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Abstract
Béatrice Byukusenge (2022). Residual Analysis in the GMANOVA-MANOVA
model. Doctoral dissertation. ISBN 978-91-7929-284-3 (print)
978-91-7929-285-0 (PDF) . ISSN 0345-7524.

This thesis focuses on the establishment and analysis of residuals in the so called
GMANOVA-MANOVA model. The model is a special case of the Extended Growth Curve
Model. It has two terms where one term models the profiles (growth curves) and the other
the covariables of interest. This model is useful in studying growth curves in short time
series in fields such as economics, biology, medicine, and epidemiology. Furthermore, in
the literature, residuals have been extensively studied and used to check model adequacy in
univariate linear models. This thesis contributes to the extension of the study of residuals
in the GMANOVA-MANOVA model.

In this thesis, a new pair of residuals is established via the maximum likelihood
estimators of the parameters in the model. One residual indicates whether an individual is
far away from the group means and a second residual is used to check assumptions about the
mean structure. Different properties of these residuals are verified and their interpretation
is discussed. Moreover, using parametric bootstrap, the empirical distributions of the
extreme elements in the residuals are derived.

Finally, testing bilinear restriction in the MANOVA model is considered. One can show
that the MANOVA model with bilinear restrictions is nothing more than a GMANOVA-
MANOVA model. Furthermore, the likelihood ratio test can be shown to be given as
a function of the residuals to the GMANOVA-MANOVA model, which can be used to
understand the appropriateness of the model and test the bilinear hypothesis.
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Populärvetenskaplig sammanfattning
I den här avhandling härleds och analyseras residualer för den så kallade GMANOVA-
MANOVA modellen. Modellen, som är ett specialfall av den utökade tillväxtkurvemodel-
len, har två delar där den ena beskriver profilerna (väntevärdesmodellen som tillväxtkurvor)
för olika grupper och den andra delen i modellen de kovariater som kan vara av vikt (vari-
abler som påverkar analysen men som inte direkt är av intresse). GMANOVA-MANOVA
modellen är användbar för att studera upprepade mätningar, som korta tidsserier, inom
områden som teknik, ekonomi, biologi, medicin och epidemiologi.

Residualer för en statistisk modell är ett viktigt verktyg för att studera om model-
lantaganden är uppfyllda. Den här avhandlingen bidrar till resiudalanalys i GMANOVA-
MANOVA-modellen, genom att härleda två residualer för modellen. Den första residualen
beskriver om en observation är långt borta från gruppmedelvärdet medan den andra re-
sidualen används för att kontrollera antaganden om väntevärdesmodellen (profilen) är
uppfyllda. Olika egenskaper hos dessa residualer härleds och deras tolkning diskuteras.
Dessutom, beskrivs med hjälp av parametrisk bootstrap, hur de empiriska fördelningarna
av de extrema elementen i residualerna kan beräknas och utnyttjas i analysen.

.
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1
Introduction

For a long time, residuals have played an important role in statistical modeling. Residuals
which often are defined as the difference between observed and estimated mean values
can be used for model diagnostics. In particular, residuals can be used to find outliers
and influential observations, determine the level of multicollinearity among independent
variables, and test for violation of model assumptions. The study of residuals in the
multivariate analysis of variance (MANOVA) model is complicated because they are
multi-dimensional. Different techniques have developed for example von Rosen (1995)
studied residuals in the Growth Curve model (GCM) which is also known as Generalized
Multivariate Analysis of Variance (GMANOVA) model. In this thesis, the main focus
is on the establishment and analysis of residuals in the so-called GMANOVA-MANOVA
model. The model is a special case of the Extended Growth Curve model, and its mean
consists of two terms where one term models the profile (growth curve), and the second
term models the covariables. The GCM as well as the GMANOVA-MANOVA model are
useful in studying short time series in fields such as economics, biology, medicine, and
epidemiology, for example.

1.1 Background
In the early nineteenth-century Legendre and Gauss pioneered linear models and least
squares when applying the method to astronomical data (see Stigler, 1986). Since then,
the development of linear models has occupied an important place in statistics. It all began
with Galton’s work, where multivariate statistical analyses were introduced (Galton (1886,
1889a)). When samples from bivariate normal distribution were taken into consideration
Galton (1889b) developed concepts about regression and using plots, he gave an idea on
how to determine the slope of regression lines. Pearson (1896) established the correlation
coefficient to measure the relationship between subjects. Later, Fisher (1915) derived the
simultaneous distribution of the sample variances and covariance when the underlying

1



2 1 Introduction

distribution is bivariate normal. Wishart (1928) extended Fisher’s work by finding the
simultaneous sampling distribution of the variances and covariances in samples from a
𝑝−variate multivariate normal population. Later, Wilks (1932) used the likelihood ratio
approach (Neyman and Pearson, 1928, 1931) to perform a suitable generalization in the
analysis of variance for many variables. This was further explored by Rao (1948) by whom
the name Wilks’ criterion was given. Different books on multivariate analysis appeared
for the first time in the 1950s, for example, Roy (1957), Kendall (1957) and Anderson
(2003) with its first addition Anderson, 1958. Over the years, several books on classical
multivariate analysis have been published Dempster (1969), Srivastava and Khatri (1979),
Mardia et al. (1979) and Muirhead (1982), among others. This thesis considers a special
case of the GCM model introduced by Potthoff and Roy (1964). The GCM model is an
extension of the multivariate analysis of variance model (MANOVA) and it is suitable for
modelling data with repeated measurements on individuals. The GCM has different names
such as the Potthoff and Roy model, the bilinear regression model, and the Generalized
MANOVA (GMANOVA). Application of the GCM model lies for example in treating
trends or growth curves found in epidemiology, medical research, and biostatistics (see
Pan et al., 2002 and von Rosen, 2018). The GCM model is a natural generalization of the
MANOVA model and different test statistics on the hypotheses of the mean structure have
been developed, see for instance the book of Roy (1957) and the paper of Khatri (1966)
where the bilinear hypothesis testing was formulated. Unlike the MANOVA model, the
maximum likelihood estimator (MLE) of the mean parameter in the GCM model is a
non-linear random expression, which poses a lot of problems when it comes to inference,
e.g., see (Srivastava and Carter, 1983). The GMANOVA model has been extensively
studied by many authors see for example Rao (1965, 1966, 1987). The GCM model has
been reviewed by (Woolson and Leeper, 1980; Seber, 1984; von Rosen, 1991; Srivastava
and von Rosen, 1999; von Rosen, 2018).

A generalization of this model, called the Extended Growth Curve model (EGCM),
was studied by von Rosen (1989). Its canonical form was already considered in Gleser
and Olkin (1970) and later extended by Srivastava and Khatri (1979). The EGCM model
known as the sum of the profiles model was introduced by Verbyla and Venables (1988)
who derived the explicit form of the MLEs. Details about the MLEs of the EGCM
under the nested subspace conditions have been presented in Kollo and von Rosen (2005).
Filipiak and von Rosen (2012) provided the MLEs in EGCM based on the range condition
in the design matrices. The details about the EGCM model can be found in von Rosen
(2018).

The thesis is mainly focused on the study of residuals in the special case of an EGCM
model called the GMANOVA-MANOVA model. The model is composed of two terms
where one term models the profile (growth curve) and the second term is the same as
the mean in a MANOVA model which takes care of the covariables, see (Chinchilli and
Elswick, 1985, von Rosen, 1989). The first published work on the GMANOVA-MANOVA
model is the paper by Chinchilli and Elswick (1985). They derived MLEs and provided
some significance tests.

Residuals that are obtained after subtracting the estimated mean from the observations
were introduced in the GCM model by von Rosen (1995). In that paper, von Rosen studied
residuals in the GCM model through the decomposition of linear spaces. He showed that
residuals in the GCM are symmetrically distributed around zero and established a couple
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of moment relations for three different types of residuals. Hamid and von Rosen (2006)
did the same study on the EGCM model. For more details about the analysis of residuals
in growth models, we refer the reader to von Rosen (2018).

1.2 Aims
The main topic under investigation in this thesis is the analysis of residuals from a
GMANOVA-MANOVA model, with the following specific objectives:

(i) to establish matrix residuals in the GMANOVA-MANOVA model, discuss their
interpretations and verify their basic properties;

(ii) to study the distribution of the extreme elements in the residuals by using a para-
metric bootstrap approach;

(iii) to test and interpret a hypothesis related to bilinear restrictions on the parameter
space in the MANOVA model.

1.3 Thesis outline
This thesis comprises two parts. The first part provides the background and summary of
the thesis, while the second part is a compilation of four papers. Below we provide an
outline of both parts.

1.3.1 Outline of Part I
The first chapter is the introduction which consists of the background, aims of the thesis,
and summary of the papers. Chapter 2 presents some preliminaries including a general
introduction to multivariate linear models with a focus on models used in this thesis
together with MLEs for the GMANOVA-MANOVA model. Chapter 3, presents the def-
initions of residuals for the GMANOVA-MANOVA model, interpretation, and properties
of the residuals. A parametric bootstrap algorithm is used to identify the extreme residual
elements. A test statistic for bilinear restrictions in the MANOVA model is presented
in this chapter. Part I ends with Chapter 4 which gives the conclusion of the thesis and
suggestions for further research.

1.3.2 Outline of Part II
Part II consists of four papers. Below is a summary of each of the papers.

Paper A: On Residual Analysis in the GMANOVA-MANOVA Model
Byukusenge, B., von Rosen, D. and Singull, M. (2022). On Residual Analysis in the
GMANOVA-MANOVA Model. In: Balakrishnan, N. Gil, María Á., Martín, N., Morales,
D., Pardo, M.d.C. (eds) Trends in Mathematical, Information and Data Sciences. Studies
in Systems, Decision, and Control, 445, 287–305, Springer, Cham.
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In Paper A, the GMANOVA-MANOVA model is considered. The main achievement in
this paper is the establishment of a new pair of residuals via MLEs. One residual indicates
whether an individual is far away from the group means and a second residual is used
to check assumptions about the mean structure. Moreover, different properties of these
residuals are verified and their interpretations are discussed.

Paper B: On an Important Residual in the GMANOVA-MANOVA
Model
Byukusenge, B., von Rosen, D. and Singull, M. (2022). On an Important Residual in the
GMANOVA-MANOVA Model. Journal of Statistical Theory and Practice, 16:1-20.

In Paper B, by emphasizing the model formulation and validation, we focus on one of the
two GMANOVA-MANOVA residuals in a special situation where some of its elements
vanish. Through an example, the interpretation of the model is presented and a discussion
about the vanishing residuals is given. We have found that if some of the residuals are
vanishing, the model assumptions have to be investigated because some of the model
parameters can not be estimated.

Paper C: On the Identification of Extreme Elements in a Residual
for the GMANOVA-MANOVA Model
Byukusenge, B., von Rosen, D. and Singull, M. (2022). On the Identification of Extreme
Elements in a Residual for the GMANOVA-MANOVA Model. Accepted for publication
in Innovations in multivariate statistical modeling: navigating theoretical and
multidisciplinary domains, Springer Emerging Topics in Statistics and Biostatistics.

