financial or moral support. Special thanks to my loving

wife, Mbambapri Sylvia Tontang for her enormous support and encour-

agement every step of the project and not forgetting my children, Borison-

Kemuel Minuifoung and Curtis Tonui who gave me reasons to work harder.

Your unconditional love was so instrumental.

vi



Abstract

Both traditional machine learning algorithms (linear discriminant analysis,

support vector machine, decision tree, to name a few) and deep learning

algorithms such as Convolutional Neural Network (CNN), Long ShortTerm

Memory (LSTM), and Recurrent Neural Network (RNN) have been used

in bioacoustics research in general and bird species identification in partic-

ular. However, often there is a limitation of data in bioacoustic research,

including bird vocalizations. Training a deep neural network with such

a small amount of data most often leads to overfitting. Many researchers

have used various techniques, for instance, data augmentation and transfer

learning to surpass this problem, but no research has yet been conducted

on pre-training neural networks on public repositories which contain bird

vocalizations, such as Xeno-canto and eBird for bioacoustic classification

models. In this dissertation, we pre-trained CNNs for bioacoustic classifi-

cation models using two public bird vocalization repositories (Xeno-canto

and eBird) and fine-tuned them on locally collected bird audio record-

ings; audio recordings obtained from Intaka Island Nature Reserve, Cape

Town, South Africa. First, we used bird audio vocalizations from the pub-

lic repositories to pre-train three CNN models using different sample sizes.

We pre-trained the three CNN models using 9000, 12000, and 15000 spec-

trograms (obtained by converting the audio using Fourier Transforms).

Next, we trained five baseline models using different sample sizes (the en-

tire training set, 6150, 9000, 12000, 16000, and 21000 spectrograms) from

the collected data. Then, we used the same sample sizes as those employed

in training the baseline models to fine-tune the pre-trained models. We

used the baseline models as reference models to evaluate the performances
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of the fine-tuned models. The best baseline model had a test accuracy of

91.70%, and the best-fine-tuned model achieved 91.73%. The AUC for

the best baseline was 96.9% against 96.3% for the best-fine-tuned model.

Three findings were observed. Firstly, the performance of the model im-

proved when increasing the size of the training data, and secondly, the per-

formance also improved when using the time-shift augmentation technique.

Finally, the results revealed that the baseline models outperformed the

fine-tuned model. The reason why the baseline models outperformed the

fine-tuned model might have been because the data used in pre-training

was not large enough, and a combination of CNN and RNN could produce

better results. Using much larger data to pre-train the model might also

improve the performance of the fine-tuned models. Despite the results, the

research is the first attempt at pre-training models on publicly available

bird vocalizations data that has not been investigated in the existing litera-

ture.
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Chapter 1

Introduction

This chapter starts with the background of the dissertation followed by

the problems currently faced in bioacoustics research and ecology such as

data limitation. Next, it discusses the objectives of the dissertation, and

the chapter concludes with an outline of the entire dissertation.

1.1 Motivation

Bianco et al. (2019) defines bioacoustics as a discipline that studies how

sounds is produced and perceived, especially the impact of sounds on living

things and the importance of sound in communication. Information from

bioacoustics is used for monitoring and conservation of ecology. This in-

formation can be used to know the dispersion, density, and migration of

different species. A recent study by Dufourq et al. (2021) on the world’s

rarest primate, the Hainan gibbon (Nomascus hainanus) exemplifies this
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whereby a convolutional neural network (CNN) was used, with an excellent

degree of accuracy in the identification of gibbon calls in passive acoustic

recordings (a noninvasive method of audio recording where a device is al-

lowed on-site to capture sound without the presence of anyone); instead

of manually listening to 8 hours of audio, only 22 minutes of human effort

was needed, and the classifier could correctly identify all Hainan gibbon

calls in a 72-hour recording. Conservationists are using bioacoustic data

to measure the impact of their conservation efforts (Hauster, 2015). Birds

are indicators of biodiversity because they provide vital ecosystem services

(Priyadarshani et al., 2018; Debnath et al., 2016). Also, they are impor-

tant indicators of the health of an environment (Sankupellay and Kono-

valov, 2018). A plethora of shallow and traditional machine learning algo-

rithms have been used in the identification and classification of birds based

on bird audio recordings (Steiner, 1981; D. Rosa et al., 2016; Acevedo et

al., 2009; Ramashini et al., 2019; Debnath et al., 2016; Lasseck, 2015 ).

These traditional algorithms require manual preprocessing of the audio

recordings and feature engineering which are time-consuming and labor-

intensive. To remedy this, deep learning algorithms such as CNN have

been employed (Sprengel et al., 2016). However, deep learning requires a

lot of data to train reliable models, but there is often a limited amount of

data in bioacoustics because some species do not call that often, and also

due to the fact that the terrain might be challenging to access. It is also

hard to collect data about endangered species given that their population

size is small. This data limitation has greatly hindered the application of

deep learning in bioacoustics researches in that training a deep learning

algorithm with small amounts of data would lead to overfitting (Xie et

al., 2018). It is, therefore, necessary to augment the data or use methods
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that require a little amount of data. Data augmentation techniques such

as time-shifting (shifting audio to the left or right with a random second)

have been used in an attempt to solve this problem (Dufourq et al., 2021;

Cakir et al., 2017 ). Another method of overcoming data limitation is the

use of transfer learning (Xie et al., 2018; Sankupellay and Konovalov, 2018;

Tóth and Czeba, 2016).

Transfer learning is a machine learning technique used in deep learning

in which parts of a network (model) that is trained on a large and poten-

tially unrelated dataset for a given machine learning task is reused as the

starting point in building a network for a new task (Bianco et al., 2019).

In transfer learning, a machine exploits the knowledge gained from a previ-

ous task to improve generalization about another task. After the model has

built, often the feed-forward layers at the end of the network are replaced

with that tailored for the new task and new weights are learned for the fi-

nal layer (Bianco et al., 2019). Transfer learning is often used because the

model helps to extract high-level features such as edges and learned some

filters which are easily transferred to a new task.

To the best of our knowledge, no pre-trained model has been built from

public repositories which contain birds vocalizations. This dissertation fo-

cuses on pre-training neural networks using bird vocalizations from Xeno-

canto and eBirds (these are public repositories where individuals upload

birds recordings for the public to use) and fine-tuning them using data col-

lected from Intaka Island , Cape Town, South Africa, to create bioacoustic

classification models. These two public repositories are chosen because they

contain large volumes of bird vocalization data that are freely available to

researchers.
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1.2 Problem Statement

This research was motivated by the following reasons;

1. Bioacoustic data collection mostly results in limited data on species

of interest (especially for endangered species).

2. Currently, researchers manually annotate all data; this is extremely

time-consuming and unsustainable. This is not feasible if one has

a large number of audio records, each lasting for long hours. The

amount of human effort required to manually identify the species is

enormous, and as the data set increases, it becomes limiting. (Bianco

et al., 2019).

3. There is limited vocalization data for certain bird species. Some birds

do not call often; in addition, it is challenging to obtain recordings of

birds whose habitats are inaccessible. Furthermore, it is difficult to

obtain enough data about endangered species.

4. Bioacoustic data is highly imbalanced data. That is, there is often

more background environmental sounds than there are sound events

for the species that one is surveying.

5. Training CNNs with imbalanced/limited data may result in overfit-

ting.

1.3 Rationale

The rationales for carrying out this study are;

4



1. Training a CNN to automatically classify bird species based on their

vocalizations will facilitate the monitoring of birds by ecologists and

conservationists by reducing time and cost.

2. CNN can learn filters and does not require handcrafted filters. It will

replace the manual annotation of data which is takes a of time and

require intense labor. To do this manually, one has to train one’s ears

to become accustomed to the calls produced by the species being sur-

veyed. This is requires enormous amount of time. Listening to long

hours of recordings is time-consuming as well, and it can be prone to

human errors.

3. Although transfer learning has been used in bioacoustics such as

the parameter-based transfer learning by (Xie et al., 2018), no pre-

trained model has been built using bird vocalizations from bird pub-

lic repositories (e.g. Xeno-canto and eBird). Thus, this dissertation

will produce novel results that will contribute to the body of knowl-

edge.

4. We intend to create a public dataset for researchers so that they can

use it in their research. This dataset will be published on Zenodo.

1.4 Objective

This section presents the main objective and the specific objectives of this

dissertation.

