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Abstract

This thesis considers Small Area Estimation with a main focus on estimation and pre-
diction theory for repeated measures data. The demand for small area statistics is for
both cross-sectional and repeated measures data. For instance, small area estimates for
repeated measures data may be used by public policy makers for different purposes such
as funds allocation, new educational or health programs and in some cases, they might be
interested in a given group of population.

It has been shown that the multivariate approach for model-based methods in small
area estimation may achieve substantial improvement over the usual univariate approach.
In this work, we consider repeated surveys including the same subjects at different time
points. The population from which a sample has been drawn is partitioned into several
subpopulations and within all subpopulations there is the same number of group units. For
this setting a multivariate linear regression model is formulated. The aim of the proposed
model is to borrow strength across small areas and over time with a particular interest of
growth profiles over time. The model accounts for repeated surveys, group individuals
and random effects variations.

The estimation of model parameters is discussed with a restricted maximum likeli-
hood based approach. The prediction of random effects and the prediction of small area
means across time points, per group units and for all time points are derived. The theo-
retical results have also been supported by a simulation study and finally, suggestions for
future research are presented.
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Populärvetenskaplig sammanfattning

I den här avhandling diskuteras small area estimation (SAE) med fokus pȧ skattningar
av parametrarna samt prediktion för slumpvariabler givet en modell för upprepade mät-
ningar. Efterfrȧgan pȧ statistisk inferens för undergrupper av en population (small area
statistics) har ökat markant. Till exempel kan sȧdan inferens för upprepad mätningar an-
vändas av offentliga beslutsfattare vid tilldelning av ekonomiska resurser, planering av
nya utbildnings-eller hälsoprogram och i vissa fall kan det vara av intresse att studera en
specifik undergrupp av befolkningen.

Det har visat sig att den multivariata framställningen för modellbaserade metoder vid
SAE kan uppnȧ betydande bättre resultat jämfört med det vanliga endimensionella mo-
dellantagandet. I detta arbete betraktar vi upprepade undersökningar pȧ samma individer
vid olika tidpunkter. Populationen frȧn vilket ett urval har tagits är uppdelat i flera del-
populationer och inom alla undergrupper finns det samma antal observationer. För dessa
förutsättningar, är en multivariat linjär regressionsmodell formulerad. Syftet med den för-
slagna modellen är att lȧna egenskaper mellan undergrupperna och över tid. I modellen
ingȧr det upprepade undersökningar, grupper av individer samt slumpmässiga effekter.

Parametrarna i den föreslagna modellen skattas med hjälp av restricted maximum li-
kelihood metoden. Prediktion av slumpmässiga effekter samt prediktion av de förväntade
värdena i undergrupperna beräknas.
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Notation

Throughout this thesis, all vectors are column vectors and are written by lower case let-
ters with bold font. Matrices are written by upper case letters with bold font and scalar
variables are written by lower case letters with ordinary font. In general, parameters are
written by Greek letters. Note that the same symbol can be used for different purposes.
The principal notation is listed below and any deviations from this are explained in the
text.

Symbols and Operators

E[Y ] Expectation of random variable Y
E[Y |X] Expectation of random variable Y given the random variable X
Var[Y ] Variance of random variable Y
Cov[X,Y ] Covariance matrix between random variables X and Y
|A| Determinant of a square matrixA
A′ Transpose of matrixA
In Identity matrix of size n
1n Column vector of ones of dimension n
x̂ Estimator or estimate of x, determined by the context
vec(A) Vectorization of matrixA
trA Trace of matrixA
exp{A} Exponential of matrixA
∼ denotes "distributed according to"
∼= denotes "approximately equal to"
Ψ⊗Σ Kronecker product of matrices Ψ and Σ
Np(µ,Σ) Multivariate Normal (Gaussian) distribution of dimension p with mean

µ and covariance matrix Σ

1



2 Notation

Np,n(M ,Σ,Ψ) Matrix Normal distribution of dimension p× n with mean M and dis-
persion matrix Ψ⊗Σ, which is equivalent to Npn(vec(M),Ψ⊗Σ)

l( · ) Log-likelihood function
L( · ) Likelihood function
C(A) Column space of matrixA
C(A)⊥ Orthogonal complement of column space of matrixA
Ao Matrix of full rank spanning C(A)⊥