Paper C is a continuation of Paper A. By using parametric bootstrap, we derived an
approximative distribution of the extreme elements in the residuals. Two data sets are
used and through the bootstrap techniques, we give cut-off points to identify extreme
residual values. Specifically, from the residual elements, we select by absolute value
the three largest elements and study the simulated distribution of these residuals using
different data sets. Hence, parametric bootstrap samples are used to obtain a simulated
distribution of the "largest " residuals to see how far the residuals are from the centre of
the distribution.

Paper D: Test of bilinear restrictions in the MANOVA model
Byukusenge, B., von Rosen, D. and Singull, M. (2022). Test of bilinear restrictions in the
MANOVA model. Report.

In Paper D, statistics for testing hypothesis in the MANOVA model with bilinear restrictions
on the parameter space are formulated. The test statistic is constructed using the ratio
of determinants of the estimated dispersion matrices for both MANOVA models with
and without restrictions, i.e., the likelihood ratio test. Since the dispersion matrices are
functions of residuals the likelihood ratio test obtained is expressed in terms of residuals.
It is possible to calculate the moments of the residuals. These moments are important in
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interpreting the obtained test statistic because they give information on the model and can
be used for checking the appropriateness of the model.

1.4 Contributions
The main contributions of the thesis are as follows.

In Paper A two residuals for the GMANOVA-MANOVA models are derived and
interpreted. Properties such that expectation, dispersion, and relevant covariances
are provided.

To perform data analysis, the matrix expression in one of the residuals in the
GMANOVA-MANOVA model is discussed in Paper B. The suggestion here is to
understand the choices and expressions of the matrices that give information on the
deviating observations for a given model.

In Paper C, the parametric bootstrap procedure is applied and the simulated distri-
bution of the three largest elements of the residuals in the GMANOVA-MANOVA
model is obtained. Using the simulated distributions, a cut off point for identifying
extreme residuals in the statistics is obtained through the suggested quantiles of the
estimated distribution to conclude if any violation of the null hypothesis exists.

In Paper D, hypothesis about the bilinear restriction on the parameter spaces in a
MANOVA model is formulated and a LR test is constructed. The test statistic here
is the ratio between the determinants of the estimated covariance matrices from the
MANOVA model with and without restrictions. We have shown that the test statistic
is a function of the residuals from the MANOVA model with restrictions (which is
equivalent to the GMANOVA-MANOVA model) and without restrictions (the usual
MANOVA model). This makes the test statistic to be interpretable. Based on the
calculated moments of those residuals, we showed that under the null hypothesis
the calculated moments are independent of the unknown parameters and under
the alternative hypothesis, the calculated moments are function of the unknown
parameters.





2
Multivariate Models

With several response variables in a dataset, multivariate models can be useful to apply.
This chapter aims to give an overview of multivariate models and their generalizations. We
begin with the MANOVA model. Then, two bilinear models, namely the GCM model, also
known as the GMANOVA model, and the GMANOVA-MANOVA model are presented.

2.1 Multivariate analysis of variance model
The MANOVA model is an extension of the univariate analysis of variance model. It can
be used when more than one variable on each experimental unit is measured. References
to the MANOVA model can be found in many textbooks on multivariate analysis, see for
example (Roy, 1957; Dempster, 1969; Srivastava and Khatri, 1979; Mardia et al., 1979;
Muirhead, 1982; Srivastava and Carter, 1983; Seber, 1984; Anderson, 2003; Rencher and
Christensen, 2012).

Definition 2.1 (MANOVA). Let 𝑿 : 𝑝 × 𝑛, be a random observation matrix, 𝑩 : 𝑝 × 𝑘 ,
be an unknown parameter matrix and 𝑪 : 𝑘 × 𝑛 be a design matrix, and 𝑟 (𝑪) + 𝑝 ≤ 𝑛,
where 𝑟 ( · ) represents the rank of a matrix. Then the MANOVA model equals

𝑿 = 𝑩𝑪 + 𝑬, (2.1)

where 𝑬 is the 𝑝×𝑛 matrix of unobservable random errors which follows a matrix normal
distribution, 𝑬 ∼ 𝑁𝑝,𝑛 (0,𝚺, 𝑰𝑛), i.e., the columns are independently 𝑝−dimensional
normally distributed with expectation 0 and a positive definite dispersion matrix 𝚺.

The MLEs of the parameter matrices 𝑩 and 𝚺 are respectively given by:

�̂� = 𝑿𝑪′ (𝑪𝑪′)− + 𝑪◦′𝒁,

𝑛𝚺 =

(
𝑿 − �̂�𝑪

) () ′
= 𝑿 (𝑰 − 𝑪′ (𝑪𝑪′)− 𝑪) 𝑿′,

7



8 2 Multivariate Models

where 𝒁 is an arbitrary matrix of proper size, 𝑮− denotes an arbitrary generalized inverse
in the sense that 𝑮𝑮−𝑮 = 𝑮 and 𝑨′ denotes the transpose of a matrix 𝑨. For any 𝑯 the
matrix 𝑯◦ is a matrix spanning the orthogonal complement to the column space generated
by 𝑯. Hence �̂� is not unique whereas 𝚺 satisfies the uniqueness property. Moreover,(
𝑸

) () ′ means
(
𝑸

) (
𝑸

) ′ for any matrix function 𝑸. When a short time series for a given
study has to be considered, the MANOVA model is no longer applied. So, another model
which is time-dependent has to be considered. The GCM model which is defined in the
next section can be used.

2.2 Growth Curve model
The GCM model which is known as a GMANOVA model (see Potthoff and Roy, 1964),
is an important model when repeated measures data and longitudinal data are considered,
particularly for the analysis of balanced repeated measures data.

Definition 2.2 (Growth Curve model (GCM)). Let 𝑿 : 𝑝 × 𝑛, 𝑨 : 𝑝 × 𝑚, 𝑚 < 𝑝,
𝑩 : 𝑚 × 𝑟 , 𝑪 : 𝑟 × 𝑛, and 𝑟 (𝑪) + 𝑝 ≤ 𝑛. The GCM model is given by:

𝑿 = 𝑨𝑩𝑪 + 𝑬, (2.2)

where 𝑨 and 𝑪 are the within and between individuals design matrices respectively, 𝑩 is
a matrix of unknown mean parameters. 𝑬 : 𝑝 × 𝑛 is the error matrix whose columns are
assumed to be independently distributed as a 𝑝−variate normal distribution with mean 0
and an unknown positive definite dispersion matrix 𝚺, that is 𝑬 ∼ 𝑁𝑝,𝑛 (0,𝚺, 𝑰𝑛).

The between individuals design matrix𝑪 is the same design matrix as used in the model
presented in Definition 2.1. The model is usually applied when repeated measurements
follow a within-individual linear regression model for each independent observation vector.
Assume that the design matrices 𝑨 and 𝑪 are of full rank, then the MLEs of the parameter
matrices 𝑩 and 𝚺 are respectively given by:

�̂� =

(
𝑨′𝑺−1𝑨

)−1
𝑨′𝑺−1𝑿𝑪′ (𝑪𝑪′)−1

, 𝑛𝚺 =

(
𝑿 − 𝑨�̂�𝑪

) () ′
, (2.3)

where 𝑺 = 𝑿
(
𝑰 − 𝑪′ (𝑪𝑪′)−1 𝑪

)
𝑿′, see (Khatri, 1966; Kariya, 1985; Kollo and von

Rosen, 2005; von Rosen, 2018) for more details. It might happen that different individuals
in the GCM model do not follow the same growth profile. In this case, the model is no
longer adequate to use. For that reason, von Rosen (1989) (see also Srivastava and Khatri,
1979) extended the GCM model. The EGCM model has several mean profiles and it is
given in the following definition.

Definition 2.3 (Extended Growth Curve model (EGCM)). Let 𝑿 : 𝑝 × 𝑛, 𝑨𝑖 : 𝑝 ×𝑚𝑖 ,
𝑩𝑖 : 𝑚𝑖 × 𝑟𝑖 , 𝑪 : 𝑟𝑖 × 𝑛. Suppose that 𝑚𝑖 ≤ 𝑝, 𝑟 (𝑪1) + 𝑝 ≤ 𝑛, C

(
𝑪′
𝑖

)
⊆ C

(
𝑪′
𝑖−1

)
,

𝑖 = 1, 2, . . . , 𝑘 . Then the EGCM model is given by,

𝑿 =

𝑘∑︁
𝑖=1

𝑨𝑖𝑩𝑖𝑪𝑖 + 𝑬,



2.2 Growth Curve model 9

where the columns of 𝑬 are assumed to be independently distributed as a multivariate
normal distribution with mean 0 and a positive definite covariance matrix 𝚺, i.e., 𝑬 ∼
𝑁𝑝,𝑛 (0,𝚺, 𝑰𝑛). The matrices 𝑨𝑖 and 𝑪𝑖 are known design matrices whereas 𝑩𝑖 and 𝚺 are
unknown parameter matrices.

The model without restrictions on the subspaces was studied by Verbyla and Venables
(1988) under the name of sum of profiles model. The EGCM for two different growth
profiles (𝑘 = 2) is given by

𝑿 = 𝑨1𝑩1𝑪1 + 𝑨2𝑩2𝑪2 + 𝑬, C
(
𝑪′

2
)
⊆ C

(
𝑪′

1
)
, (2.4)

the subspace condition may be replaced by C (𝑨2) ⊆ C (𝑨1), i.e.,

𝑿 = 𝑨1𝑩1𝑪1 + 𝑨2𝑩2𝑪2 + 𝑬, C (𝑨2) ⊆ C (𝑨1) . (2.5)

This model was considered for example by Filipiak and von Rosen (2012) for 𝑚 = 3. For
more details about the model and its estimators see von Rosen (2018).

In Example 2.1, we show how the GCM model may arise in practice.