5



1.4.1 Main Objective

This dissertation aims at determining if pre-training CNNs on existing bird

audio recordings from two public repositories (Xeno-canto 1 and eBird 2)

followed by a fine-tuning step on our own collected data will provide a bet-

ter classification accuracy than training the network with randomly initial-

ized weights on the collected data only. In other words, this dissertation

aims to determine the extent to which pre-training on an external dataset

will improve the classification performance of a CNN.

1.4.2 Specific Objectives

To achieve our main objective, we formulated the following specific objec-

tives;

1. To pre-train CNNs using a public repository.

2. To fine-tune the pre-trained models using our collected data from

Intaka Island Nature Reserve Cape Town, South Africa.

3. To build CNN classification models using only the collected data.

4. To compare the performances of the classifiers mentioned in objec-

tives 2 and 3.

1Xeno-canto:https://www.Xeno-canto.org/
2eBird: https://ebird.org/home
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1.5 Limitation

The ground truth data may have mislabeled data points due to limited do-

main knowledge in bird vocalizations. We could have mislabelled some au-

dio files during data preprocessing despite our best efforts.

1.6 Dissertation Outline

This dissertation contains six chapters. The first chapter covers the intro-

duction of the dissertation; this includes the motivation, problem state-

ment, rationale, and objective. Next,concepts used in the methodology of

this dissertation are reviewed in chapter two. Chapter three discusses exist-

ing literature of bioacoustic studies. Furthermore, we present the method-

ology - data collection, preprocessing, and processing (model training) in

chapter four. Our results are presented and discussed in Chapter five. Fi-

nally, Chapter six concludes the dissertation with some recommendations,

limitations of our research, and further studies.
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Chapter 2

Introduction to Deep Learning

It is clear from the literature that deep learning has achieved groundbreak-

ing results in bioacoustics. This chapter introduces the reader to machine

learning, and in particular, to deep learning. Section 3.1 discusses the ba-

sics of machine learning. An introduction to deep learning and related ter-

minologies is presented in section 3.2; this includes artificial neural net-

works, activation functions, CNN, optimization, overfitting, regularization

and dropout, transfer learning, and model evaluation metrics.

2.1 Introduction to Machine Learning

Designed to imitate human intelligence, machine learning is an evolving

branch of computational algorithms that learn from the surrounding envi-

ronment (El Naqa and Murphy, 2015). Mitchell et al. (1997) stated that

“a computer program is said to learn from experience (E) with respect to
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some class of tasks (T) and performance measure (P), if its performance

at tasks in T, as measured by P, improves with experience E”. Accord-

ing to Samuel (1959), machine learning is defined as “a field of study that

gives computers the ability to learn without being explicitly programmed”.

There is a plethora of machine learning algorithms. Common categories of

theses algorithms include (Ayodele, 2010):

• Supervised learning: Functions are created that map the input to

output. This involves the use of labeled data.

• Unsupervised learning: Set of inputs are modeled without labeled

examples.

• Semi-supervised learning: Both labeled and unlabeled data points are

used to create appropriate functions or classifiers.

• Reinforcement learning: Here, an algorithm learns how to act given

observation in the real world. Each action has an effect on the en-

vironment and the environment provides feedback that guides the

learning algorithm.

• Transduction: This is similar to supervised learning but does not ex-

plicitly create a function.

The history of machine learning is dated as far back as the seventeen cen-

tury (El Naqa and Murphy, 2015). According to El Naqa and Murphy

(2015), Arthur Samuel from IBM first used the term “machine learning”

and showed that computers could learn how to play the checker game.

Rosenblatt (1958) developed one of the early neural network architectures.

Since then, many breakthroughs have been made. One of them was in 1997

9



when Deep blue outperformed the world’s best chess player, Garry Kas-

parov, in a six-game match (Campbell et al., 2002). In addition, IBM Wat-

son, in 2011, beat the two highest-ranked players in a nationally televised

two-game “Jeopardy”! match (Ferrucci, 2012).

Machine learning has been used in many fields and has achieved great per-

formances. This includes and not limited to: computer vision (Mochida et

al., 2019), spacecraft engineering (D’Angelo et al., 2017), finance (Heaton

et al., 2017), entertainment (Gee, 2009), ecology (Christin et al., 2019),

computational biology (Angermueller et al., 2016), and biomedical and

medical applications (El Naqa and Murphy, 2015).

2.2 Introduction to Deep Learning

Deep learning is a subset of machine learning; the term deep learning or

deep neural network refers to artificial neural networks with multilayers. It

has achieved groundbreaking performance in many fields such as computer

vision (Voulodimos et al., 2018), speech recognition (Zhang et al., 2018),

and natural language processing (Young et al., 2018), to name a few. This

section introduces the reader to deep learning and related concepts as ap-

plied in this dissertation.

2.2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are the interconnection of computing

units called artificial neurons (Brauer, 2018). A neuron is a node in a neu-

10



ral network. ANNs were inspired by the network of neurons in the mam-

malian cortex (Sharma, 2017). An ANN is made up of one or more layers,

and each layer is made up of several interconnected neurons which have ac-

tivation functions attached to them. Data enter into the network via the

first layer (the input layer), then move to other layers (hidden layer) and

finally, the output is obtained in the output layer. A basic architecture of

ANN is depicted in figure 2.1.

x1

x2

x3

x4

Input Layer Hidden
Layer Output Layer

Figure 2.1: Basic architecture of an artificial neural network with one hid-

den layer. The input layer has four neurons, the hidden layer has five neu-

rons, and the output layer contains two neurons.

2.2.2 Activation Functions

Activation functions are special functions employed in artificial neural net-

works to transform an input signal into an output signal (Sharma, 2017).
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They transform the data past through them and produce an output. The

output is then fed as input to the next layer. Activation functions play an

important role in the training of a deep learning model, and the choice of

an activation function depends on the task at hand. There are many ac-

tivation functions such as logistic (sigmoid), softmax (Goodfellow et al.,

2016), hyperbolic tangent (tanh), rectifier linear unit (ReLU)(Wang et al.,

2020), gaussian error linear unit (GELU) (Hendrycks and Gimpel, 2016),

to name but a few. The ReLU function is one of the most used activation

functions for hidden layers. It surpasses the vanishing gradient problem

(Roodschild et al., 2020) faced by the sigmoid activation function and the

hyperbolic tangent activation function. Softmax activation is used in the

output of multi-class classification, and it is a generalization of the sigmoid

function (Goodfellow et al., 2016). The mathematical expression for the

ReLU and softmax functions are shown in equation 2.1 and equation 2.2,

respectively.

relu(x) = max(0, x),∀x ∈ R. (2.1)

Softmax(z)i =
ezi∑k
j=1 e

zj
(2.2)

Where z is a vector of input to softmax function, zi elements of input and

k is the number of classes. This dissertation uses ReLU and softmax acti-

vation functions in building bioacoustic classifiers as used by Cakir et al.

(2017) and Xie et al. (2018), respectively.
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2.2.3 Loss Functions

Neural networks are trained through an optimization process. To optimize

the training process, it is important to calculate the loss; it is calculated

using the loss function. This is the function being minimized (Goodfellow

et al., 2016) in the optimization process. Cross-entropy and mean square

error (MSE) are examples of loss functions. MSE is the most commonly-

used measure (James et al., 2013) for regression problems. It is calculated

by computing the average of the squared differences between the predicted

and the target values. Also known as logarithmic loss, cross entropy is used

for classification tasks. For both of these functions, the lower the value,

the better the model. This is because lower values indicate how good the

model is at predicting or classifying unseen data points. Cross entropy will

be employed in this work based on the studies carried out by Cakir et al.

(2017). The mathematical expression of MSE is shown in equation 2.3.

MSE = (
1

n
)

n∑
i=1

(f(yi)− f̂(xi))
2 (2.3)

where f(yi) is the true observation and f̂ is the prediction for the ith ob-

servation (yi) and n is the sample size.

2.2.4 Convolutional Neural Network

Most of the achievements of deep learning are based on an algorithm called

convolution neural networks (CNNs). It is one of the most popular deep

learning algorithms. CNNs are neural networks that employ the convo-

lution operation (instead of a fully connected layer) as one of its layers
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(Ketkar, 2017). It is made up of discrete convolutions, and it was designed

to mimic the connection of neurons in animal visual cortex. CNN is com-

posed of convolutional layers, non-linearity layer, pooling layer, and fully

connected layer (Albawi et al., 2017). Compared to other classification al-

gorithms, CNNs employ relatively little pre-processing which implies that

prior knowledge and human intervention in feature extraction are not a

problem. The subsequent paragraphs introduce the reader to the main

components of a CNN. Figure 2.2 shows a typical structure of a CNN.