A′ Transpose of matrixA
A−1 Inverse of matrixA
A− Generalized inverse of matrixA
d(f)
dX First derivative of the function f with respect to the variable X
d2(f)
dX2 Second derivative of the function f with respect to the variable X

Abbreviations and Acronyms

e.g. for example
i.i.d. independent identically distributed
w.r.t. with respect to
SAE Small Area Estimation
SRSWOR Simple Random Sampling Without Replacement
MSE Mean Square Error
MLE Maximum Likelihood Estimator
RMLE Restricted Maximum Likelihood Estimator
BP Best Predictor
BLP Best Linear Predictor
BLUP Best Linear Unbiased Predictor
EBLUP Empirical Best Linear Unbiased Predictor
BLUE Best Linear Unbiased Estimator
GLS General Least Squares
GC Growth Curve
EGC Extended Growth Curve
GMANOVA Generalized Multivariate Analysis of Variance



1
Introduction

THIS thesis is concerned with the problem of Small Area Estimation (SAE) which is
mainly about how to produce reliable estimates of characteristics of interest, (totals,

means, proportions, quantiles, etc.) for small areas or domains based on few samples or
even no samples taken from these areas and how to assess the estimation or prediction
error.

Surveys are carried out via sampling designs and data collection of individual units
with intention of making statistical inferences about a larger population of which these
units are members. One commonly used design is simple random sampling which assigns
equal selection probabilities to all elements in the population. The population surveys are
usually designed to provide efficient estimates of parameters of interest for large popu-
lations. In most cases these surveys are not originally designed to produce estimates for
small domains and hence these domains are poorly represented in the sample. Thus, the
surveys often provide very little information on a small area level and direct survey esti-
mates on a target small area are not reliable due to a small sample size connected to this
area.

The aim of this work is to provide an overview and a broad understanding of methods
in SAE with a focus put on estimation and prediction of small area characteristics of
interest for repeated measures data. Throughout this thesis, we are interested in small
area means.

1.1 Background and problem formulation

Following the definition given by Rao (2003), the term "small area" or "small domain"
is referred to a subpopulation for which the domain-specific sample is not large enough
to produce direct estimates with reliable precision. This subpopulation can be a small
geographical area (county, state, district, etc.), a demographic group within a geographical
region (specific sex-age group, etc.) or any subdivision of the population. One possible
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4 1 Introduction

solution to the estimation problem to improve direct estimates is to "borrow strength"
from other related data sets, either from similar areas, or relevant "auxiliary information"
obtained from census or some other administrative records.

In recent years, SAE methods have received much attention due to their usefulness in
both public and private sectors and their demand has greatly increased worldwide. Sev-
eral approaches and new developments in small area estimation have been investigated
by different authors for example, Pfeffermann (2002, 2013), Rao (2003) and Chambers
and Clark (2012). The demand for small area statistics has increased due to their use in
formulating social and economic policies, allocation of government funds, regional plan-
ning, business decision making etc. SAE has been used in a wide range of applications
such as unemployment rates, poverty mapping, disease mapping, demography etc. One
may refer to Ghosh and Rao (1994) and Rao (2003) for some examples and case studies
in SAE.

Repeated measures data which refer to response outcomes taken on the same exper-
imental unit at different time points have been widely used in research. The analysis of
repeated measures data allows us to study trends over time. The demand for small area
statistics is for both cross-sectional and for repeated measures data. For instance, small
area estimates for repeated measures data may be used by public policy makers for dif-
ferent purposes such as funds allocation, new educational or health programs and in some
cases, they might be interested in a given group of population.

In this work, we consider repeated surveys for the variable of interest on the same sub-
jects at different time points. We assume that the target population from which the sample
has been drawn is partitioned into several subpopulations and within all subpopulations,
there is the same number of group units. In addition, we also assume that the sampling
scheme is a simple random sampling scheme without replacement (SRSWOR) for which
an element from the population is not chosen more than once, and the sampling design
was not planned to estimate subpopulation level. Hence, direct estimates at this level are
not of any high precision. The purpose with this work is to develop reliable estimates for
a given subpopulation which we call "small area" by prediction of target quantities in a
given above mentioned situation.