Example 2.1: Growth of Sitka Spruce data from Diggle et al. 2002)
The study objective was to assess the effect of ozone pollution on trees. As ozone pollution
is common in urban areas, the impact of increased ozone concentrations on tree growth is of
considerable interest. The response variable is log-tree size, where size is conventionally
measured by the product of tree height and squared diameter. The data for 78 trees over
two growing seasons are listed in Table 1 and 2 in Appendix A. A total of 53 trees were
grown with ozone exposure at 70 ppb and 25 trees were grown in a normal environment.
For each tree in the study, a measure of its height was recorded at time, 5, 8.5, 15.5, and
22.5 months. Suppose linear growth curves describe the mean growth for trees in the
ozone and normal environments. Then we may use model (2.2) for the analysis of the data
set. In model (2.2), the observation matrix is 𝑿 : 4 × 78 in which 53 columns correspond
to measurements on trees in ozone exposure which constitutes Group I and the 25 last
columns correspond to measurements on trees in normal environments, say Group II. In
order to handle this example the design matrices of the GCM model are given by

𝑨 =

©«
1 5
1 8.5
1 15.5
1 22.5

ª®®®¬ , 𝑪 =

(
1′53 ⊗

(
1
0

)
: 1′25 ⊗

(
0
1

))
, (2.6)

where ⊗ denotes the Kronecker product and 1𝑎 in (2.6) stands for the vector of "a" ones.
From (2.3), parameter estimates of the model equal

�̂� =

(
4.55 4.77
0.07 0.07

)
, 𝚺 =

©«
1.23 0.18 0.46 0.29
0.18 0.44 0.38 0.37
0.46 0.38 0.45 0.40
0.29 0.37 0.40 0.40

ª®®®¬ .
In this case, a linear growth curve is assumed. In Figure 2.1 the repeated measurements
for the height of the trees have been plotted group-wise together with the estimated mean
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Figure 2.1: All observations in data set of Diggle et al. (2002) are presented and for
each group, the estimated mean profiles for the GCM model are shown.

profiles. It seems like the trees in Group I and Group II are growing at the same rate
(see also �̂�). This study has been extended to the case where the trees in the two groups
were again placed into four chambers. i.e., two chambers for Group I and two chambers
for Group II. Those chambers are considered to generate covariable information. To
study the effect of the covariate in the model, a special case of the EGCM model is
considered. Let for example the matrix 𝑨2 = 𝑰 then the model (2.4) is reduced to the
GMANOVA-MANOVA model defined in the next section.

2.3 GMANOVA-MANOVA model
The GMANOVA-MANOVA model is a special case of the EGCM model. It was introduced
in statistics by Chinchilli and Elswick (1985) and it can be used for the analysis of balanced
repeated measurements with covariates.

Definition 2.4. Let 𝑿 be an 𝑝 × 𝑛 matrix of observations, where 𝑛 represents the number
of subjects, each measured at 𝑝 occasions. The GMANOVA-MANOVA model is defined
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by

𝑿 = 𝑨𝑩1𝑪1 + 𝑩2𝑪2 + 𝑬, (2.7)

where 𝑨 : 𝑝 × 𝑚, 𝑪1 : 𝑟1 × 𝑛 and 𝑪2 : 𝑟2 × 𝑛 are known design matrices, 𝑩1 : 𝑚 × 𝑟1,
𝑩2 : 𝑝 × 𝑟2, are unknown parameter matrices, and the random error matrix 𝑬 : 𝑝 × 𝑛 is
such that its columns are assumed to be independently distributed following a 𝑝−variate
normal distribution with mean zero and an unknown positive definite dispersion matrix
𝚺, i.e., 𝑬 ∼ N𝑝,𝑛 (0,𝚺, 𝑰𝑛).

Let us consider the parameter matrices 𝑩1, 𝑩2 and 𝚺 of the GMANOVA-MANOVA
model given in Definition 2.4 and let

𝑸𝑪′
2
= 𝑰 − 𝑷𝑪′

2
, 𝑺 = 𝑿𝑸𝑪′

2

(
𝑰 − 𝑷𝑸𝑪′

2
𝑪′

1

)
𝑸𝑪′

2
𝑿′, (2.8)

where for any matrix 𝑨 of proper size, 𝑷𝑨 = 𝑨(𝑨′𝑨)−𝑨′ denotes the projector on the
space C(𝑨). Depending on the space generated by the design matrices, the MLEs of the
mean parameters are presented in the theorems given below.

Theorem 2.1 (see Byukusenge et al. (2022a,b) for more details)
The MLEs of the parameter matrices 𝑩1 and 𝑩2 in the GMANOVA-MANOVA model in
Definition 2.4 can be represented by

�̂�1 =

(
𝑨′𝑺−1𝑨

)−
𝑨′𝑺−1𝑿𝑸𝑪′

2
𝑪′

1

(
𝑪1𝑸𝑪′

2
𝑪′

1

)−
+ (𝑨◦)′ 𝒁1 + 𝑨′𝒁2

(
𝑪′

1𝑸𝑪′
2

)◦′
, (2.9)

�̂�2 =

(
𝑿 − 𝑨�̂�1𝑪1

)
𝑪′

2

(
𝑪2𝑪

′
2

)−
+ 𝒁3𝑪

◦′
2 , (2.10)

where 𝒁1, 𝒁2 and 𝒁3 are arbitrary matrices of proper size. Moreover, the dispersion matrix
is uniquely estimated as

𝑛𝚺 = 𝑺 +
(
𝑰 − 𝑷𝑨,𝑺

)
𝑿𝑷𝑸𝑪′

2
𝑪′

1
𝑿′

(
𝑰 − 𝑷′

𝑨,𝑺

)
,

where for any pair of matrices 𝑨 and 𝑺, which is supposed to be positive definite, we
define

𝑷𝑨,𝑺 = 𝑨
(
𝑨′𝑺−1𝑨

)−
𝑨′𝑺−1.

The matrices �̂�1 and �̂�2 are not unique. Furthermore, using Theorem 2.1 the predicted
values are given in the next theorem.

Theorem 2.2 (see Byukusenge et al., 2022a)
Let �̂�1 and �̂�2 be the MLEs of 𝑩1 and 𝑩2 given in (2.9) and (2.10), respectively. Then,
the estimated mean structure is given by

𝑨1 �̂�1𝑪1 + �̂�2𝑪2 = 𝑷𝑨,𝑺𝑿𝑷𝑪′
2
+ 𝑷𝑨,𝑺𝑿𝑷𝑸𝑪′

2
𝑪′

1 +
(
𝑰 − 𝑷𝑨,𝑺

)
𝑿𝑷𝑪′

2
. (2.11)

Using Lemma 2.1 the estimated mean structure (2.11) can be rewritten as

𝑨�̂�1𝑪1 + �̂�2𝑪2 =
(
𝑰 − 𝑷𝑨,𝑺

)
𝑿𝑷𝑪′

2
+ 𝑷𝑨,𝑺𝑿𝑷𝑪′

2:𝑪′
1
, (2.12)
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where 𝑷𝑪′
2:𝑪′

1
= 𝑷𝑸𝑪′

2
𝑪′

1 + 𝑷𝑪′
2
. Hence, we see that the estimators of the mean structure

are based on projections of the observations on spaces generated by the design matrices.
The model (2.7) is illustrated in Figure 2.2, where a tensor space decomposition of the
mean space for the GMANOVA-MANOVA model is shown. Lemma 2.1 is used in the
subsequent

Lemma 2.1 (Blockwise formula)
Suppose that a matrix 𝑪 can be decomposed by columns as 𝑪 = [𝑪1 : 𝑪2]. Define
the projection operator as 𝑷𝑪 = 𝑪 (𝑪′𝑪)− 𝑪′. Similarly, define the residual operator as
𝑰 − 𝑷𝑪 . Then the projection matrix can be decomposed as (see pp. 323 or Theorem A.45
of Rao et al., 2008):

𝑷𝑪 = 𝑷𝑪1:𝑪2 = 𝑷𝑪1 + 𝑷(𝑰−𝑷𝑪1 )𝑪2
(2.13)

= 𝑷𝑪1 +
(
𝑰 − 𝑷𝑪1

)
𝑪2

[
𝑪′

2
(
𝑰 − 𝑷𝑪1

)
𝑪2

]−
𝑪′

2
(
𝑰 − 𝑷𝑪1

)
. (2.14)

Examination of the between individuals design matrices shows that the space which
generates those estimators has been decomposed in the following manner:

C
(
𝑪′

2 : 𝑪′
1
)
= C

(
𝑪′

1
)
⊞ C

(
𝑪′

2 : 𝑪′
1
)
∩ C

(
𝑪′

1
)⊥

, (2.15)

where ⊞ denotes the orthogonal sum of subspaces.

C𝑺 (𝑨)

C𝑺 (𝑨)⊥

V1 V2 V3

𝐸 [ �̂�]
= 𝑨�̂�1𝑪1

+�̂�2𝑪2

Figure 2.2: The model in Definition 2.4 is illustrated. Spaces connected to the
between-individuals decomposition are given by, V1 = C(𝑪′

2), V2 = C(𝑪′
2)⊥ ∩

C(𝑪′
1 : 𝑪′

2) and V3 = C(𝑪′
1 : 𝑪′

2)⊥.

Theorem 2.3
Let the matrices 𝑨, 𝑪1 and 𝑪2 be full rank, i.e., rank (𝑨) = 𝑚1, rank(𝑪1) = 𝑟1 and
rank(𝑪2) = 𝑟2. Then the MLEs given in Theorem 2.1 are uniquely estimated as

�̂�1 =

(
𝑨′𝑺−1𝑨

)−1
𝑨′𝑺−1𝑿𝑸𝑪′

2
𝑪′

1

(
𝑪1𝑸𝑪′

2
𝑪′

1

)−1
, (2.16)

�̂�2 =

(
𝑿 − 𝑨�̂�1𝑪1

)
𝑪′

2

(
𝑪2𝑪

′
2

)−1
. (2.17)
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The MLE of the covariance matrix equals

𝑛𝚺 =

(
𝑿 − 𝑨�̂�1𝑪1 − �̂�2𝑪2

) () ′
. (2.18)

The estimated parameters in (2.16) and (2.17) can also be found in Byukusenge et al.
(2022b). We again consider Example 2.1, to show how the model in Definition 2.4 may
arise.

Example 2.2: (Example 2.1 continued)

Consider again the trees in the ozone and normal environment data set given in Table 1
and 2 in Appendix A. In addition to the controlled conditions, data are organized in four
blocks, corresponding to four controlled environment chambers. The first two chambers,
each containing 26 and 27 trees, have an ozone-enriched atmosphere, the remaining two,
containing 12 and 13 trees respectively, were controlled. For each tree in the study, height
was recorded at time 5, 8.5, 15.5, and 22.5 months. Then we may use the model in
Definition 2.4 to see the effect of the four blocks. The purpose is to see how the ozone
effect the trees growth in each chamber. The design matrices are

Figure 2.3: Estimated growth curves for the GMANOVA-MANOVA model where the
estimated mean profiles for the four chambers are presented.
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𝑨 =

©«
1 5
1 8.5
1 15.5
1 22.5

ª®®®¬ , 𝑪1 =

(
1′53 ⊗

(
1
0

)
: 1′25 ⊗

(
0
1

))
, (2.19)

𝑪2 =

(
1′26 ⊗

(
−1
0

)
: 1′27 ⊗

(
1
0

)
: 1′13 ⊗

(
0
−1

)
: 1′12 ⊗

(
0
1

))
,

and the parameter estimates (2.16), (2.17) and (2.18) of the model are given by

�̂�1 =

(
4.57 4.79
0.06 0.07

)
, �̂�2 =

©«
−0.01 0.04
0.05 0.05
0.03 0.04
−0.03 0.01

ª®®®¬ ,𝚺 =

©«
1.24 0.18 0.45 0.27
0.18 0.43 0.38 0.38
0.45 0.38 0.45 0.39
0.27 0.38 0.39 0.40

ª®®®¬ .
According to �̂�1, there can be a difference between Group I and Group II in terms of
ozone enrichment. For the covariate estimator, �̂�2 the effect of the chamber is different
in Group I and Group II. In Figure 2.3 the estimated mean profiles for the four chambers
are presented. It can be seen that, over the entire experiment, the trees in each of the
four chambers grow. But trees in chamber one ozone environment grow faster at the end
of the experiment compared to the trees in chamber 2. It seems like both environments
(ozone and normal) increase the height of the trees over the 22.5 months, i.e., there is a
positive treatment effect for both groups. However, according to the statistical paradigm,
assumptions and results should be validated, in particular, the model seems to fit the data
well. This is often carried out by studying residuals. If one looks closer at the data one can
find some observations (for example trees number 23 and 60) that maybe do not follow
the model and thereby can have an impact on the results and conclusions.