Figure 2.2: Architecture of a CNN showing the convolutional layer, pooling

layer and the fully connected layer.

Convolutional Layer

A convolutional layer is the first layer in a CNN. This layer is concerned

with feature abstraction. Its input is an image. The image becomes ab-

14



stracted into a feature map (activation map) after going through the layer

as shown in figure 2.3.

0 0 1 1 1 0

1 0 0 1 0 0

0 1 0 1 0 1

1 1 0 1 1 1

1 1 1 0 0 0

1 1 1 1 1 1

*
0 1 0

1 0 1

0 1 0

2 2 2 2

1 2 2 3

3 3 2 2

4 2 3 2

Image Filter
 Feature

map

Figure 2.3: Demonstration of the convolution process using an imaginary

image of size 6x6 and 3x3 filter to obtain a 4x4 output.

Pooling Layer

This is the layer added after the convolutional layer and makes the model

invariant to small changes in the input (Goodfellow et al., 2016). It is used

to downsample the feature map obtained from the convolutional layer. A

nonlinear activation function, in most cases, the ReLU function is applied

before the pooling layer is added. Two kinds of pooling operations exist,

namely: average pooling and max pooling. Max pooling computes the

maximum value for each patch (a subsection of feature map that a ker-

nel/filter processes at a time) of the feature map, and average pooling uses
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the average value for each patch of the feature map. Figure 2.4 illustrates

the max pooling operation. We will use max pooling in this dissertation as

was used in literature by Dufourq et al. (2021).

23 0 1 4

14 45 120 6

23 10 200 1

125 100 34 6

45 120

125 200

Figure 2.4: Illuistration of max pooling using a 2x2 filter on a 4x4 input.

Fully Connected Layer

Fully connected layer refers to the last few layers of a CNN. Its input is

the flattened (1-dimensional array) output of the last layer of the feature

extractor - convolutional layer or pooling layer. In simple terms, it is a

feed-forward network. Here, every neuron in one layer is connected to ev-

ery neuron in another layer. The output of the fully connected layer is fed

to the softmax activation function which determines the probability of the

output belonging to a specific class.

2.2.5 Optimization

Deep learning models are trained through an optimization process. There

exists a plethora of optimization algorithms; some of which include: vanilla

gradient descent, stochastic gradient descent (SGD) (Bottou, 2012), mini-
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batch gradient descent (Konečn et al., 2015), Adagrad (Duchi et al., 2011),

Adadelta (Zeiler, 2012), RMSprop (Hinton, 2012), adaptive moment es-

timation (Adam) (Kingma and Ba, 2014), to name a few. Gradient de-

scent is the oldest optimization algorithm and is the most commonly used

(Ruder, 2016). SGD is an improvement of the vanilla gradient descent al-

gorithm; however, it depends on the manual tuning of learning rate (Soy-

daner, 2020) while mini-batch gradient descent uses the advantages of both

SDG (SDG easily fits in the memory, and it is computationally efficient)

and vanilla gradient descent. Next, Adagrad enhances the robustness (Dean

et al., 2012) of SGD by adapting the learning rate. It is based on adapting

the learning rate. Furthermore, Adadelta and RMSprop were developed

independently almost at the same time to solve the diminishing learning

rate of Adagrad optimizer (Ruder, 2016). Finally, similar to RMSprop and

Adadelta, Adam optimizer employs adaptive learning rate and adds bias-

correction and momentum to RMSprop. It combines the benefit of Ada-

Grad and RMSprop (Soydaner, 2020). We will use the Adam optimization

algorithm in this work. Our decision was guided by literature (Dufourq et

al., 2021; Xie et al., 2018; Cakir et al., 2017).

2.2.6 Overfitting and Dropout

Overfitting occurs when a machine learning model does well on the data

set used in training, but it does not generalize well to new examples that

were not in the training data set (NarasingaRao et al., 2018). Overfitting

is a major problem in deep learning. Some of the methods of preventing

overfitting includes:
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1. Using more data (NarasingaRao et al., 2018),

2. Data augmentation (Dufourq et al., 2021; Cakir et al., 2017),

3. Regularization: This is mostly dropout, although L1/L2 regulariza-

tion are also possible (NarasingaRao et al., 2018),

4. Early stopping (Sarle, 1996),

5. Transfer learning (Xie et al., 2018; Sankupellay and Konovalov, 2018;

Tóth and Czeba, 2016).

Dropout is one of the main techniques used to prevent overfitting (Srivas-

tava et al., 2014). The main idea here is to randomly drop neurons, along

with their connections from the neural network during training (Srivastava

et al., 2014; NarasingaRao et al., 2018). All of the aforementioned overfit-

ting prevention/reduction techniques have been successfully used in litera-

ture, and hence, we will employ them in this work (Xie et al., 2018; Cakir

et al., 2017).

2.2.7 Transfer Learning

Torrey and Shavlik (2010) define transfer learning as the improvement of

learning in a new task through the transfer of knowledge from a related

task that has already been learned. Transfer learning is a machine learn-

ing technique used in deep learning in which parts of a network (model)

that is trained on a large and potentially unrelated dataset for a given ma-

chine learning task is reused as the starting point in building a network for

a new task (Bianco et al., 2019). In transfer learning, a machine exploits
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the knowledge gained from a previous task to improve generalization about

another. After the model has been built, often the feed-forward layers at

the end of the network are replaced with that tailored for the new task and

new weights are learned for the final layer (Bianco et al., 2019). This tech-

nique is efficient in cases where there are data limitations (Pan and Yang,

2009; Tan et al., 2018) such as identification of bird species using bird au-

dio recording (Xie et al., 2018; Sankupellay and Konovalov, 2018; Tóth and

Czeba, 2016)

2.2.8 Evaluation Metrics

Evaluation metrics in machine learning are used to measure the perfor-

mance of machine learning algorithms on a given task. Depending on the

task, different evaluation metrics are used to evaluate a machine learning

algorithm’s performance. One metric can give a better measurement on

one task but does poorly on another task. There are many evaluation met-

rics. This includes and is not limited to confusion metric, precision, recall,

F1 score, accuracy, area under the receiver operating characteristic (ROC)

curve (AUC), mean average precision (MAP), sensitivity, mean square er-

ror (RMSE), mean average error (MAE), to name a few. Hence, selecting a

suitable evaluation metric is important for discriminating and obtaining an

optimal classification model (classifier) (Hossin and Sulaiman, 2015). Here,

we focus on the evaluation metrics commonly used in bird audio classifi-

cation: accuracy, precision, recall, F1 score, and AUC as used in literature

(Sprengel et al., 2016; Incze et al., 2018; Tóth and Czeba, 2016; D. Rosa

et al., 2016).
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A confusion matrix is used in the evaluation of a model, and it is one of

the most commonly used methods to present the results obtained by a clas-

sifier (Luque et al., 2019). It is made up of rows and columns; the rows

represent the actual class while the column represents the predicted classes.

Figure 2.5 is an example of a confusion matrix for binary classification

which can be easily extended for a multi-class classifier. The confusion ma-

trix in this case is made up of four cells designated as true positives (TP),

false positives (FP), false negatives (FN), and true negatives (TN).

Figure 2.5: Typical binary classifier confusion matrix.

Accuracy, F1 score, precision, and recall can be defined mathematically

using a confusion matrix as follows;

Accuracy =
TP + TN

TP + FP + TN + FN
(2.4)

Recall =
TP

TP + FN
(2.5)
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Precision =
TP

TP + FP
(2.6)

F1 score = 2 · Precision ·Recall

Precision + Recall
(2.7)

AUC is calculated from the area under the ROC curve. ROC curve shows

the true positive rate against false positive rate over various binarization

threshold values (Cakir et al., 2017). This is frequently used in the classifi-

cation of birds (Stowell et al., 2019; Acevedo et al. (2009); Debnath et al.,

2016 )

This chapter introduced the reader to machine learning, in particular deep

learning concepts. The following chapter reviews some literature in bioac-

coustics studies.
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Chapter 3

Literature Review

This chapter focuses on the related studies in bioaccoustics. Both shallow

(traditional) machine learning techniques and deep learning algorithms

have been applied in bioaccoustics. The studies are grouped under two

main headings: traditional (shallow) machine learning techniques and deep

learning techniques.