1.2 Example: Regional estimation of malnutrition

In order to make the formulation of the problem clear, we give a realistic motivating
example. In a country, say C, having 8 subnational regions, surveys about child nutrition
were carried out every 3 months during the whole year on the same subjects with intention
of providing nutritional status of male and female children under 5 years and the factors
affecting it. With a SRSWOR scheme, a random sample of children was drawn, and their
height and weight were measured. A child is considered as stunting or underweight if
she/he has a height which is below a median height for a reference child (z1) or has a
weight below the median weight for a reference child, (z2) respectively. Therefore, the
variable of interest y is height or weight and direct estimates are available for sampled
units. Since these surveys were not designed for regions, we assume that the sample sizes
within regions are very small so that these direct estimates have large standard errors and
hence are not reliable. We also assume that from census, some auxiliary information x
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are available for the whole country. The auxiliary information can be the size and monthly
expenditure of the household, sex and employment of the head of the household. The aim
is to develop the yearly estimates of regional height and weight averages and deduce a
yearly regional estimate of malnutrition.

1.3 Main contributions

The main contributions of this work are

• model formulation of SAE under a multivariate linear regression model for repeated
measures data,

• derivation of explicit estimators of the model parameters, and

• prediction of random effects and small area means.

1.4 Thesis outline

Apart from the short Introduction which comprises the background, problem formulation,
motivation example and main contributions, this thesis consists of 4 more chapters.

Chapter 2 discusses the general theory about multivariate linear models, specifically
about estimation and prediction in linear mixed models, multivariate and matrix normal
distribution and Growth Curve modeling. Chapter 3 gives a brief review of methods used
in SAE with main focus on prediction of small area means. Chapter 4 is devoted to
SAE under the multivariate linear regression model. After model formulation, likelihood
based estimators are presented in Section 1 and 2. Section 3 and Section 4 deal with
the prediction of random effects, the last two sections treat the prediction of small area
means and a simulation study. Finally, Chapter 5 gives some concluding remarks and
suggestions of future work.





2
Multivariate linear models

MULTIVARIATE linear models play an important role in the analysis of repeated mea-
sures data. This class of models includes linear and mixed linear models mainly

used for analysis of variance and regression analysis, the Growth Curve model and the
Growth Curve model with random effects which are commonly used for studying between-
individual differences and within-individual patterns over time. The theory of multivari-
ate analysis based on the matrix normal distribution has been discussed by many authors,
among others, we may cite Srivastava (2002); Kollo and von Rosen (2005); McCulloch
and Neuhaus (2008); Muirhead (2009).

2.1 Multivariate normal distribution

Definition 2.1 (Multivariate normal distribution). An N -dimensional random vector
y is said to have a N -variate normal distribution with mean vector µ and positive definite
covariance matrix Σ, or simply that y is NN (µ,Σ), if its density function is given by

f(y) = (2π)−N/2|Σ|−1/2e− 1
2 (y−µ)Σ

−1(y−µ)′ .

2.1.1 Estimation in Mixed linear models

The classical linear model for fixed effects is usually written in the form

y =Xβ + e, (2.1)

where y is an N × 1 observation vector, X is a N × p known coefficient matrix, β is a
p× 1 vector of unknown constants for fixed effects and e is a vector of random errors. It
is assumed that E[e] = 0 and Var[e] = σ2

eIN , where IN is the N ×N identity matrix.

7



8 2 Multivariate linear models

In summary, the model (2.1) can be written as

y ∼ (Xβ, σ2
eIN ),

and the normal distribution is often assumed so that

y ∼ NN (Xβ, σ2
eIN ).

A general linear mixed model is obtained by incorporating an m × 1 vector of random
effects u and a suitable design matrix Z : N ×m in model (2.1), which yields

y =Xβ +Zu+ e, (2.2)

with assumptions

E[u] = E[e] = 0,

Cov[u, e] = 0,

Var[y] = ZGZ ′ +R = Σ,

for

G = Var[u], R = Var[e].