3
Residual analysis

3.1 Introduction

The analysis of residuals is one of the most crucial parts of any model fitting technique.
Residuals indicate what is left unexplained after the estimated model has been subtracted
from the observations. They are used to find outliers, verify for normality of data, and
assess model appropriateness, among other things. The work about residuals started
with Fisher (1915) when he was looking for the exact distribution of the product-moment
correlation coefficient in a sample of observations. The work became interesting to
different authors. For example, Bartlett (1934) considered the term residual in the analysis
of least squares. Later, Dwyer (1941) used residuals to explore the behaviour of normality
in data. Thereafter, several discussions about outliers and different types of residuals
were provided and they can be found in the papers of Anscombe and Guttman (1960) and
Anscombe and John (1963), for example. Moreover, residuals can be used in variable
selection, Zyskind (1963).

Various approaches for the analysis of residuals have been produced. For example,
through observations, different types of graphs were presented and explanations about the
model behaviour were provided. Residuals were utilized to show subjects or individuals
who do not follow model assumptions. For the univariate model, it is easy to use the
ordinary residuals for the analysis of the model by drawing graphs. However, Behnken
and Draper (1972) showed that the standardized residuals are more indicative of deviant
observations than ordinary residuals.

Some other techniques without a graphical representation in the analysis of residuals
have been provided, see for example Stefansky (1972), Tietjen et al. (1973), Lund (1975)
and Prescott (1975). Different forms of residuals for the linear model can be found in the
book by Cook and Weisberg (1982). von Rosen (1995), and Hamid and von Rosen (2006)
presented residuals for the bilinear model which has later been detailed and discussed in
von Rosen (2018).

15
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The main focus of this section is on the residuals for the GMANOVA-MANOVA
model. In this thesis, a new pair of residuals for the GMANOVA-MANOVA model is
established. It is shown that one residual follows a matrix normal distribution whereas
the distribution of the second residual can be obtained by approximation. Moreover, in
this thesis, studies of the empirical distribution of the largest elements (by absolute value)
of the residual, via a data set, are performed. Parametric bootstrap is used to identify
thresholds so that extreme elements of the residuals can be identified.

3.2 Residuals
Using results from Byukusenge et al. (2022a) the predicted values in the GMANOVA-
MANOVA model given in Theorem 2.2 can be written (see (2.12))

𝑨1 �̂�1𝑪1 + �̂�2𝑪2 =
(
𝑰 − 𝑷𝑨,𝑺

)
𝑿𝑷𝑪′

2
+ 𝑷𝑨,𝑺𝑿𝑷𝑪′

2:𝑪′
1
. (3.1)

The next lemma is of use for the forthcoming results.

Lemma 3.1 (Transpose and trace including the Kronecker product ⊗ and relation-
ships to the vec-operator)
Let 𝑨, 𝑩, and 𝑪 be the arbitrary matrices of proper size so that all given operations are
well defined. Then,

vec 𝑨𝑩𝑪 = (𝑪′ ⊗ 𝑨) vec 𝑩.

Applying Lemma 3.1 to (3.1) we obtain the following expression,(
𝑪′

1 ⊗ 𝑨
)
vec(�̂�1) +

(
𝑪′

2 ⊗ 𝑰
)
vec(�̂�2)

=

(
𝑷𝑪′

2
⊗ 𝑷′

𝑨◦ ,𝑺−1

)
vec (𝑿) +

(
𝑷𝑪′

2:𝑪′
1
⊗ 𝑷𝑨,𝑺

)
vec (𝑿)

=

((
𝑷𝑪′

2
⊗ 𝑷′

𝑨◦ ,𝑺−1

)
+

(
𝑷𝑪′

2:𝑪′
1
⊗ 𝑷𝑨,𝑺

))
vec (𝑿) ,

where 𝑷′
𝑨◦ ,𝑺−1 = 𝑰 − 𝑷𝑨,𝑺 . Let 𝑷 = 𝑷𝑪′

2
⊗ 𝑷𝑨◦ ,𝑺−1 + 𝑷𝑪′

2:𝑪′
1
⊗ 𝑷𝑨,𝑺 , with its column

vector space,

C(𝑷) = C(𝑪′
2) ⊗ C𝑺 (𝑨)⊥ + C(𝑪′

2 : 𝑪′
1) ⊗ C𝑺 (𝑨). (3.2)

The space C(𝑷) is known as the linear column space for the mean. Therefore the fact
that the estimated mean is obtained by the projection of 𝑿 on the space generated by
the design matrices is in the sense of the expression (3.2). Some authors refer to the
matrix 𝑷 as the prediction matrix because of its role in statistical analysis (see for example
Cook and Weisberg, 1982; Chatterjee and Hadi, 1988). Now, our main focus is on the
space

(
C(𝑪′

2 : 𝑪′
1) ⊗ C𝑺 (𝑨) + C(𝑪′

2) ⊗ C𝑺 (𝑨)⊥
)⊥, i.e., the orthogonal complement to

C(𝑷). This space appears when applying the vec operation to the equation of the ordinary
residuals given by

𝑿 − 𝑨�̂�1𝑪1 − �̂�2𝑪2. (3.3)

The result is stated in the next theorem which was presented in Byukusenge et al. (2022d).
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Theorem 3.1 (Residual space decomposition)
Let 𝑷 and C(𝑷) be given in (3.2). The space orthogonal to C(𝑷) can be decomposed into
three orthogonal spaces as follows:(

C(𝑪′
2 : 𝑪′

1) ⊗ C𝑺 (𝑨) + C(𝑪′
2) ⊗ C𝑺 (𝑨)⊥

)⊥
= C(𝑪′

2 : 𝑪′
1)

⊥ ⊗ C𝑺 (𝑨) ⊞ C(𝑪′
2 : 𝑪′

1)
⊥ ⊗ C𝑺 (𝑨)⊥ ⊞

(
C(𝑪′

2)
⊥ ∩ C(𝑪′

1)
)
⊗ C𝑺 (𝑨)⊥.

By projecting the observations matrix 𝑿 onto the space presented in Theorem 3.1,
the residuals defined by Byukusenge et al. (2022b) and also studied by Byukusenge et al.
(2022b), are obtained.

Definition 3.1. For the GMANOVA-MANOVA model presented in Definition 2.4, the
following residuals can be utilized:

𝑹1 = 𝑿
(
𝑰 − 𝑷𝑪′

2:𝑪′
1

)
= 𝑹11 + 𝑹12, (3.4)

𝑹2 =
(
𝑰 − 𝑷𝑨,𝑺

)
𝑿𝑷𝑸𝑪′

2
𝑪′

1
, (3.5)

where

𝑹11 = 𝑷𝑨,𝑺𝑿
(
𝑰 − 𝑷𝑪′

2:𝑪′
1

)
, (3.6)

𝑹12 =
(
𝑰 − 𝑷𝑨,𝑺

)
𝑿

(
𝑰 − 𝑷𝑪′

2:𝑪′
1

)
. (3.7)

The residual 𝑹1 can be used to determine if one or more observations differ from the
rest whereas the residual 𝑹2 can then be used to evaluate assumptions about the mean
structure. These ideas were applied in Byukusenge et al. (2022b,c).

3.3 Interpretation
The residuals in Definition 3.1 have a clear meaning which is going to be discussed. By
considering the expression of residual 𝑹1 given in (3.4),

𝑹1 = 𝑿
(
𝑰 − 𝑷𝑪′

2:𝑪′
1

)
, (3.8)

it is clear that 𝑹1 is the difference between the observations 𝑿 and the "group mean"
𝑿𝑷𝑪′

2:𝑪′
1
. Moreover, 𝑿 − 𝑿𝑷𝑪′

2
means that 𝑿 has been adjusted with the effect from the

covariate and 𝑿𝑷𝑪′
2:𝑪′

1
is an adjusted "mean" effect. Specifically, 𝑹1 gives information

about the between individual assumptions in a given group. Therefore, it can be used to
detect observations that deviate from the others without taking into account any model
assumption (see Hamid and von Rosen, 2006).

In this regard, 𝑹11 given in (3.6), is the difference between the observations 𝑿 and
the mean 𝑿𝑷𝑪′

2:𝑪′
1

relative to the within-individuals model. It can therefore be used
for detecting if observations do not follow the "within-individuals" model assumptions.
Similarly, 𝑹12 given in (3.7), is the difference between the observations 𝑿 and the mean
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𝑿𝑷𝑪′
2:𝑪′

1
relative to the case where the within-individuals model assumptions do not hold.

For 𝑹2 in (3.5), the residual can be written as

𝑹2 =
(
𝑰 − 𝑷𝑨,𝑺

)
𝑿𝑷𝑸𝑪′

2
𝑪′

1

=
(
𝑰 − 𝑷𝑨,𝑺

)
𝑿𝑷𝑸𝑪′

2
𝑪′

1
+ 𝑿𝑷𝑪′

2
+ 𝑷𝑨,𝑺𝑿𝑷𝑸𝑪′

2
𝑪′

1
−

(
𝑨1 �̂�1𝑪1 + �̂�2𝑪2

)
= 𝑿

(
𝑷𝑸𝑪′

2
𝑪′

1
+ 𝑷𝑪′

2

)
−

(
𝑨1 �̂�1𝑪1 + �̂�2𝑪2

)
.

Since 𝑷𝑪′
2:𝑪′

1
= 𝑷𝑸𝑪′

2
𝑪′

1
+ 𝑷𝑪′

2
, we have

𝑹2 = 𝑿𝑷𝑪′
2:𝑪′

1
−

(
𝑨1 �̂�1𝑪1 + �̂�2𝑪2

)
, (3.9)

which is the observed "mean" 𝑿𝑷𝑪′
2:𝑪′

1
minus the estimated mean structure (the model),

i.e., 𝑨1 �̂�1𝑪1 + �̂�2𝑪2 = 𝑿𝑷𝑪′
2
+ 𝑷𝑨,𝑺𝑿𝑷𝑸𝑪′

2
𝑪′

1
, and therefore 𝑹2 tells us how well the

estimated mean structure fits the observed mean. More specifically, it gives us information
about the within individual assumptions, i.e., the model. Therefore, 𝑹2 provides infor-
mation about the appropriateness of the model assumptions about the mean structure (the
profile).