3.1 Traditional Machine Learning Techniques

Many machine learning algorithms have been used in the literature and are

still currently being explored in bioacoustic studies. Linear discriminant

analysis (LDA) was used by Steiner (1981) to study the whistle vocaliza-

tions of five species of dolphins. D. Rosa et al. (2016) used LDA to iden-

tify and classify birds using radar data. It performed well in discriminating

the presence and the absence of birds with an area under the ROC curve
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(AUC) score greater than 80%. However, it performed poorly in classify-

ing birds into various species; the AUC was less than 80%. LDA performed

least among three techniques employed by Acevedo et al. (2009) to iden-

tify and classify seven frog species and three birds species. This is because

of the linearity assumption (Acevedo et al., 2009) of LDA unlike the other

two techniques, support vector machine (SVM) and decision tree which do

not have linearity assumption. Ramashini et al. (2019) used bird sounds

to classify five bird species from the Borneo Rainforest using LDA, and

nearest centroid (NC) classifier with an average accuracy of 96%. Their

result outperformed other techniques such as PCA/SVM (average accu-

racy=92%) and PCA/KNN (average accuracy=88%) using the Xeno-canto

data repository (Ramashini et al., 2019); they used 50 bird calls, 10 bird

calls for each species for training. Since the difference in average accuracy

is small, a better comparison would have been to compare LDA/NC with

PCA/NC and PCA/NC because the difference in performance would have

been caused by the NC classifier and not actually by the LDA dimension

reduction technique.

Debnath et al. (2016) used three classifiers (random decision tree, SVM,

and extra tree regressor) in the identification of bird species using the BIOTOPE

society dataset; this dataset contains 87 sound classes. Among the three

different classifiers, the random decision tree method had the best perfor-

mance with 96% as AUC and the worst performer was SVM with 51%.

Similarly, Kampichler et al. (2010) obtained the best result using random

forest and classification tree among other algorithms in the classification of

ocellated turkey (Meleagris ocellata). However, SVM outperformed decision

tree and LDA in a study carried out by Acevedo et al. (2009). SVM classi-

fier performed as well as reference method in the automatic recognition of
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bird species in a study carried out by Fagerlund (2007).

Leng et al. (2014) built an ensemble of weak classifiers (extra trees clas-

sifier, random forest classifier, KNeighbors classifier, logistic regression,

SGD classifier, AdaBoost classifier, gradient boosting classifier, SVC, Gaus-

sianNB, BernoulliNB, LDA) that performed better than individual clas-

sifiers. Their result showed that a combination of weak classifiers outper-

formed individual classifiers in discriminating 501 bird species in the 2014

BirdCLEFF competition (Leng et al., 2014) using both audio and meta-

data of bird recordings. The meta-data included: latitude, longitude, ele-

vation, year, month, month and day, time, author of the bird recordings.

The use of an ensemble of these classifiers reduced the time complexity and

computational complexity. It is no doubt they would have obtained bet-

ter performance if they had used strong learners but this would be at the

expense of time and limited resources. The winning solution of the Neural

Information Scaled for Bioacoustics (NIPS4B) 2013 (Lake Tahoe, 2013)

competition used randomised decision tree classifier to classify 87 bird

sound class (Lasseck, 2013). The solution involved preprocessing the audio

recordings, transforming the audio to spectrograms, segmenting them, then

feature extraction. The preprocessing could be minimized by using deep

learning algorithms such as CNN. Lasseck (2015) improved the method in

(Lasseck, 2013) by using decision tree-based feature selection and bagging

to provide the basis for the winning solution to the LifeCLEF 2015 bird

identification task.

Other machine learning techniques used in the bird species identification

and classification include the hidden Markov model (Trifa et al., 2008),

template-based methods such as time-domain matched filter (Bianco et al.,
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2019) to name a few. The application of the aforementioned algorithms in

bioacoustics research in general and bird species classification, in particu-

lar, require a lot of feature engineering and human input (Thomas et al.,

2019). This is more costly, time-consuming, and unsustainable. Recently,

researchers have resorted to alternative methods to surpass this, leveraging

the deep learning techniques that have been successful in image classifica-

tion (Dufourq et al., 2021).

3.2 Deep Learning Techniques

Deep learning has produced good results in several application areas in

bioacoustic research in general and bird species identification and classifi-

cation in particular. Here, we discuss some of the deep learning algorithms

employed in bioacoustic research. CNN was used by Xu et al. (2017) for

the detection of whales. Using Cornell University whale detection data 1,

they obtained AUC performance of 0.985.

Thomas et al. (2019) employed a CNN to build a detection and classifica-

tion system which was able to detect and classify three species of whales,

non-biological sources of noise, and ambient noise. They also proposed a

new representation of acoustic signals based on spectrogram representation.

They employed ResNet-50 (He et al., 2016) and VGG-19 (Simonyan and

Zisserman, 2014) with batch normalization and concluded that the novel

representation of acoustic signals (3 channels) improved the performance of

the classifier system.

1Cornell University whale detection data: https://www.kaggle.com/c/

whale-detection-challenge/data
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The off-the-shelf ImageNet pre-trained ResNet-50 CNN architecture that

leverages the residual learning to solved the degrading accuracy problem

(the degradation problem is observed when training deep neural networks;

as the network get deeper, accuracy gets saturated) in CNN architecture

was used to achieve 60% to 72% accuracy of birds calls recognition using

a subset of Xeno-canto dataset in the BirdCLEF 2016 2 and 2017 3 chal-

lenges (Sankupellay and Konovalov, 2018). In addition, the results of the

work done by Tóth and Czeba (2016) in the BirdCLEF 2016 challenge

show that the deep learning-based approach is well suitable for bird species

classification, but fine-tuning is necessary to reach better accuracy. For in-

stance, separating time and frequency in the CNN feature learning part

and applying recurrent architectures, such as Long ShortTerm Memory

(LSTM) (Hochreiter and Schmidhuber, 1997). Furthermore, the winners

of the BirdCLEF 2016 Recognition Challenge, Sprengel et al. (2016) em-

ployed CNN based architectures in the classification of 999 bird species

using bird audio recordings; their network architecture achieved a mean

average precision score of 0.686 when predicting the main species of each

sound file and scores 0.555 when background species are used as additional

prediction targets.

Cakir et al. (2017) used a combination of CNN and recurrent neural net-

work (RNN) to form the convolutional recurrent neural network (CRNN).

The CRNN was used to obtain an 88.5% AUC score on the unseen eval-

uation data outperforming CNN on the same. The freefield1010 dataset

(Stowell and Plumbley, 2013) was used for the model development, and the

Chernobyl dataset was used for evaluation. This performance placed their

2BirdCLEF: https://www.imageclef.org/lifeclef/2016/bird
3BirdCLEF: https://www.imageclef.org/lifeclef/2017/bird
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work at the second position in an automatic bird audio detection challenge.

A recent study carried out by Dufourq et al. (2021) used a CNN-based au-

tomated classifier to monitor Hainan gibbon (Nomascus hainanus). Like

the aforementioned studies, CNN performed well in detecting gibbon calls.

To solve the problem of insufficient data in bioacoustics, they used different

techniques of data augmentation.

Xie et al. (2018) developed an automated bird species identification sys-

tem based on multi-channel CNN. They employed the VGG-16 model (pre-

trained on ImageNet) to surpass the limited training data problem in bioa-

coustics; the performance of the model was improved using result fusion

mode. Incze et al. (2018) fine-tuned an image-based neural network (Mo-

bileNet (Howard et al., 2017) a pre-trained CNN model) using bird audio

data from Xeno-canto to create a system that was able to recognize bird

calls. They used the visual representation of audio (spectrograms) of dif-

ferent color maps; their results suggest that RGB spectrograms are more

effective than their linear black and white counterparts, probably because

the lower layers of MobileNet were trained on colored images. However,

they could only obtain reasonable accuracies with binary classification (2

classes) and suggested that using bigger and more robust pre-trained CNN

models such as ResNet (Limonova et al., 2021) might improve the accuracy

of the model.