It is convenient to notice that under these assumptions, the conditional mean of y given
the realized u is E[y|u] =Xβ +Zu and so

y|u ∼ NN (Xβ +Zu,R).

Under the normality assumption, with known Σ, the Generalized Least Squares (GLS)
estimator of β corresponds to its Maximum Likelihood Estimator (MLE) and is unbiased:

β̂ = (X ′Σ−1X)−1X ′Σ−1y, (2.3)

with X assumed to be of full rank. For unknown Σ, it is replaced by its estimator which
may be obtained by the maximum likelihood approach and then

β̂ = (X ′Σ̂
−1
X)−1X ′Σ̂

−1
y.

2.1.2 Prediction of random effects

Hereafter, we present some techniques used to predict the random area effects values in
mixed linear models.

Best Predictor and Best Linear Predictor

Consider the general linear mixed model (2.2),

y =Xβ +Zu+ e.
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The problem is to how predict the random effects u. The best predictor (BP) is defined
as the predictor with minimum mean square error (MSE), it is the conditional mean of
the predictor given the data vector. That is

ûBP = E[u|y].

If the best predictor ûBP is linear in y, then it is the best linear predictor (BLP). With
normality assumption(

u
y

)
∼ NN+m

[( 0
Xβ

)
,

(
G GZ ′

ZG Σ

)]
.

The best linear predictor of u is given by

ûBLP =E[u|y] = E[u] + Cov[u,y](Cov[y])−1(y − E[y])

=GZ ′Σ−1(y −Xβ).

More details about derivation of these predictors can be found for example in Searle et al.
(2009).

Best Linear unbiased Predictor

If the predictor û is the "best", in the sense that it has minimum MSE; if it is "linear" in
y and "unbiased", in the sense that E[û] = E[u] = 0; then it is the best linear unbiased
predictor (BLUP). In this case, the unknown parameter β is replaced by its GLS estimate
which is the best linear unbiased estimator (BLUE) of βX , i.e.,

ûBLUP = GZ ′Σ−1(y −Xβ̂),

where

β̂ = (X ′Σ−1X)−1X ′Σ−1y.

An alternative way of derivation of the BLUP is to solve the mixed model equations
which do not involve the computation of the inverse of the covariance matrix Σ. These
equations were developed by Henderson (1973) and the prediction approach is known as
Henderson’s method of prediction. The solutions yield simultaneously the BLUE ofXβ
and the BLUP of u. The set of equations are obtained by maximizing the joint density of
y and u with respect to β and u which is

f(y,u) = f(y|u)f(u),

with

y|u ∼ NN (Xβ +Zu,R),

u ∼ Nm(0,G).

Henderson maximized the joint density

f(y,u) =
exp{− 1

2

[
(y −Xβ −Zu)′R−1(y −Xβ −Zu) + u′G−1u

]
}√

(2π)N+m|R||G|
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taking it as it was a likelihood and got the mixed model equations written in matrix form
as (

X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z +G−1

)(
β
u

)
=

(
X ′R−1y

Z ′R−1y

)
.

The solutions of Henderson’s mixed model equations are

β̂ =(X ′Σ−1X)−1X ′Σ−1y,

û =GZ ′Σ−1(y −Xβ̂).

Note that in practice, the covariance matrices G and Σ are unknown. Then, they are
replaced by their estimates from the observed data which yields Empirical Best Linear
Unbiased Predictor (EBLUP):

û = ĜZ ′Σ̂
−1

(y −Xβ̂).

2.2 Matrix normal distribution

Definition 2.2 (Matrix normal distribution). Let Y be an p×n random matrix,M an
p×n matrix, Σ : p×p and Ψ : n×n positive definite matrices. Then the matrix Y has a
matrix normal distribution with meanM and covariances matrices Σ and Ψ denoted by

Y ∼ Np,n
(
M ,Σ,Ψ

)
,

or equivalently

vec(Y ) ∼ Npn
(

vec(M),Ψ⊗Σ
)
,

if its density is given by

f(Y ) = (2π)−
pn
2 |Σ|−n

2 |Ψ|−
p
2 e−

1
2 tr{Σ−1(Y −M)Ψ−1(Y −M)′},

where vec( · ) stands for the vectorization operator and ⊗ is the usual Kronecker product.