3.4 Properties
It is known that linear models are symmetrically distributed around zero and are uncorre-
lated with the estimated mean structure. Similar results are derived for the GMANOVA-
MANOVA model. Byukusenge et al. (2022a) have shown that residuals given in Definition
3.1 are symmetrically distributed around zero. To establish the theorem, the next lemma
presents some technical results which were used.

Lemma 3.2 (see Byukusenge et al., 2022a)
Let 𝑪1, 𝑪2 be as in Definition 2.4, let 𝑸𝑪′

2
be defined in (2.8) and let 𝑸𝑪′

2
𝑪′

1 be the
projection of the columns of 𝑪′

1 onto the orthogonal complement of 𝑪′
2. Then,

𝑪2𝑷𝑸𝑪′
2
𝑪′

1
= 0, 𝑸𝑪′

2
− 𝑷𝑸𝑪′

2
𝑪′

1
= 𝑰 − 𝑷𝑪′

2:𝑪′
1
,

C(𝑸𝑪′
2
𝑪′

1) = C(𝑪′
2)

⊥ ∩ {C(𝑪′
2) + C(𝑪′

1)}.

The expectations of the residuals 𝑹1, 𝑹2 in Definition 3.1 are given in the next theorem.

Theorem 3.2 (see Byukusenge et al., 2022a)
Let 𝑹1 and 𝑹2 be the residuals defined in (3.4) and (3.5). Then

𝐸 (𝑹𝑖) = 0, 𝑖 ∈ {1, 2}.

Proof: Since 𝑰 − 𝑷𝑪′
1:𝑪′

2
is the projection matrix on 𝐶

(
𝑪′

1 : 𝑪′
2
)⊥,

𝐸 (𝑹1) = 𝐸

(
𝑿

(
𝑰 − 𝑷𝑪′

1:𝑪′
2

))
= (𝑨𝑩1𝑪1 + 𝑩2𝑪2)

(
𝑰 − 𝑷𝑪′

1:𝑪′
2

)
= 0.
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For the residual 𝑹2, due to independence between 𝑺 and 𝑿𝑷𝑸𝑪′
2
𝑪′

1
,

𝐸 (𝑹2) = 𝐸

(
𝑷′
𝑨◦ ,𝑺−1 𝑿𝑷𝑸𝑪′

2
𝑪′

1

)
= 𝐸

(
𝑷′
𝑨◦ ,𝑺−1𝐸

(
𝑿𝑷𝑸𝑪′

2
𝑪′

1

))
.

Hence, using Lemma 3.2 and that 𝑷′
𝑨◦ ,𝑺−1 𝑨 = 0,

𝐸 (𝑹2) = 𝐸

(
𝑷′
𝑨◦ ,𝑺−1 (𝑨𝑩1𝑪1 + 𝑩2𝑪2) 𝑷𝑸𝑪′

2
𝑪′

1

)
= 0.

■

In the next theorem, the dispersion matrices 𝐷 ( · ), for the residuals 𝑹1 and 𝑹2 are
presented.

Theorem 3.3 (Byukusenge et al., 2022a)
Let 𝑹1 and 𝑹2 be the residuals respectively defined in (3.4) and (3.5). Then

𝐷 (𝑹1) =
(
𝑰 − 𝑷𝑪′

1:𝑪′
2

)
⊗ 𝚺,

𝐷 (𝑹2) = 𝑷𝑸𝑪′
2
𝑪′

1
⊗

(
𝚺 −

𝑛 − 𝑟
(
𝑪′

1 : 𝑪′
2
)
− 2 (𝑝 − 𝑟 (𝑨)) − 1

𝑛 − 𝑟
(
𝑪′

1 : 𝑪′
2
)
− (𝑝 − 𝑟 (𝑨)) − 1

𝑨
(
𝑨′𝚺−1𝑨

)−
𝑨′

)
.

Proof: Consider 𝐷 (𝑹1), and because 𝑰 − 𝑷𝑪′
1:𝑪′

2
is idempotent

𝐷 (𝑹1) = 𝐷

(
𝑿

(
𝑰 − 𝑷𝑪′

1:𝑪′
2

))
=

(
𝑰 − 𝑷𝑪′

1:𝑪′
2

)
⊗ 𝚺.

For 𝐷 (𝑹2) it follows since 𝐸 (𝑹2) = 0

𝐷 (𝑹2) = 𝐸

(
vec

(
𝑷′
𝑨◦ ,𝑺−1 𝑿𝑷𝑸𝑪′

2
𝑪′

1

)
vec′

(
𝑷′
𝑨◦ ,𝑺−1 𝑿𝑷𝑸𝑪′

2
𝑪′

1

))
= 𝑷𝑸𝑪′

2
𝑪′

1
⊗ 𝐸

(
𝑷′
𝑨◦ ,𝑺−1𝚺𝑷𝑨◦ ,𝑺−1

)
= 𝑷𝑸𝑪′

2
𝑪′

1
⊗

(
𝚺 −

𝑛 − 𝑟
(
𝑪′

1 : 𝑪′
2
)
− 2 (𝑝 − 𝑟 (𝑨)) − 1

𝑛 − 𝑟
(
𝑪′

1 : 𝑪′
2
)
− (𝑝 − 𝑟 (𝑨)) − 1

𝑨
(
𝑨′𝚺−1𝑨

)−
𝑨′

)
,

where the last equality follows from the same calculations as when deriving the expectation
of the MLE of the dispersion in the GCM model (see von Rosen 2018, p. 113). ■

Finally the pairs 𝑹1, and 𝑹2, �̂� and �̂� 𝑗 , 𝑗 ∈ {1, 2}which are uncorrelated are presented.
However, if the covariance cov( · , · ) equals 0 this does not imply independence.

Theorem 3.4 (Byukusenge et al., 2022a)
Let 𝑹1 and 𝑹2 be the residuals defined in the (3.4) and (3.5), respectively. Then

𝐶𝑜𝑣 (𝑹1, 𝑹2) = 0, (3.10)

𝐶𝑜𝑣

(
𝑹1, �̂� 𝑗

)
= 0, 𝑗 ∈ {1, 2}, (3.11)

𝐶𝑜𝑣

(
𝑹1, �̂�

)
= 0, (3.12)

where in (3.11) it is assumed that �̂� 𝑗 , 𝑗 ∈ {1, 2}, is uniquely estimated.
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Proof: First, (3.10) is proven. Since 𝐸 (𝑹1) = 0

𝐶𝑜𝑣 (𝑹1, 𝑹2) = 𝐸

(
vec

(
𝑿

(
𝑰 − 𝑷𝑪′

1:𝑪′
2

))
vec′

(
𝑷𝑨◦ ,𝑺−1 𝑿𝑷𝑸𝑪′

2
𝑪′

1

))
,

and uncorrelatedness follows because 𝑿
(
𝑰 − 𝑷𝑪′

1:𝑪′
2

)
as well as 𝑺 are independently

distributed of 𝑿𝑷𝑸𝑪′
2
𝑪′

1
, i.e.,

𝐶𝑜𝑣 (𝑹1, 𝑹2) = 𝐸

(
vec

(
𝑿

(
𝑰 − 𝑷𝑪′

1:𝑪′
2

))
vec′

(
𝑷𝑨◦ ,𝑺−1 𝑿𝑷𝑸𝑪′

2
𝑪′

1

))
= 𝐸

(
vec

(
𝑿

(
𝑰 − 𝑷𝑪′

1:𝑪′
2

))
𝐸

(
vec′

(
𝑿𝑷𝑸𝑪′

2
𝑪′

1

)) {
𝑰 ⊗ 𝑷𝑨◦ ,𝑺−1

})
,

and 𝐸

(
vec′

(
𝑿𝑷𝑸𝑪′

2
𝑪′

1

))
= vec′

(
𝑨𝑩1𝑪1𝑷𝑸𝑪′

2
𝑪′

1

)
, implies

𝐸

(
vec′

(
𝑿𝑷𝑸𝑪′

2
𝑪′

1

) {
𝑰 ⊗ 𝑷𝑨◦ ,𝑺−1

})
= 0,

which proves (3.10).
For (3.11) where it is assumed that 𝑩𝑖 , 𝑖 ∈ {1, 2}, are uniquely estimated,

𝐶𝑜𝑣

(
𝑹1, �̂�1

)
= 𝐶𝑜𝑣

(
𝑿

(
𝑰 − 𝑷𝑪′

1:𝑪′
2

)
,

(
𝑨′𝑺−1𝑨

)−1
𝑨′𝑺−1𝑿𝑸𝑪′

2
𝑪′

1

(
𝑪1𝑸𝑪′

2
𝑪′

1

)−1 )
= 0,

because 𝐸 (𝑹1) = 0 and 𝑿𝑸𝑪′
2

is independent of 𝑿 (𝑰 − 𝑷𝑪′
1:𝑪′

2
) and 𝑺. Moreover,

𝐶𝑜𝑣

(
𝑹1, �̂�2

)
= 𝐶𝑜𝑣

(
𝑹1, 𝑿𝑪

′
2
(
𝑪2𝑪

′
2
)−1

)
− 𝐶𝑜𝑣

(
𝑹1, 𝑨�̂�1𝑪1𝑪

′
2
(
𝑪2𝑪

′
2
)−1

)
= 0,

since 𝐶𝑜𝑣
(
𝑹1, �̂�1

)
= 0 and 𝑹1 is independently distributed of 𝑿𝑪′

2.

Finally it is noted that𝐶𝑜𝑣
(
𝑹1, �̂�

)
= 0 because𝐶𝑜𝑣

(
𝑹1, �̂�1

)
= 0 and𝐶𝑜𝑣

(
𝑹1, �̂�2

)
=

0. ■

In the next example, we present numerical values of the residuals 𝑹1 𝑹2 and we
illustrate them in Figure 3.1 and 3.2.

Example 3.1: (Example 2.2 continued )
Consider again the trees in ozone and normal environment data set given in Example 2.2,
using the GMANOVA-MANOVA model (2.19), the residuals 𝑹1 and 𝑹2 established in
Definition 3.1 are then represented in Figure 3.1 and 3.2 and 𝑹2 equals,

𝑹2 =
©«1′26 ⊗

©«
−0.87
0.16
−0.12
0.039

ª®®®¬ : 1′27 ⊗
©«
−0.84
0.15
−0.11
0.038

ª®®®¬ : 1′13 ⊗
©«
−0.94
0.24
−0.04

0.1

ª®®®¬ : 1′12 ⊗
©«
−1.028

0.26
−0.046
0.011

ª®®®¬
ª®®¬ . (3.13)

We know that residual 𝑹1 indicates the observations which deviate from the rest of the
observations. Looking at Figure 3.1 we can see that two observations are far away from
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Figure 3.1: The residuals 𝑹1, introduced in Definition 3.1, using the data in Example
2.2.

the mean group at different time points. For the residual 𝑹2 which is suitable for checking
assumptions about the mean structure, we need to evaluate the distribution for "large"
elements of 𝑹2. This has been done by generating parametric bootstrap samples to study
the distribution of the "largest" elements of the residual, which is detailed in the next
section.