It is therefore evident to conclude that several shallow and traditional ma-

chine learning algorithms have been employed in bioacoustic research. Some

of them have achieved good performances. However, they require intensive

feature engineering and manual preprocessing; this is time-consuming and

costly. In an attempt to surpass these problems and to step up the perfor-
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mance of classification models, several studies have used deep learning, but

this again faced some challenges due to data limitation resulting in overfit-

ting. Regularization, data augmentation, and transfer learning have been

used to surpass this problem. Nonetheless, we did not find any work that

used a pre-trained model built from public repositories which contain bird

vocalizations as a means to address the issue of data scarcity.

This dissertation focuses on pre-training neural networks using Xeno-canto

and eBirds and fine-tuning them using our collected data (audio record-

ings) to create bioacoustic classification models. The audio recordings were

soundscape data which contained calls of the Cape robin-chat (Cossypha

caffra), and pin-tailed whydah (Vidua macroura) from the Intaka Island

Nature Reserve, Cape Town, South Africa. Based on the literature, it is

clear that deep learning is the state-of-the-art method of building classifiers

for bioacoustic problems in general and bird species identification in par-

ticular. This is also the case for speech recognition task (Deng et al., 2013;

Zhang et al., 2018). Given the findings presented in existing literature,We

will discuss data collection and methodology in the next chapter.
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Chapter 4

Data and Methodology

This chapter discusses the sources of data and the methodology used in

this dissertation. Section 4.1 presents the data sources and the pre-processing

of the data. We discuss models training and testing in section 4.2.

4.1 Data Collection

Both primary data and secondary data were used. Our primary data was

collected using an AudioMoth (Hill et al., 2019), a passive acoustic recorder.

The sampling rate was set at 48 kHz and the data was collected from 5

a.m. to 10 p.m. every day for two weeks in the Intaka Island Nature Re-

serve in Cape Town, South Africa. Figure 4.1 shows the site where our

data was collected. The red dot in 4.1a indicates the location of the Au-

dioMoth used to record bird vocalizations, and figure 4.1b depicts the Au-

dioMoth. This site was chosen for the study because of the high availabil-
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ity of the birds of interest there. In this project, we focused on the pin-

tailed whydah (Vidua macroura) and Cape robin-chat (Cossypha caffra).

Our choice of species was guided by the fact that these birds are very com-

mon and vocalize quite a lot.

The AudioMoth was attached at a height of 1.5 meters above the ground

as seen in figure 4.1b. This was done in a similar way to (Darras et al.,

2018; Stowell et al., 2019; Dufourq et al., 2021). A sampling rate of 48

kHz was used because it allowed us to record a wider range of frequencies.

This included the sound recording of other bird species that could be of in-

terest to other researchers since one of our objectives was to publish our

dataset. Our species of interest, pin-tailed whydah and Cape robin-chat

call around 3-8 kHz and 2-3 kHz, respectively. Using the Nyquist theorem

(Landau, 1967), a sampling rate of 16 (8*2) kHz suffices for both species. 8

kHz is the maximum frequency, and it should be doubled to avoid artifacts.

Choosing a much less sampling rate would lead to aliasing, an effect that

causes different signals to become indistinguishable when sampled.

Secondary data was obtained from bird vocalization public repositories,

Xeno-canto, and eBirds. Xeno-canto is a website for sharing recordings of

sounds of wild birds from all over the world, and eBird gathers unprece-

dented volumes of information on where and when birds occur at high spa-

tial and temporal resolutions. We downloaded 60 pin-tailed whydah audio

recordings and 125 audio recordings of Cape robin-chat from Xeno-canto;

this was the amount of data available in this library when this study was

done. The data had different qualities, categories A to E. Category A was

the best quality (clear recordings with little or no background noise) while

category E represented the worst quality (unclear recordings with a lot of
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background noise). One hundred and forty audio recordings of pin-tailed

whydah and Cape robin-chat were provided by eBird (Cornell Lab of Or-

nithology).

(a) Intaka Island Nature Reserve

Cape Town, South Africa.

(b) AudioMoth hung at a height of

1.5 meters at a sampling rate of 48

kHz for audio recording.

Figure 4.1: Collection of Data from Intaka Island, Cape Town. The red dot

in (a) shows the location of the AudioMoth used in recording bird vocaliza-

tions and (b) shows the AudioMoth.

4.1.1 Pre-processing

Librosa library 1 and Sonic Visualiser 2 were used to preprocess our data.

The data were manually labeled using Sonic Visualiser (an application for

viewing and analyzing the contents of music audio files). It is an open-

source software that is used in visualizing, analyzing, and annotating sound

files. We chose it because of our previous experience with the software.

1librosa library: https://librosa.org/
2Sonic Visualiser: https://www.sonicvisualiser.org/
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The audio files of bird vocalizations are a sequence of amplitudes sampled

at a specific sampling rate. The sampling rate is defined as defines the

number of samples per second taken from an analog (continuous) signal

to create a digital signal. The sampling rate of 48 kHz means that 48000

samples were taken every second from the analog signal during recording to

make the digital signal shown in Figure 4.2 as a waveform. The calls were

of varied duration, ranging from 3 seconds to 30 seconds. The detailed an-

notation process is explained in the next paragraph.

The annotation process consisted in deciding labels to use, and then la-

beling the audio files in Sonic Visualiser. We labeled the signal into three

classes: pin-tailed whydah (PTW), Cape robin-chat (CRC), and noise - ev-

ery other sound different from PTW and CRC was considered as noise. We

used only three classes because we wanted to focus solely on two species of

birds; this is because they are very common and call very often. We em-

ployed both visual and auditory techniques to label the files. First, we had

to load an audio file into Sonic Visualiser; it appeared in the waveform as

shown in figure 4.2. Next, a spectrogram of the 20 minutes long audio was

displayed in Sonic Visualiser. Then, the audio was listened to while visu-

ally comparing the call pattern with reference calls. Once, a call was iden-

tified, a bounding box was drawn around the calls as shown at the bottom

of figure 4.2. In addition, the label is written in an editor as seen in figure

4.2. A similar procedure was followed to label noise. Finally, the labeled

file was exported and saved as an SVL file.
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Figure 4.2: Manual annotation of bird audio recordings into three (3)

classes: pin-tailed whydah, Cape robin-chat and noise. The top right por-

tion shows the amplitude of a typical file in Sonic Visualiser. Cape robin-

chat calls enclosed in boxes in the spectrogram at the bottom. To the top

right is editor with all the labels.

The outcomes of the labeling process were SVL files that were further pro-

cessed using the librosa python library. Librosa was used to downsample

the audio file to 16 kHz. This means taking 16000 samples per second. The

audio file was downsampled to reduce the computational complexity and to

extract only the frequency range in which the two birds call. We used a 16

kHz sampling rate because the maximum calling frequency of the species

of interest is 8 kHz; this was done in accordance with the Nyquist theorem

which states that a periodic signal must be sampled at more than twice the

highest frequency component of the signal. Then, various equal (CNN re-

quires images of the same sizes) length segments were extracted with the

aid of the SVL file guided by domain knowledge of the calling species- min-

imum and maximum call duration, and minimum and maximum frequen-
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cies (Xie et al., 2018). Three-second segments were used because the short-

est duration of the birds’ call was 3 seconds. The segments were then con-

verted into mel spectrogram; a spectrogram 3 is simply a two-dimensional

visualization of a sound. Elapsed time is represented along the x-axis, fre-

quency is represented along the y-axis, and amplitude is represented by

color intensity. These are the images that were inputted to the 2D-CNN

(Dufourq et al., 2021). Three examples of such spectrograms are shown in

figure 4.3 with bounding boxes drawn around calls. The next section de-

tails how the CNN models were trained and tested.

(a) Spectrogram of pin-tailed why-

dah of size 128x216 with its calls

enclosed in a rectangle.

(b) Spectrogram of Cape robin-chat

of size 128 x 216 with its calls en-

closed in a rectangle.

(c) Spectrogram of noise size 128 x 216.

Figure 4.3: Three examples of spectrograms used.