The covariance matrix Σ is interpreted as the covariance between rows of Y which
is the same for each column and the covariance matrix Ψ is interpreted as the covariance
between columns of Y which is the same for each row.

Theorem 2.1
Suppose thatX ∼ Np,n

(
M ,Σ,Ψ

)
. ForA : q × p andB : n×m set Y = AXB,

then, Y ∼ Nq,m
(
AMB,AΣA′,B′ΨB

)
.

The proof can be found for example in Kollo and von Rosen (2005). It is important to
note that if

X1 ∼ Np,n
(
M1,Σ1,Ψ1

)
,
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and

X2 ∼ Np,n
(
M2,Σ2,Ψ2

)
,

then X1 +X2 is normally distributed but not necessarily matrix normally distributed.
This is because it is not always true that there exist matrices Υ and Φ such that

Ψ1 ⊗Σ1 + Ψ2 ⊗Σ2 = Υ⊗Φ.

See Kollo and von Rosen (2005) for more details.

2.2.1 Growth Curve Model

The Growth Curve (GC) model also known as Generalized Multivariate Analysis of Vari-
ance (GMANOVA) model is given by

Y = ABC +E, (2.4)

where Y : p×n is the observation matrix,B : q×k is the parameter matrix,A : p× q is
the within individual design matrix indicating the time dependency within the individuals,
C : k × n with rank(C) + p ≤ n is the between individual design matrix accounting
for group effects and E : p × n is the error matrix whose columns are independently
distributed as a multivariate normal distribution with mean zero and covariance matrix
Σe.

The estimation, testing and model diagnostic problems for GC model and its exten-
sions have been investigated by several authors, see for example, Potthoff and Roy (1964);
von Rosen (1989); Khatri (1973); Rao (1958); Nzabanita et al. (2012); Ohlson and Sri-
vastava (2010). Theorem 2.2 gives the MLEs for a classical GC model.

Theorem 2.2
Consider the Growth Curve model defined in equation (2.4). The maximum likelihood
estimators ofB and Σe are respectively given by

B̂ =(A′S−1A)−1A′S−1Y C ′(CC ′)−1,

nΣ̂e =(Y −AB̂C)(Y −AB̂C)′,

where

S = Y (I −C ′(CC ′)−1C)Y ′

and the design matricesA and C are assumed to have full rank.

The proof of the theorem can be found for example in Kollo and von Rosen (2005).

2.2.2 Random effect Growth Curve Model

Consider the Growth Curve model given in equation (2.4) and suppose that there exist
individual random effects U : p × r assumed to be multivariate normal distributed with
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mean zero and covariance matrix Σu. The random effects Growth Curve model is defined
as

Y = ABC +UZ +E, (2.5)

where Z is a known design matrix for random effects. This class of model has been
considered by many authors and estimation of parameters of interest has been discussed
with different choices of C and Z. See for example Nummi (1997); Ip et al. (2007);
Lange and Laird (1989); Yokoyama and Fujikoshi (1993); Yokoyama (2001); Srivastava
and Singull (2012) for more details.

2.2.3 Extended Growth Curve Model

The classical GC model defined in (2.4) relies on the assumption of the same profile of
different individuals. If this does not hold, a more general model, sometimes called sum
of profiles can be introduced. That is an Extended Growth Curve (EGC) model. The
following EGC model is an extension of the GC model discussed by Filipiak and von
Rosen (2012).

Definition 2.3 (Extended growth curve model). The Extended Growth Curve Model
with nested subspace condition C(Ai) ⊆ C(Ai−1), i = 2, 3, . . . ,m, where C( · ) denotes
the column space of a matrix, is given by

Y =

m∑
i=1

AiBiCi +E,

where Y : p × n is a data matrix, Ai : p × qi, Ci : ki × n with rank(C1) + p ≤ n,
i = 1, 2, . . . ,m are design matrices, Bi : qi × ki are unknown parameters and columns
of E are assumed to be independently distributed as multivariate normal with mean zero
and positive definite covariance matrix Σ.