3.5 Residual analysis via parametric bootstrap
The bootstrap theory was introduced by Efron (1979). As time passes many authors
have continued to develop the approach. For excellent introductions and summaries see
for example Efron and Tibshirani (1994) or Davison and Hinkley (1997). Bootstrapping
theory has been developed for performing residual analysis within the text of regression
analysis, for example, see Wakefied (2013) and Weisberg (2014).

In this thesis, we use the parametric bootstrap approach to approximate the distributions
for the "largest" elements of the residual 𝑹2 in (3.5) in the GMANOVA-MANOVA model.
In many non-standard scenarios, the parametric bootstrap has been used (see, e.g., Cheng
2017). When studying the "largest" elements of 𝑹2 the problem is that we study extreme
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Figure 3.2: The residuals 𝑹2 when using the data in Example 2.2. The figure shows
the residuals per chamber at time points 5, 8.5, 15.5, and 22.5.

values of dependent and non-identical observations which is a complicated situation. In
Byukusenge et al. (2022c) article, the parametric bootstrap procedure is used to obtain
an approximation of the distribution for the three "largest" values in 𝑹2 and define cut
off points so that with a high probability a certain value is extreme. The MLEs �̂�1, �̂�2
and 𝚺 were presented in (2.16)–(2.18). Then random numbers which are elements of
𝑬∗ ∼ 𝑁𝑝,𝑛 (0,𝚺, 𝑰𝑛) are generated 𝑚 times (𝑚 is large) and for each 𝑚,

𝑿∗ = 𝑨�̂�1𝑪1 + �̂�2𝑪2 + 𝑬∗, (3.14)

is computed. Thereafter, using Definition 3.1, 𝑹∗
2 = (𝑰 − 𝑷𝑨,𝑺)𝑿∗𝑷𝑸𝑪′

2
𝑪′

1
is derived. To

indicate that the process is repeated 𝑚 times it is written

𝑹∗
2𝑖 = (𝑰 − 𝑷𝑨,𝑺)𝑿∗𝑷𝑸𝑪′

2
𝑪′

1
, 𝑖 ∈ {1, . . . , 𝑚}. (3.15)

We are interested in "large" values of the residual and the distributions of the three "largest"
residuals are of interest.

Definition 3.2. Define the largest by absolute value of 𝑹2 by 1𝑅2, the second "largest"
by 2𝑅2 and the third "largest" by 3𝑅2, and the largest by absolute value of 𝑹∗

2𝑖 by 1𝑅
∗
2𝑖 , the

second "largest" by 2𝑅
∗
2𝑖 and the third "largest" by 3𝑅

∗
2𝑖 .

The proposed parametric bootstrap approach is described in Algorithm 1. Moreover,
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Algorithm 1 Parametric bootstrap procedure
1: Set 𝑚 to be the number of required bootstrap samples.
2: For a given data set compute the parameter estimates �̂�1, �̂�2 and 𝚺, presented in

(2.16)-(2.18).
3: For 𝑖 ∈ {1, . . . , 𝑚} sample 𝑬∗ from 𝑁𝑝,𝑛 (0,𝚺, 𝑰𝑛) and compute 𝑿∗ according to

(3.14).
4: Compute the residual components 𝑗𝑅

∗
2𝑖 , 𝑗 ∈ {1, 2, 3}, 𝑖 ∈ {1, . . . , 𝑚}, via (3.15).

cut off points for identifying extreme residuals in these statistics are obtained through the
quantiles (95%, 99%) of the estimated distribution.

Example 3.2
If we consider again our Example 3.1 we note that all residuals 𝑹2 are between -1.028 and
0.26 and we do not know at what level those residuals can deviate from the model fit to be
considered as an appropriate model. To get an insight into this feature, we explored the
distribution of the three largest elements of 𝑹2. Our approach is to investigate the distri-
bution of the three largest elements of the matrix 𝑹2 through 10,000 parametric bootstrap
samples obtained using Algorithm 1. The complete marginal bootstrap distributions of the
"largest" elements in 𝑹2 are presented in Figure 3.3. Moreover, in Table 3.1 the 95% and
99% quantiles for the marginal parametric bootstrap estimated distribution of the "largest"
elements in 𝑹2 are presented. It follows that 1𝑅2 = 1.028, 2𝑅2 = 0.94 and 3𝑅2 = 0.87 are
above the thresholds defined via the 95% and 99% percentiles of the bootstrap distribu-
tions. This indicates that the linear model which is used in the analysis is not appropriate.
One can also observe that all residuals in Chamber 1 are above the thresholds defined via
the 95% and 99% percentiles of the bootstrap distributions, this indicates that it should be
possible to analyse those specific trees when for example a quadratic growth is assumed
to hold.

Table 3.1: The estimated percentiles (95% and 99%) for the three largest residual
elements (in absolute values) in the residual 𝑹2 defined in (3.15), are presented.
These residuals are based on 10,000 parametric bootstrap samples.

Percentile 1𝑅
∗
2𝑖 2𝑅

∗
2𝑖 3𝑅

∗
2𝑖

99% 0.473 0.470 0.25
95% 0.37 0.36 0.191

3.6 Testing bilinear restrictions in the MANOVA model
through residuals

In this section, bilinear restrictions in the MANOVA model are tested. The likelihood
ratio (LR) test is constructed which consists of a ratio of determinants of the estimated
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Figure 3.3: The approximative distribution for the three "largest" elements for 𝑹2 in
(3.15), obtained when 10,000 bootstrap samples were generated.

dispersions matrices. It is shown that the LR can be written in terms of the residuals.
The material is based on the results given by Byukusenge et al. (2022a,d). Consider the
MANOVA model in Definition 2.1 given by

𝑿 = 𝑩𝑪 + 𝑬, (3.16)

where 𝑿 : 𝑝 × 𝑛 is the observation matrix, 𝑩 : 𝑝 × 𝑘 the unknown parameter matrix,
𝑪 : 𝑘 × 𝑛 the between design matrix and 𝑬 : 𝑝 × 𝑛 the random error matrix. Statisticians
have considered hypothesis tests in the MANOVA model (3.16), and several test statistics
have been proposed. For example, Wilks’ lambda test (also known as the likelihood
ratio test), Roy’s maximum root test, and Lawley-Hotelling’s trace test (see Anderson,
2003). In this thesis, a test statistic for testing a bilinear mean structure in (3.16) has been
established. A likelihood ratio test is constructed using residuals, i.e., the ratio between
the determinants of residuals that come from the MANOVA model with and without
restriction. The hypotheses are formulated as:

𝐻0 : 𝑴𝑩𝑮 = 0 against 𝐻𝐴 : 𝑴𝑩𝑮 ≠ 0, (3.17)

where 𝑴 : 𝑗 × 𝑝 and 𝑮 : 𝑘 × 𝑙 are known matrices. In this thesis, the testing hypothesis
(3.17) under model (3.16) is considered. Byukusenge et al. (2022d) showed that under
the null hypothesis, i.e., for 𝑴𝑩𝑮 = 0, the model (3.16) is equivalent to a GMANOVA-
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MANOVA model of the following form

𝑿 = (𝑴′)◦ 𝚯1𝑮
′𝑪 +𝚯2𝑮

◦′𝑪 + 𝑬, (3.18)

where 𝚯1 and 𝚯2 are unknown new parameter matrices. Therefore, using results from
Byukusenge et al. (2022d), the test statistic Λ2/𝑛 can be written as

C (𝑪′) C (𝑪′)⊥

�𝐸 [X] = B̂C

(𝑎)

𝝂1 𝝂2 𝝂3

C𝑺𝑑
(𝑴′)⊥

C𝑺𝑑
(𝑴′) 𝑹2

𝑹1

�𝐸 [X] = �̂�𝑪

(𝑏)

Figure 3.4: Consider the model in Definition 2.1 with and without restrictions.
A decomposition is presented of the whole space according to the design and re-
strictions. In (a), there are no restrictions and the decomposition consists of the
subspaces C (𝑪′) and C (𝑪′)⊥. In (b), with the restrictions 𝑴𝑩𝑮 = 0, the spaces
connected to the between-individuals decomposition are given by 𝝂1 = C (𝑪′𝑮◦),
𝝂2 = C (𝑪′𝑮◦)⊥ ∩ C (𝑪′) and 𝝂3 = C (𝑪′)⊥. The predicted values, �𝐸 [X], and the
residuals 𝑹1 and 𝑹2 are shown.

Λ2/𝑛 =

����𝑿 (𝑰 − 𝑷𝑪′ ) 𝑿′ + 𝑷′
𝑴 ′ ,𝑺−1

𝑑

𝑿𝑷𝑪′ (𝑪𝑪′ )−𝑵 𝑿′𝑷𝑴 ′ ,𝑺−1
𝑑

����
|𝑿 (𝑰 − 𝑷𝑪′ ) 𝑿′ | , (3.19)

where

𝑷𝑴 ′ ,𝑺−1
𝑑

= 𝑴′ (𝑴𝑺𝑑𝑴
′)−1𝑴𝑺𝑑 ,

𝑷𝑪′ (𝑪𝑪′ )−𝑵 = 𝑪′ (𝑪𝑪′)− 𝑵 (𝑵′ (𝑪𝑪′)− 𝑵)− 𝑵′ (𝑪𝑪′)− 𝑪,

are projection matrices,

𝑺𝑑 = 𝑿𝑸𝑑

(
𝑰 − 𝑷𝑸𝑑𝑪

′𝑮

)
𝑸𝑑𝑿

′, 𝑸𝑑 = 𝑰 − 𝑷𝑪′𝑮◦ ,
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and 𝑵 is any matrix such that C(𝑵) = C(𝑪) ∩ C(𝑮). The projection matrix 𝑷𝑪′𝑮◦ is
obtained when the model (3.16) with restriction is considered. Using results provided by
Byukusenge et al. (2022a,c), the predicted values �̂� obtained for the MANOVA model
with restriction, equals

�̂� = 𝑿𝑷𝑪′𝑮◦′ + 𝑷 (𝑴 ′ )◦ ,𝑺𝑑
𝑿𝑷𝑸𝑑𝑪

′𝑮 .

The MANOVA model with and without restrictions is represented in Figure 3.4. The
illustration in Figure 3.4 (a) the decomposition consists of the subspaces C (𝑪′) and
C (𝑪′)⊥ while Figure 3.4 (b) is based on the following decompositions

C (𝑪′) = C (𝑪′𝑮◦) ⊞
{
C (𝑪′𝑮◦)⊥ ∩ C (𝑪′)

}
.