3http://soundbirding.org/index.php/sound-and-spectrograms/
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4.2 Pre-training CNNs for Bioacoustic Clas-

sification

This section details how we pre-trained CNNs for bioacoustic classifica-

tion. Here, we employed 2D-CNN s was used in literature (Xie et al., 2018;

Dufourq et al., 2021) to pre-train our model using spectrograms. Baseline

classifiers were built using bird audio recordings obtained from the Intaka

Island Nature Reserve Cape Town, South Africa. Then we pre-trained

three classifiers on the bird vocalizations from the public repositories and

fine-tuned them on the data collected in Cape Town. Section 4.2.1 presents

our experimental design. We split the data collected into a training set and

test set as shown in figure 4.4, and figure 4.5, respectively. The training

set from the collected data was used in building the baseline model and

for fine-tuning pre-trained models. Our code and script can be found at

github.
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Figure 4.4: Training set made up of 18087 segments; 2050 Cape robin-chat

segment, 5315 pin-tailed whydah, and 10722 Noise

Figure 4.5: Testing set made up of 14416 segments; 1436 Cape robin-chat

segment, 4264 pin-tailed whydah segment, and 8712 noise.
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Table 4.1 shows the distribution data points for the various class used for

pre-training our models.

Table 4.1: The distribution of secondary data for model pre-training.

Secondary dataset

Class number of data points

Cape robin-chat 5045

pin-tailed whydah 1980

Noise 425
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4.2.1 Experiment Design

Algorithm 1 Experiment Design

1: Split data collected from Intaka Island into training and testing. The

Testing data is constant.

2: Sample X (e.g. 50 or 100) amount of calls from Xeno-canto and eBird.

3: Sample Z (e.g. 1000 or 2000) amount of background noise from train-

ing data obtained in step 1.

4: Augment, X data obtained from step 2, to the same amount as Z.

This will ensure that both X and Z represent a balanced dataset.

5: Pre-train a classifier, C, on the data from steps 4 and 3. That is, on X

and Z spectrograms.

6: Apply model to test data obtained from Xeno-canto and eBird.

7: Sample Y (e.g. 70 or 120) amount of calls from training data obtained

from step 1.

8: Augment, Y data obtained from step 7, to the same amount as Z. This

will ensure that both Y and Z represent a balanced dataset.

9: Sample Z (Z, same value from step 3) amount of background noise ob-

tained from step 1.

10: Fine-tune the classifier, C the on data obtained from steps 7 and 8.

That is, Y and Z spectrograms.

11: Train a randomly initialised classifier, I, on data obtained from step 7

and 8. That is, Y and Z spectrograms.

12: Apply classsifier, I, to test data obtained from step 1.

13: Repeat steps 2 to 10 by changing the values of X, Y and Z, and com-

pare the results obtained by classifier C (pre-training and fine-tuning)

and I (randomly initialised).
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The data obtained from Intaka Island was split into a training set and test

set, in the ratio 6:4. The test set was kept constant but different samples

of the subsets of the training set were used in fine-tuning the pre-trained

models to see the impact of different data sizes on the fine-tuning process.

A varying number of calls, for instance, 900, 1200, etc were randomly se-

lected from the secondary data obtained from Xeno-canto and eBird (sec-

ondary data) and used in pre-training CNN networks to measure the im-

pact of data size on pre-training a model. To prevent background noise

from affecting (not learned by the classifier) our classifier, for each sample

of calls selected from the public repositories, we added a sample of back-

ground noise from the collected data to ensure class balance. The time-

shifting augmentation technique was employed to ensure class balance in

the secondary data set. The augmented data was then used in pre-training

CNN networks. The pre-trained networks (models) were applied to the test

data obtained from the secondary data set. This was repeated 6 times and

the performance (F1, Test accuracy, precision, recall, and AUC) was aver-

aged.

We provide an example to make the explanation clearer. We randomly se-

lected X calls from Xeno-canto and eBirds and randomly selected Z back-

ground noise from the training set. The 50 calls (just for illustration) from

Xeno-canto were augmented to Z calls using time-shifting to ensure class

balance between the two classes (spectrograms that contain calls and those

that do not). The result of this was that X plus Z examples were avail-

able for training. Next, the examples were used to pre-train a classifier.

After pre-training, Y calls were randomly chosen from our collected data

from Cape Town, and then augmented to the same value as Z using time-

shifting augmentation technique. Again Z background noise were randomly
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selected and used with the augmented data to fine-tune the pre-trained

model. The augmentation steps were used to create balanced datasets.

The Z background noise samples together with the augmented data were

used to train a randomly initialized (baseline) model. Finally, the test set

was used to evaluate the performances of both the fine-tuned model and

baseline. The procedure was repeated using different sample sizes from the

training set and Xeno-canto and eBirds calls, and the performance of the

models is averaged. Variable sizes of training data was used to measure

the impact of the size of training data on the performance of a classifier.

This process is summarised in Algorithm 1. The proposed methodology al-

lows us to test our hypothesis which is to determine if pre-training CNNs

on existing bird audio recordings from two public repositories (Xeno-canto

and eBird) and fine-turning using the audio data we collected locally will

provide a better classification accuracy than training the network with ran-

domly initialized weights.

Time shifting is illustrated in figure 4.6. Figure 4.6a is the original spec-

trogram while figure 4.6b and 4.6c are the time-shifted versions. They

are time shifted to the right. When the spectrogram is shifted, the data

is wrapped back to the left. This results in realistic synthetic data which

would be a representation of true calls recorded in the environment. Figure

4.6c shows the spectrogram of figure 4.6b wrapped to the left.
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(a) An unaugmented

example of Cape robin-

chat call

(b) Example 1 : Aug-

mented (time shited)

Cape robin-chat call

(c) Example 2 : Aug-

mented (time shited)

Cape robin-chat call

Figure 4.6: Illustration of time shifting technique using Cape robin-chat

segments.

4.2.2 CNN Architecture

We trained our models on Google Colab Pro using the Keras API. Figure

4.7 shows the architecture that was used. It is made up of 15 layers. We

used Adam optimizer as used in literature (Dufourq et al., 2021; Xie et al.,

2018; Cakir et al., 2017). Also because it is computationally efficient, re-

quires little memory space and works well with large data sets. This was

chosen based on literature. The ReLU activation function was used for

the input, convolutional layer, and dense layer as guided by Cakir et al.

(2017)), and the softmax activation function was employed similarly as

used by Xie et al. (2018). This is because this is multi-classification prob-

lem and the softmax function returns the probabilities of each class; the

target class is the class with the highest probability.The input to the CNN

were spectrograms of size 128 x 216 each, and shape 128x216x1.

Early stopping having a patience of 10 was employed. This was guided by

the work done by Tóth and Czeba (2016). A dropout rate of 0.5 was em-
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ployed; our choice was in accordance with a recent study carried out by

Dufourq et al. (2021). Both early stopping and dropout were used to pre-

vent overfitting. Many hyperparameters were experimented with and the

best results were obtained using the following; 32 filters of size 3x3 in each

convolutional layer, a kernel size of (2,2) in every max-pooling layer, and

two dense layers of 32 and 3 hidden nodes. A learning rate of 0.0001 was

used when fine-tuning the pre-trained models.
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MaxPool2D, size =(2,2)

Conv2D, filter = 32,
Activation=ReLU

Dense, Units = 32

MaxPool2D, size =(2,2)

Conv2D, filter = 32,
Activation=ReLU

Conv2D, filter = 32,
Activation=ReLU

Conv2D, filter = 32,
Activation=ReLU

MaxPool2D, size =(2,2)

Conv2D, filter = 32,
Activation=ReLU

Dense, Units = 3,
Activation=softmax

Droupout, 0.5

Conv2D, filter = 32,
Activation=ReLU

MaxPool2D, size =(2,2)

Conv2D, filter = 32,
Activation=ReLU

Conv2D, filter = 32,
Activation=ReLU

Flatten

Figure 4.7: The CNN architecture used. It is made up of 15 layers (8 con-

volutional layers, 3 max pooling layers, 1 flatten layer, 1 dropout layer and

2 dense layers).
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Chapter 5

Results and Discussion

In this chapter, we present and discuss the results of our findings. The re-

sults are presented following our objectives which include: 1) to pre-train

CNNs using a public repository, 2) to fine-tune the pre-trained models us-

ing collected data, 3) to build CNN classification models using only the

collected data, and 4) to compare the performances of the classifiers. Sec-

tions 5.1, 5.2, and 5.3 present the results for pre-training with data from

Xeno-canto and eBird, baseline models using our collected data, and fine-

tuning the pre-trained with collected data, respectively. Finally, section 5.4

compares the baseline models and the fine-tuned models.