In summary,

Y ∼ Np,n

(
m∑
i=1

AiBiCi,Σ, In

)
,

and when m = 1, the model reduces to the classical Growth Curve model.

Maximum Likelihood Estimators

The derivation of MLEs for the EGC model as defined in Definition 2.3 can be found in
Filipiak and von Rosen (2012). Here we present the MLEs for EGC model with two terms
(m = 2) which will be used later on in Chapter 4. In the following, we use the notation
Ao for any matrix of full rank spanning C(A)⊥, i.e. C(Ao) = C(A)⊥. Moreover, A−

denotes an arbitrary generalized inverse of the matrix A such that AA−A = A. We
also denote by PA = A(A′A)−A′, QA = I − PA, PA,B = A(A′BA)−A′B and
QA,B = I − PA,B .
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Theorem 2.3
Consider the EGC model given in Definition (2.3). Set m = 2 and assume that C(A2) ⊆
C(A1). The maximum likelihood estimators for the parameter matrices B1 and B2 are
given by

B̂2 = (A′2S
−1
1 A2)

−A′2S
−1
1 Y QC′1C

′
2(C2QC′1C

′
2)
−

+(A′2)
oT 21C2QC′1 +A

′
2T 22(C2QC′1)

o

B̂1 = (A′1S
−1
2 A1)

−A′1S
−1
2 (Y −A2B̂2C2)C

′
1(C1C

′
1)
−

+(A1
′)oT 11C

′
1 +A

′
1T 12C

o
1
′,

nΣ̂ = (Y −A1B̂1C1 −A2B̂2C2)(Y −A1B̂1C1 −A2B̂2C2)
′,

where

S1 = Y Q(C′1:C
′
2)
Y ′,

S2 = S1 +QA2,S
−1
1
Y PQC′1

C′2
Y ′Q′

A2,S
−1
1
,

and T ij , i, j = 1, 2, are arbitrary matrices.

Because of arbitrary matrices T ij , i, j = 1, 2, the maximum likelihood estimators for
the parameter matricesB1 andB2 are not unique. However, the estimated mean

Ê[Y ] = A1B̂1C1 +A2B̂1C2

is always unique. The maximum likelihood estimators for the parameter matricesB1 and
B2 are unique if the following conditions

rank(C1) = k1, rank(A1) = q1, C(C1) ∩ C(C2) = {0},

and

rank(C2) = k2, rank(A2) = q2, C(C1) ∩ C(C2) = {0},

hold, respectively. In such a case, the maximum likelihood estimators for the parameter
matricesB1 andB2 and Σ are given by

B̂2 = (A′2S
−1
1 A2)

−1A′2S
−1
1 Y QC′1C

′
2(C2QC′1C

′
2)
−1,

B̂1 = (A′1S
−1
2 A1)

−1A′1S
−1
2 (Y −A2B̂2C2)C

′
1(C1C

′
1)
−1,

nΣ̂ = (Y −A1B̂1C1 −A2B̂2C2)(Y −A1B̂1C1 −A2B̂2C2)
′,

where S1 and S2 are defined in Theorem (2.3) (see Filipiak and von Rosen (2012) for
more details).





3
Methods in Small Area Estimation

METHODS used in Small Area Estimation are mainly divided into "design-based" and
"model-based" methods. For the first category, the inference is fully based on the

used sampling design and for the latter methods, also called "model-dependent", the infer-
ence is involved with statistical methods based on the frequentist or Bayesian approaches
or the combination of the two (Pfeffermann 2002; Rahman 2008). Both methods use aux-
iliary information to "borrow strength" from related neighboring areas, from censuses,
surveys or registers. Throughout this chapter, we suppose that the sampling design for the
population as a whole does not correspond well to the divisions in the population. There-
fore, the samples sizes for subpopulations may become small which leads to the small
area estimation problem.