Moreover, using the idea of Byukusenge et al. (2022a) and from Figure 3.4, the total
variation under 𝐻0 is given by the square of the residuals, i.e., 𝑛𝚺𝐻0 = 𝑹1𝑹

′
1 + 𝑹2𝑹

′
2 and

under 𝐻𝐴 the total variation equals 𝑛𝚺𝐻𝐴
= 𝑹1𝑹

′
1. Therefore, the following proposition

was obtained.

Proposition 3.1 (Byukusenge et al., 2022d)
Suppose that the MANOVA model (3.16) has been fitted to data and suppose that the
hypothesis given in (3.17) is to be tested. The test statistic is given by

Λ2/𝑛 =

���𝑰 + 𝑹′
2
(
𝑹1𝑹

′
1
)−1

𝑹2

��� , (3.20)

where 𝑹1 = 𝑿 (𝑰 − 𝑷𝑪′ ), and 𝑹2 = 𝑷′
𝑴 ′ ,𝑺−1

𝑑

𝑿𝑷𝑪′ (𝑪𝑪′ )−𝑵 are the residuals from both
MANOVA and GMANOVA-MANOVA models and 𝑵 is any matrix such that C (𝑵) =

C (𝑪) ∩ C (𝑮). The hypothesis is rejected when Λ2/𝑛 is large.

The test is given in Proposition 3.1 which is a function of residuals 𝑹1 and 𝑹2 is more
interpretable compared to what is obtained in Roy (1957). Since (3.20) is a function of
residuals, one can calculate moments of the residuals, and based on them it is possible to
interpret the result of the test. To determine how large the value of the test statistic must
be for the hypothesis to be rejected, the critical point has to be calculated. This requires
the knowledge of the distribution of Λ2/𝑛 which is difficult to obtain. An approximation
of the distribution of the test statistic obtained is given in the next theorem. Since the test
statistic in Proposition 3.1 depends on the two residuals 𝑹1 and 𝑹2, Byukusenge et al.
(2022d) proposed to investigate the expression of the test statistic by calculating different
moments of the residuals. It was shown that under the alternative hypothesis 𝐻𝐴, the
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expectations 𝐸 (𝑹2), 𝐸
(
𝑹2𝑹

′
2
)

and 𝐸

(
𝑹′

2
(
𝑹1𝑹

′
1
)−1

𝑹2

)
are respectively given by

𝐸 (𝑹2) = 𝚺𝑴′ (𝑴𝚺𝑴′)− 𝑴𝑩𝑵
(
𝑵′ (𝑪𝑪′)−𝑵)−

𝑵′ (𝑪𝑪′)−𝑪, (3.21)

𝐸
(
𝑹2𝑹

′
2
)
= 𝑟 (𝑵)

(
𝑐1𝚺 + (1 − 𝑐1) 𝚺𝑴′ (𝑴𝚺𝑴′)− 𝑴𝚺

)
+ 𝚺𝑴′ (𝑴𝚺𝑴′)− 𝑴𝑩𝑵

(
𝑵′ (𝑪𝑪′)− 𝑵

)−
𝑵′𝑩′𝑴′ (𝑴𝚺𝑴′)− 𝑴𝚺

+ 𝑐1𝑡𝑟
(
𝑴′ (𝑴𝚺𝑴′)−1 𝑴𝑩𝑵

(
𝑵′ (𝑪𝑪′)− 𝑵

)−
𝑵′𝑩′

) (
𝚺 − 𝚺𝑴′ (𝑴𝚺𝑴′)− 𝑴𝚺

)
,

(3.22)
𝐸

(
𝑹′

2
(
𝑹1𝑹

′
1
)−

𝑹2
)
= 𝑐1𝑟 (𝑴)𝑷𝑪′ (𝑪𝑪′ )−𝑵 + 𝑪′ (𝑪𝑪′)− 𝑵

×
(
𝑵′ (𝑪𝑪′)− 𝑵

)−
𝑵′𝑩′𝑴′ (𝑴𝚺𝑴′)− 𝑴𝑩𝑵

(
𝑵′ (𝑪𝑪′)− 𝑵

)−
𝑵′ (𝑪𝑪′)− 𝑪, (3.23)

where 𝑐1 =
𝑝−𝑟 (𝑴 )

𝑛−𝑟 (𝑵 )−𝑝+𝑟 (𝑴 )−1 . Under the null hypothesis 𝐻0, the expression 𝑴𝑩𝑵 = 0
reduces the above expectations into the following

𝐸 (𝑹2) = 0, (3.24)

𝐸
(
𝑹2𝑹

′
2
)
= 𝑟 (𝑵)

(
𝑐1𝚺 + (1 − 𝑐1) 𝚺𝑴′ (𝑴𝚺𝑴′)− 𝑴𝚺

)
, (3.25)

𝐸
(
𝑹′

2
(
𝑹1𝑹

′
1
)−

𝑹2
)
= 𝑐1𝑟 (𝑴)𝑷𝑪′ (𝑪𝑪′ )−𝑵 . (3.26)

Example 3.3: (Growth of Sitka Spruce data from Diggle et al. 2002)
Consider the data presented in Table 1 and 2 in the Appendix A. Let 𝑿 = 𝑩𝑪 + 𝑬, where

𝑪 =

(
1′53 ⊗

(
1
0

)
: 1′25 ⊗

(
0
1

))
, 𝑩 =

©«
𝛽11 𝛽12
𝛽21 𝛽22
𝛽31 𝛽32
𝛽41 𝛽42

ª®®®¬ ,
𝑪 indicates that the data consists of two different groups of independent observations. The
estimated values of 𝑩 equals

�̂� =

©«
4.05 4.15
5.30 5.64
5.50 5.83
6.14 6.48

ª®®®¬ .
First

𝐻0 : 𝑴𝑩𝑮 = 0 versus 𝐻𝐴 : 𝑴𝑩𝑮 ≠ 0,

is tested where

𝑴 =
©«
0 1 0 0
0 0 1 0
0 0 0 1

ª®¬ , 𝑮 =
(
−1 1

) ′
.
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If 𝐻0 is true the test is stated as 𝑴𝑩𝑮 = 0, i.e., 𝛽21 = 𝛽22, 𝛽31 = 𝛽32 and 𝛽41 = 𝛽42.
According to Proposition 3.1, the LR test statistic equals Λ2/𝑛 =

���𝑰 + 𝑹′
2
(
𝑹1𝑹

′
1
)−1

𝑹2

���.
Let Λ0 be the observed value of Λ, and let

𝑥 =
2
𝑛

(
𝑓 − 1

2
( 𝑗 − 𝑚 + 1)

)
lnΛ0,

where 𝑓 = 𝑛 − 𝑟 (𝑪), 𝑚 = 𝑑𝑖𝑚 {C (𝑵)}. From von Rosen (2018), the LR test approxi-
mately, at the level of significance 𝛼, rejects the hypothesis when

𝑃

{
𝜒2
𝑗𝑚 ≥ 𝑥

}
+ 𝑎 (1 − 𝑎)

(
𝑃

{
𝜒2
𝑗𝑚+4 ≥ 𝑥

}
− 𝑃

{
𝜒2
𝑗𝑚 ≥ 𝑥

} )
+ 𝑏

(
𝑃

{
𝜒2
𝑗𝑚+8 ≥ 𝑥

}
− 𝑃

{
𝜒2
𝑗𝑚 ≥ 𝑥

} )
≤ 𝛼,

where

𝑎 =
𝑗𝑚( 𝑗2 + 𝑚2 − 5)

48
(
𝑓 − 1

2 ( 𝑗 − 𝑚 + 1)
)2 ,

𝑏 =
1
2
𝑎2 +

𝑗𝑚
(
3 𝑗4 + 3𝑚4 + 10 𝑗2𝑚2 − 50

(
𝑗2 + 𝑚2) + 159

)
1920

(
𝑓 − 1

2 ( 𝑗 − 𝑚 + 1)
)4 .

In this example, Λ2/78 = 1.116, 𝑗 = 3, 𝑚 = 𝑑𝑖𝑚(C(𝑵)) = 1 , and 𝑓 = 𝑛− 𝑟 (𝑪) = 76. The
LR test does not reject 𝐻0 at significance level 5% since

𝑃
{
𝜒2

3 ≥ 𝑥
}
+ 𝑎 (1 − 𝑎)

(
𝑃

{
𝜒2

7 ≥ 𝑥
}
− 𝑃

{
𝜒2

3 ≥ 𝑥
} )

+ 𝑏

(
𝑃

{
𝜒2

11 ≥ 𝑥
}
− 𝑃

{
𝜒2

3 ≥ 𝑥
} )
≊ 𝑃

{
𝜒2

3 ≥ 𝑥
}
= 0.13 > 𝛼 = 0.05,

where 𝑥 = 5.50, 𝑎 ≊ 0 and 𝑏 ≊ 0 for details see Byukusenge et al. (2022d).

i) Under the null hypothesis 𝐻0, the moments of the residuals equal

𝐸 (𝑹2) = 0,

𝐸�(𝑹2𝑹
′
2
)
=

©«
0.32 0.35 0.36 0.32
0.35 0.40 0.40 0.366
0.36 0.40 0.44 0.40
0.32 0.36 0.40 0.39

ª®®®¬ ,
𝐸

(
𝑹′

2
(
𝑹1𝑹

′
1
)−

𝑹2
)
=

(
2.41 × 10−4 ⊗ 𝑱53×53 −5.12 × 10−4 ⊗ 𝑱53×25
−5.12 × 10−4 ⊗ 𝑱25×53 10.87 × 10−4 ⊗ 𝑱25×25

)
.
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ii) Under 𝐻𝐴 the estimated moments of the residuals equal

𝐸�(𝑹2) =
©«1′53 ⊗

©«
−0.09
−0.10
−0.10
−0.10

ª®®®¬ : 1′25 ⊗
©«
0.19
0.22
0.22
0.23

ª®®®¬
ª®®®¬ ,

𝐸�(𝑹2𝑹
′
2
)
=

©«
1.76 2.02 2.00 2.01
2.02 2.33 2.30 2.32
2.00 2.30 2.30 2.32
2.01 2.32 2.32 2.38

ª®®®¬ ,
𝐸 �(

𝑹′
2
(
𝑹1𝑹

′
1
)−

𝑹2
)
=

(
0.03 ⊗ 𝑱53×53 −0.07 ⊗ 𝑱53×25
−0.07 ⊗ 𝑱25×53 0.16 ⊗ 𝑱25×25

)
.

Looking at the results obtained in the above moments, one can see that there is not a
significant difference between the estimated moments of the residuals obtained under 𝐻𝐴

and 𝐻0 when 𝐻0 is not rejected. However, when 𝐻0 is rejected there is a significant
difference among estimated moments obtained in both cases. This can be seen in the next
case. Let consider some elements of 𝑿 to be 𝑥2,65 = 𝑥2,70 = 12 and 𝑥3,65 = 𝑥3,70 = 12.
Let

𝑴 =
©«
0 1 0 0
0 0 1 0
0 0 0 1

ª®¬ , 𝑮 =
(
−1 1

) ′
.