5.1 Pre-training

A total of three experiments were conducted. The first experiment was de-

noted as PT-9000. It was pre-trained using 9000 samples (spectrograms);
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three thousand samples from each class. We denoted the second experi-

ment as PT-12000. It was trained using 12000 samples; four thousand sam-

ples from each class. The third experiment was denoted as PT-15000. We

used 15000 samples, 5000 samples from each class. Then, 1145 (142 Cape

robin-chat, 503 noise, and 500 pin-tailed whydah) samples from Xeno-canto

and eBird were used to check the performance of each of the models. Fig-

ure 5.1 shows the confusion matrices, table 5.1 and figure 5.2 summarises

the results obtained. The results show that the larger the sample size, the

higher the AUC, precision, F1 score, recall, and AUC values. PT-9000

model performed the least while the PT-15000 performed the best.

Table 5.1: Performance of various pre-trained models.

Performance Of Various Pre-trained Models

Performance

measurre

PT-9000 PT-12000 PT-15000

Precision 0.9282 0.9562 0.9907

AUC 0.9957 0.9985 0.9998

F1 Score 0.9453 0.9666 0.9898

Accuracy 0.9624 0.9747 0.9921

Recall 0.9698 0.9791 0.9890
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(a) Model pretrained on 9000

spectrograms.

(b) Model pretrained on 12000 spectro-

grams.

(c) Model pretrained on

9000spectrograms.

Figure 5.1: Confusion Matrices for pretrained models obtained using test

data from Xeno-canto and eBird
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Figure 5.2: Visualization of the performance of the different pretrained

models on test data obtained from Xeno-canto and eBird

The confusion matrix in figure 5.1 shows that the pre-trained model per-

forms well in classifying various calls into the respective classes. The con-

fusion matrices are actually pretty good for all the pre-trained models. For

the PT-9000, figure 5.1a, 141 CRC were correctly classified as CRC, and

1 CRC is classified as PTW. There were 31 and 4 NOISE samples that

were misclassified as CRC and PTW, respectively. Only 7 of the 500 PTW

used were not correctly classified. The PT-12000 model confusion matrix in

figure 5.1b indicates the PT-12000 classifier had the same performance as

PT-9000 model for the CRC class. The PT-12000 model did slightly worse

than the PT-9000 for the NOISE class as 43 noise were incorrectly classi-

fied. However, it performed better than PT-9000 for the PTW as only 5

PTW calls were misclassified. The PT-15000 model had the best perfor-

mance for the NOISE and PTW classes because only 2 NOISE and 4 PTW

samples were misclassified. These results show that we will have few false
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negatives for PTW and CRC, The models also did excellently in discrim-

inating noise from the other two classes. This means that our models will

correctly determine the noise and we won’t have a lot of false positives. In

ecology, we record thousands of hours of data, and most often this data

contains many hours of background noise with very few examples of calls.

We always want to reduce false positives as much as possible and our result

illustrates this.

5.2 Baseline

Five baseline models were built using different subsets of the training set as

indicated in the methodology and evaluated using the test set. The models

were denoted as M 6150 model, M 9000 model, M 12000 model, M 16000

model, and M 21000 model. The number in the name of the models rep-

resents the size of the subset of the training set used in training them. We

trained the M 6150 model using 6150 samples. This consisted of 2050 sam-

ples from each of the classes. The CRC class was augmented to 3000, and

three thousand samples were randomly from PTW class and the NOISE

class to give a total of 9000 samples which were used to train the M 9000

model. Next, CRC was augmented to 4000 samples and the same sam-

ple sizes selected from the PTW and NOISE classes. This gave a total of

12000 samples. A similar method was applied to create a training set of

16000 samples that were used to train the M 16000 model. Finally, we

used 21000 samples, 7000 samples from each class to train the M 21000

model. Each of the 5 baseline models was executed separately on their cor-

responding training subsets. Each model took an average of 10 minutes to
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train. The results obtained for the various experiments are shown in figure

5.3, figure 5.4 and table 5.2.

Similar to the pre-trained models, the performances of the baseline mod-

els increase as the size of the training subset increases. Figure 5.3 shows

the boxplot of the average accuracy; M 21000 model produced the high-

est accuracy while M 9000 produced the least accuracy. Again, the box-

plot in figure 5.4 indicates that M 21000 model had the highest F1 score

while M 9000 model had the lowest F1 score. It shows that as we increase

the augmentation process the results improve, and the variation decreases.

It means that future work should augment their data to improve perfor-

mance. It is worth mentioning that the boxplots were created in R.

Figure 5.3: Comparison of accuracy of various baseline models
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Figure 5.4: Comparison of F1 score of various baseline models

Table 5.2: Average performance measures of various baseline models.

Average performance measures of various baseline Models

Measure M 6150 M 9000 M 12000 M 16000 M 21000

Recall 0.8736 0.8763 0.8946 0.8903 0.9045

Precision 0.8207 0.8260 0.8393 0.8845 0.8734

F1 Score 0.8406 0.8464 0.8621 0.8865 0.8872

AUC 0.9530 0.9600 0.9650 0.9650 0.9690

5.3 Fine-tuning

The pre-trained models were fine-tuned using the different subsets of the

training set: we used 9000, 12000, 16000, and 21000 spectrograms. Table

5.3 depicts the result of the model fine-tuned with 9000 samples, 3000 sam-
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ples from each class.

Table 5.3: Average performances of various pre-trained models fine-tuned

with 9000 spectrograms.

Pre-trained models fine-tuned with 9000 spectrograms

Measure PT-9000 PT-12000 PT-15000

Accuracy 0.8712 0.8790 0.8845

Precision 0.8096 0.8190 0.8308

Recall 0.8830 0.8859 0.8820

F1 score 0.8355 0.8446 0.8516

AUC 0.96151 0.9602 0.9590

Then, the pretrained models were each fine-tuned with 12000 samples,

4000 samples from each class. The results obtained are shown in table 5.4.

Table 5.4: Average performances of various pre-trained models, fine-tuned

with 12000 spectrograms.

Pre-trained models fine-tuned with 12000 spectrograms

Measure PT-9000 PT-12000 PT-15000

Accuracy 0.8922 0.8889 0.8943

Precision 0.8406 0.8347 0.8387

Recall 0.8888 0.8347 0.8897

F1 score 0.8605 0.8593 0.8596

AUC 0.9641 0.9681 0.9614

Next, we fine-tuned the pretrained models with 16000 samples, 5000 CRC
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spectrograms, 5315 PTW spectograms, and 5685 NOISE spectograms. Ta-

ble 5.5 shows the average result obtained.

Table 5.5: Average performances of various pre-trained models, fine-tuned

with 16k spectrograms.

Pre-trained models fine-tuned with 16k spectrograms

Measure PT-9000 PT-12000 PT-15000

Accuracy 0.9057 0.9106 0.9090

Precision 0.8665 0.8748 0.8707

Recall 0.8876 0.8926 0.8882

F1 score 0.8755 0.8829 0.8782

AUC 0.9600 0.9700 0.9600

Finally,the results in table 5.6 were obtained by fine-tuning the different

pre-trained model using 21000 spectrograms. CRC and PTW classes were

each augmented to 7000 spectrograms and 7000 spectrograms obtained

from the NOISE class.

Table 5.6: Average performances of various pre-trained models, fine-tuned

with 21k spectrograms.

Pre-trained Models fine-tuned with 21k spectrograms

Measure PT-9000 PT-12000 PT-15000

Accuracy 0.9164 0.9158 0.9173

Precision 0.8870 0.8823 0.8849

Recall 0.8897 0.9000 0.8933

F1 score 0.8878 0.8897 0.8930

AUC 0.9616 0.97 0.963
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5.4 Comparison of baseline models and fine-

tuned models

In this section, we compare the baseline models with the pre-trained and

fine-tuned models. Both baseline models and the fine-tuned models were

evaluated using the testing set from collected data. It is, therefore, reason-

able to compare their performances. We use the F1 score and test accu-

racy to compare them. Figure 5.6 shows the comparison. Baseline model

and fine-tuned model trained using the same number of spectrograms are

placed next to each other, fine-tuned model first. For instance, the base-

line model trained using 9000 (M 9000) spectrograms is placed next to the

model fine-tuned using 9000 spectrograms (FT-9000) for both metrics used.