3.1 Design-based methods

Design-based estimation or randomization approach in SAE is based on traditional prob-
ability sampling theory. One can refer to Fuller (2009) for probability sampling theory in
statistics. Under this estimation approach, the randomness is only induced by the sam-
pling design used to select the sample with population measurements regarded as fixed
(e.g., Lehtonen and Veijanen 2009; Pfeffermann 2002). These methods make use of sur-
vey weights and associated statistical inferences are based on the sample selection prob-
abilities. Two types of estimators are derived according to the related data sources used;
either direct estimators when only domain-specific data are used or indirect estimators
if the estimation procedure "borrows strength" from related areas. A common feature
of design-based estimators is that there is no explicit model assumptions used for their
derivation, and the variance and bias are calculated under the randomization distribution.

15
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3.1.1 Direct estimators

The direct estimators of small area means under a design-based approach is often based
on estimation of population means in classical probability theory by using for example
Horvitz-Thompson form of direct estimator (see Cochran 1977; Särndal et al. 1992).

Let U be a finite population of size N consisting on m disjoint subpopulations or
small areas Ui each with population size Ni, (i = 1, . . . ,m) such that U =

⋃m
i=1 Ui and

N =
∑m
i=1Ni.

We assume that a sample s of size n is selected by SRSWOR so that we have equal
selection probabilities πj = n

N and sampling weights wj = 1
πj

= N
n ; j ∈ s.

Let Y denote the characteristic of interest, yij the outcome value of the jth population
unit coming from the small area i (with i = 1, . . . ,m; j = 1, . . . , Ni) and si be the
corresponding sample of size ni taken from the small area i such that s = s1 ∪ · · · ∪ sm;
n =

∑m
i=1 ni and wij = Ni

ni
.

Then, if there is no auxiliary information available, the true area mean Y i = 1
Ni

∑Ni

j=1 yij
can be estimated using Horvitz-Thompson form:

Ŷ i =
1

Ni

ni∑
j=1

wijyij =
1

ni

ni∑
j=1

yij = yi.

Its variance is given by

Var[Ŷ i] = (1− fi)
S2
i

ni
,

with fi = ni

Ni
, where (1− fi) is the finite population correction factor and

S2
i =

1

Ni − 1

Ni∑
j=1

(yij − yi)2, Ni ≥ 2.

It follows that for small ni, the variance will be larger unless the variability of the y-
values is sufficiently small. In order to reduce the variance, we suppose in addition that
we have r auxiliary variables known for every sample units. Denote by xij , the r-vector
of covariables for the jth unit in area i and xi = 1

ni

∑ni

j=1 xij the corresponding sample

mean. We assume that the population meanXi =
1
Ni

∑Ni

j=1 xij are also known. Then, a
more efficient design-based estimator is the regression estimator given by

Y
reg

i = yi + (Xi − xi)′βi,

which variance equals

Var[Y
reg

i ] = (1− ρ2i )(1− fi)
S2
i

ni
= (1− ρ2i )Var[Ŷ i],

where βi and ρi are respectively the vector of regression coefficients and the multiple
correlation between the survey variable Y and auxiliary variables xij in area i.
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We note that the use of auxiliary information reduces the variance by the factor
(1 − ρ2i ), the reason why it increases the prediction power in SAE. However, in prac-
tice the regression coefficient βi is replaced by its ordinary least squares estimator from
the sample si which may not be effective because of a small sample size.

3.1.2 Indirect estimators

By assuming that all small areas are similar with respect to the quantity to be estimated,
an estimator obtained from a large domain covering several small areas can be used to
derive an indirect estimator for separate areas comprising that domain (Gonzalez, 1973).
It is equivalent to put an assumption on βi and on intercepts (Y i −X

′
iβi) to be similar

across the small areas. An effective synthetic regression estimator is obtained by

Y
reg

syn,i = yi + (Xi − xi)′β̂,

where β̂ is the sample estimator computed using data from all samples si. The synthetic
estimator is more efficient if the assumption of homogeneity within the larger domain
holds, however even though it reduces the variance, it can lead to severe biases if there is
a strong individual effect on the regression coefficient.