The estimated values of 𝑩 under 𝐻𝐴 equals

�̂� =

©«
4.05 4.15
5.30 6.15
5.50 6.32
6.14 6.48

ª®®®¬ ,
the test statistic Λ2/78 = 1.13, 𝑗 = 3, 𝑚 = 𝑑𝑖𝑚(C(𝑵)) = 1 , and 𝑓 = 𝑛 − 𝑟 (𝑪) = 76.

The LR test rejects 𝐻0 at significance level 5% since

𝑃
{
𝜒2

3 ≥ 𝑥
}
+ 𝑎 (1 − 𝑎)

(
𝑃

{
𝜒2

7 ≥ 𝑥
}
− 𝑃

{
𝜒2

3 ≥ 𝑥
} )

+ 𝑏

(
𝑃

{
𝜒2

11 ≥ 𝑥
}
− 𝑃

{
𝜒2

3 ≥ 𝑥
} )
≊ 𝑃

{
𝜒2

3 ≥ 𝑥
}
= 0.02 < 𝛼 = 0.05,

where 𝑥 = 9.10. The expected moments of the residuals are respectively given by

a) under 𝐻0, the moments of the residuals equal

𝐸 (𝑹2) = 0

𝐸�(𝑹2𝑹
′
2
)
=

©«
0.28 0.34 0.35 0.32
0.34 1.34 1.32 0.34
0.35 1.32 1.33 0.38
0.32 0.34 0.38 0.39

ª®®®¬ ,
𝐸

(
𝑹′

2
(
𝑹1𝑹

′
1
)−1

𝑹2

)
=

(
2.41 × 10−3 ⊗ 𝑱53×53 −5.12 × 10−3 ⊗ 𝑱53×25
−5.12 × 10−3 ⊗ 𝑱25×53 1.08 × 10−3 ⊗ 𝑱25×25

)
.
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b) Under 𝐻𝐴 the estimated moments of the residuals equal

𝐸�(𝑹2) =
©«1′53 ⊗

©«
−0.10
−0.26
−0.26
−0.10

ª®®®¬ : 1′25 ⊗
©«
0.22
0.57
0.55
0.23

ª®®®¬
ª®®®¬ ,

𝐸�(𝑹2𝑹
′
2
)
=

©«
2.11 5.01 4.91 2.22
5.01 13.37 13.07 5.23
4.91 13.07 12.80 5.15
2.22 5.23 5.15 2.38

ª®®®¬ ,
𝐸

�(
𝑹′

2
(
𝑹1𝑹

′
1
)−1

𝑹2

)
=

(
0.06 ⊗ 𝑱53×53 −0.13 ⊗ 𝑱53×25
−0.13 ⊗ 𝑱25×53 0.27 ⊗ 𝑱25×25

)
.

Using this example, one can see that when the null hypothesis is not rejected, there is
not a big difference among the estimated moments of the residuals under 𝐻0 and 𝐻𝐴.
However, when the null hypothesis is rejected there is a significant difference between
the estimated moments of the residuals, and under 𝐻𝐴 the moments of the residuals are
larger. Therefore, it is useful to consider those moments in any statistical study, because
they provide a good interpretation of how the data behaves in front of the given models.



4
Conclusions

4.1 Conclusion

In statistical theory, residual is an important quantity for studying model assumptions.
Residuals which are the difference between the observed values and the predicted values
can show how far an object deviates from the estimated mean. In this thesis residuals in
the GMANOVA-MANOVA model are considered and based on space decomposition two
residuals are established. One residual is the difference between the observations and the
group mean corrected for the covariate. Hence, it gives information about the between
individual assumptions in a given group. It can be used to detect observations that deviate
from the others without taking into account any model assumption. This residual can be
divided into two parts which are related to the within-individual model assumption. The
second residual is the observed group mean, corrected for the covariate minus the fitted
mean model. Thus, it describes how well the estimated mean structure fits the observed
group mean, i.e., it relates to the within-individual structure and gives information about
the mean model assumptions.

Properties such as expectation, dispersion, and relevant covariances are derived in
Byukusenge et al. (2022a). Those properties are can be used to detect if some observations
deviate from the model assumptions. Byukusenge et al. (2022a) provides an example of
how residuals are affected when observations fail to follow model assumptions. It was
demonstrated that residual 𝑹2 plays an interesting role in model validation. A special but
interesting example can be found in the paper of Byukusenge et al. (2022b) where when
some elements of 𝑹2 became exactly 0 it was not possible to estimate a linear trend over
time. In this case, the model assumptions have to be examined. Thus, a matrix 𝑸𝑪′

2
𝑪1

with none zero elements were proposed for having residuals 𝑹2 with none zero elements.
Byukusenge et al. (2022c) provided a parametric bootstrap algorithm that gives simu-

lated distributions of the extreme elements of the residuals. Through simulated distribu-
tion, cut off points are used for identifying outliers in the given data set.
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The LR test to test bilinear restrictions on the parameter space for the MANOVA
model is formulated see (Byukusenge et al. (2022d)). Since the test statistic is function of
residuals, it is interpretable compared to the existing LR test and it is possible to calculate
the moments of residuals. Looking at the estimated moments of the residuals, they are
close to each others when the hypothesis is not rejected and with a significant difference in
otherwise. The estimated moments can be used to explain how the model behaves when
a data set is presented.

4.2 Future research
In this thesis, different aspects of the residuals in the GMANOVA-MANOVA model are
explored and a list of potential future research areas in this field is provided below.

• In this thesis, residuals for the GMANOVA-MANOVA model were studied and
some properties of the residuals are given and explained. For extension of this
work, we would like to see how the residuals should behave when random effects
are considered in this model.

• For identifying outliers in the model we proposed parametric bootstrapping in Paper
C where we set a cut off point as a critical condition. This algorithm can be developed
to see if it can help to identify deviating observations in a model.

• The likelihood ratio test can be constructed when a bilinear restriction on the
parameter space for the MANOVA model is considered. From the LR test one can
work more on the estimated moments of the residual to explain how the model is
behaving for a given data set.
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Table 1: Repeated measurements for trees in Group 1, i.e., the log size for sitka spruce
trees grown in ozone enriched environments, together with the covariate ’chambers’
(see Diggle et al., 2002).

Time points
Id 5 8.5 15.5 22.5 Group Chambers
1 4.51 6.15 6.16 7.04 1 1
2 4.24 4.96 5.20 5.85 1 1
3 3.98 5.03 5.87 6.61 1 1
4 4.36 5.36 5.53 6.19 1 1
5 4.34 6.28 6.50 7.16 1 1
6 4.59 6.00 6.33 7.05 1 1
7 4.41 5.33 6.13 6.86 1 1
8 4.24 5.48 5.61 6.46 1 1
9 4.82 6.24 6.48 7.28 1 1
10 3.84 4.80 4.94 5.60 1 1
11 4.07 5.10 5.26 5.89 1 1
12 4.28 5.65 5.76 6.41 1 1
13 4.47 5.74 5.99 6.58 1 1
14 4.46 5.46 5.47 6.12 1 1
15 4.6 4.59 4.65 5.50 1 1
16 3.73 4.93 5.24 5.83 1 1
17 4.67 5.49 6.44 7.11 1 1
18 2.96 4.30 4.15 5.07 1 1
19 3.24 4.64 4.63 5.20 1 1
20 4.36 5.45 5.44 5.96 1 1
21 4.04 5.25 5.25 5.89 1 1
22 3.53 5.18 5.64 5.99 1 1
23 4.22 5.58 5.76 6.55 1 1
24 2.79 3.55 3.61 4.39 1 1
25 3.30 5.40 5.46 6.28 1 1
26 3.34 4.86 4.93 5.74 1 1
27 3.76 5.32 5.65 5.91 1 2
28 4.49 5.56 5.73 6.13 1 2
29 4.88 6.17 6.32 6.95 1 2
30 4.88 5.94 6.09 6.74 1 2
31 3.80 5.05 5.06 5.49 1 2
32 4.46 5.49 5.68 6.30 1 2
33 4.06 5.27 5.48 6.13 1 2
34 5.16 6.21 6.37 7.14 1 2
35 3.81 4.60 4.74 5.23 1 2
36 5.09 6.49 6.72 6.97 1 2
37 4.13 5.72 6.06 6.64 1 2
38 4.85 6.13 6.22 6.80 1 2
39 4.11 5.43 5.80 6.44 1 2
40 4.95 6.48 6.61 6.63 1 2
41 4.36 5.47 5.48 6.01 1 2
42 4.05 5.60 5.79 6.42 1 2
43 3.76 5.25 5.41 6.24 1 2
44 2.84 4.21 4.30 4.64 1 2
45 4.33 5.61 5.85 6.55 1 2
46 3.99 5.30 5.69 6.25 1 2
47 3.50 4.85 5.01 5.86 1 2
48 3.31 4.54 4.72 5.35 1 2
49 3.03 4.58 4.47 5.12 1 2
50 3.27 4.89 5.08 5.94 1 2
51 3.56 5.28 5.50 6.14 1 2
52 3.39 4.15 4.49 5.28 1 2
53 3.72 5.02 5.16 5.67 1 3
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Table 2: Repeated measurements for trees in Group 2, i.e., the log size for sitka
spruce trees grown in normal environments, together with the covariate ’chambers’
(see Diggle et al., 2002).

Time points
Id 5 8.5 15.5 22.5 Group Chambers
54 4.53 5.42 5.71 6.43 2 3
55 4.97 6.45 6.61 7.35 2 3
56 4.37 5.40 5.57 6.29 2 3
57 4.58 5.93 6.14 6.82 2 3
58 4.00 5.87 6.02 6.65 2 3
59 4.73 6.01 6.26 6.92 2 3
60 5.15 6.61 6.82 7.56 2 3
61 4.10 5.48 5.68 6.18 2 3
62 3.22 5.11 5.28 6.02 2 3
63 2.23 3.52 3.89 4.68 2 3
64 3.65 5.44 5.70 6.44 2 3
65 3.40 5.14 5.34 5.95 2 3
66 5.16 6.21 6.37 6.84 2 3
67 4.04 5.87 5.96 6.59 2 4
68 4.32 5.97 6.11 6.63 2 4
69 4.56 5.89 6.16 6.8 2 4
70 4.90 6.25 6.39 6.88 2 4
71 4.83 6.04 6.21 6.66 2 4
72 5.46 6.63 6.73 6.60 2 4
73 4.17 5.56 5.75 6.63 2 4
74 3.35 5.44 5.79 6.42 2 4
75 3.33 5.17 5.4 6.15 2 4
76 3.41 4.54 4.52 5.35 2 4
77 4.50 6.16 6.33 6.94 2 4
78 2.99 5.06 5.23 6.34 2 4
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