Considering the F1 score, the models fine-tuned using 9000, 16000, and

21000 spectrograms outperformed the baseline models trained on the same

number of spectrograms. However, the baseline model trained using 12000

(F1 score of 0.8960) outperformed the models fine-tuned using the same

(F1 score of 0.8943). It is clear from figure 5.6 that the baseline models

produced better testing accuracy than the fine-tuned models. In 5.6c, the

baseline model trrained with 16000 specctrograms has a higher accuracy

than the fine-tuned model trained with 16000. When a a pretrained model

was fine-tuned with 21000 spectrograms, and compared with a baseline

model trained with the same quantity of spectrograms, both accuracy and

the F1 score of the baseline model was higher than that of the fine-tuned

model as seen in figure 5.6d. Further comparison of the baseline and the

fine-tuned is shown in figure 5.5, and it is observed that the baseline mod-

els outperformed the fine-tuned models.
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Our result shows that augmentation by time-shifting increases the perfor-

mance of the models; as we increase the number of samples by data aug-

mentation, the performance of the pre-trained models, baseline models, and

the fine-tuned model increase. Thus, time-shifting data augmentation in-

creases the performance of bioacoustic classifiers. This is in line with result

obtained by Dufourq et al. (2021).

The baseline models performed better than the fine-tuned models. A po-

tential explanation for this result is that the data from Xeno-canto is some-

how slightly different from the data that we collected in that our data had

a constant sampling rate while the data from Xeno-canto had varying sam-

pling rates based on each person’s microphone. That is, there was no cor-

relation between the performance of the pretrained models and the site of

training of fine tuning the pre-trained models. Another reason could be

that the training set used in pretraining was not big enough.

Figure 5.5: Comparing of baseline and fine-tuned models using AUC
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(a) Comparison of baseline model

and fine-tuned model trained using

9000 spectrograms.

(b) Comparison of baseline model

and fine-tuned model trained using

12000 spectrograms.

(c) Comparison of baseline model

and fine-tuned model trained using

16000 spectrograms.

(d) Comparison of baseline model

and fine-tuned model trained using

21000 spectrograms.

Figure 5.6: Comparison of baseline models with pre-trained and fine-tuned

models using different samples sizes. FT-9000 model refers to the model

fine-tuned using 9000 samples, 3000 samples from each of the three classes

and M 9000 represents a baseline model trained using 9000 samples, 3000

samples from each of the classes. FT-12000 model represents a pre-trained

model fine-tuned using 12000, M 12000 represents the baseline model

trained using 12000. The same applies to FT-16000, M 16000, FT-21000,

and M 21000 models.
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We monitored our models using learning curves. A learning curve is a plot

of training loss and or accuracy and validation loss and or accuracy against

the number of training epochs. Figure 5.7 shows the learning curves for

baseline models compared with the learning curve of the pre-trained and

fine-tuned models. Figure 5.7a shows a baseline model that was trained

on the entire training set without augmentation and early stopping. The

model was greatly overfitted. In figure 5.7b, we employed early stopping to

reduce/prevent overfitting by preventing model from learning noise. Thus,

early stopping prevented noise from affecting the model. Our results show

that early stopping reduces overfitting. Overfitting was further reduced

using a dropout rate of 0.5. Figure 5.7c and figure 5.7d show the learning

curves of one of the fine-tuned models. Figure 5.7c is the learning curve

of a pre-trained model which was fine-tuned on augmented data without

early stopping. Still, the model overfitted, but not much as the baseline

model. Similarly, figure 5.7d shows the learning curve of the same model

as c with early stopping. It was observed that data augmentation, early

stopping, and dropout prevent overfitting. Therefore, increasing data size

through data augmentation is an effective method to prevent overfitting in

bioacoustics. That is, data augmentation is a good technique to solve the

data limitation problem which will consequently prevent overfitting. Early

stopping and dropout also prevent overfitting.
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(a) Learning curve for baseline

model with augmentation without

early stopping.

(b) Learning curve for baseline

model with augmentation with early

stopping.

(c) Learning curve for fine-tuned

model trained using 21000 spectro-

grams without early stopping

(d) learning curve for fine-tuned

model trained using 21000 spectro-

grams with early stopping

Figure 5.7: Learning curves for the baseline model without augmentation

with and without early stopping.
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Chapter 6

Conclusion

This research was set out to build CNNs for bioacoustic classifiers using

bird vocalizations. Currently, there are some limitations regarding the use

of machine learning algorithms for bioacoustic monitoring. At the moment,

researchers manually annotate all data; this is extremely time-consuming

and unsustainable. This is not feasible if one has a large number of audio

records, each lasting for long hours. Also, there is limited vocalization data

for certain bird species. Some birds do not call often, and it is challeng-

ing to obtain recordings of birds whose habitats are inaccessible. Further-

more, it is difficult to obtain enough data about endangered species even

though some data of their vocalizations might exist. These recordings are

protected and not made publicly available. This is sometimes done to pro-

tect the species as poachers might want to go and capture/kill the species.

Training CNNs with such a limited amount of data may result in overfit-

ting. However, trained CNN classifiers that can automatically classify bird

species based solely based on their vocalizations will facilitate the monitor-
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ing of birds by ecologists and conservationists by reducing time and cost.

One other reason why we carried out this study was because of its novelty;

although transfer learning has been used in bioacoustics, no pre-trained

model has been built using bird vocalization from Xeno-canto and eBird

and fine-tuned using primary data.

Firstly, our secondary data was downloaded from Xeno-canto and eBird.

Secondly, primary data was collected from Intaka Island Nature Reserve,

and then both data were preprocessed. Preprocessing involved the annota-

tion of audio files and the conversion of the annotated audio into spectro-

grams. Next, CNN networks were trained using spectrograms. Secondary

data was used to pretrain three models while the primary data was used

for building the baseline models and fine-tuning the pre-trained models.

We successfully pre-trained three models (PT-9000, PT-12000, PT-16000)

using vocalization of two bird species- pin-tailed whydah (Vidua macroura)

and Cape robin-chat (Cossypha caffra) using audio recording from Xeno-

canto and eBird repositories. In addition, we built five baseline models us-

ing bird vocalization obtained from Intaka Island, Cape Town which per-

formed well in the discrimination of spectrograms into PTW, CRC, and

NOISE. Finally, the pre-trained models were fine-tuned using different sub-

sets of training data obtained from the collected data.

The time-shifting augmentation techniques greatly improved both base-

line and pre-trained models’ performance. Our fine-tuned model obtained

almost equal performance; however, the baseline models slightly outper-

formed the fine-tuned models. The best baseline model (M 21000) had a

test accuracy of 91.70% while the best fine-tuned model achieved 91.73%.

The AUC for the best baseline was 96.9% against 96.3% for the best fine-
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tuned model (FT-21000). These results could be because the data used

for pre-training was not big enough. We used Xeno-canto and eBird which

did not have a large number of audio recordings on the species of interest

at the time when this study was done. In addition, we observed that the

overfitting problem which usually results from training CNN with small

amounts of data can be greatly reduced or prevented using time-shifting

data augmentation technique, early stopping, and or dropout techniques.

Finally, we published a data set on zenodo for public use. The link to the

data set found here.

6.1 Future work

We used only the CNN algorithm in this dissertation, and future work

could be to use a combination of CNN and recurrent neural networks. It is

hoped that this combination will achieve better outcomes. Given that the

total number of spectrograms used in pre-training was not large enough,

we could obtain better performance by considering other bird vocalization

repositories where we can obtain a large data size. Another way to improve

our pre-trained models is to use more bird species in our subsequent work.

Furthermore, we will access the impact of the quality of recordings on our

classification models by splitting the data obtained from Xeno-canto into

two subsets: high quality and low-quality categories. Finally, in the future,

we intend to deploy our best model.
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6.2 Recommendation

The performances of our deep learning models were excellent, and they in-

dicate that deep learning is invaluable in the monitoring and conservation

of ecology. We showed that the time-shifting augmentation technique is

a good technique to augment data in bioacoustic. Hence, they solve the

problem of data limitation, and this will also help to prevent overfitting.

Our models performed well in distinguishing the various species. It means

they can be readily employed to complement the manual automation pro-

cess, making bioacoustic monitoring less expensive, less time-consuming,

and sustainable. Therefore, our model can be used in biodiversity in the

monitoring and conservation of the ecology.
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Incze, A., Jancsó, H.-B., Szilágyi, Z., Farkas, A., & Sulyok, C. (2018). Bird

sound recognition using a convolutional neural network. 2018 IEEE

16th International Symposium on Intelligent Systems and Informat-

ics (SISY), 000295–000300.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction

to statistical learning (Vol. 112). Springer.
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