The bias reduction is then improved by the use of a composite estimator which is
a weighted sum of the area direct estimator. Let θi be the small area characteristic of
interest, the composite estimator has the general form

θ̂com,i = φiθ̂i + (1− φi)θ̂syn,i,

where θ̂i is the direct estimator, θ̂syn,i is the synthetic estimator and φi = fi − ni/Ni is a
suitable weight chosen to minimize MSE.

A composite estimator has small or no bias but large variance. The more weight is
given to the direct unbiased estimator as the sampling fraction fi increases. However,
the sampling fractions are usually very small and thus the use of this weight in practice
implies the use of the synthetic estimator.

3.2 Model-based methods

In recent years, model-based approaches in SAE have received much attention due to their
usefulness for estimating small area characteristics. For example model-based methods
are now being extensively used to find indirect estimates for small area means. As stated
previously, even though the design-based estimators are simple to implement and can
provide efficient estimators not dependent on an assumed model, they can lead to severe
biases if the assumption of homogeneity within larger domains is violated. Furthermore,
they are relying on assumption of similarity of all areas with respect to the variable of
interest and do not account for area specific variability. The model-based methods are
based on the use of explicitly linking of a model for incorporating random area effects to
overcome these underlying problems. However, model-based methods can lead to severe
bias if the assumed model is not correct.
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3.2.1 Prediction in finite populations

Model-based sampling theory applied to finite population treats the problem of estimating
finite population characteristics of interest as a prediction problem. For example, the
estimation of a finite population mean from the sample returns to the prediction of a
mean of non-sampled values. Model-based methods use the superpopulation approach
which considers the finite population as a random sample from a larger population (e.g.
see, Bolfarine and Zacks, 1992). The observed population vector y = (y1, . . . , yN )′ is
considered as a realization of a random variable characterized by a model, say ϕ. Under
the superpopulation approach, the finite quantities θ to be estimated are random and then
we do not estimate them, but predict them.

By denoting s and r the sampled and remainder of the finite population U so that
U = s ∪ r and y = (y′s,y

′
r)
′, we can express the quantities of interest θ = l′y by

θ = θs + θr,

or equivalently

θ = l′sys + l
′
ryr,

where l = (l′s, l
′
r)
′. Therefore, the predictor θ̂ of θ is given by

θ̂ = θs + θ̂r,

where θ̂r is the predictor of θr.
The predictor θ̂ is ϕ-unbiased if

Eϕ[θ̂ − θ] = 0, for the given model ϕ,

where Eϕ[ · ] denotes the expectation with respect to the superpopulation model. The
MSE of θ̂ is given by

Eϕ[θ̂ − θ]2 = Varϕ[θ̂ − θ] +
(
Eϕ[θ̂ − θ]

)2
,

and if θ̂ is unbiased with respect to ϕ, then

Varϕ[θ̂ − θ] = Eϕ[θ̂ − θ]2,

where Varϕ[ · ] stands for the variance with respect to the superpopulation model.
Model-based methods in SAE largely use linear mixed models involving suitable aux-

iliary variables in the fixed part of the model and random area-specific effects. These area-
specific effects account for between-variations in data that are not explained by auxiliary
variables. Commonly used models in SAE are area-level model and unit-level models
(Rao, 2003). In the following two subsections, we present a general estimation and pre-
diction overview about area-level and unit-level models and keep the same population
settings as defined in Section 1 of this chapter. In the last subsection we present a version
of a mixed linear model for panel data with specific population settings.
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3.2.2 Area level model

The area level model is a widely used small area model originally presented by Fay III
and Herriot (1979) for prediction of mean per capital income in small geographical areas
within counties. It is used when the values xi for auxiliary variables are only available at
the area level. This model consists of two models, one is the sampling model comprising
the direct estimates and the sampling error, the other one is the linking model relating the
population value to some auxiliary variables with unknown random area effects. Suppose
that we are interested in prediction of unknown small area means Y i. Denote by θ̃i the
direct estimate of θi with θi = f(Y i) some function of small area means. The sampling
model and linking model are respectively defined as

θ̃i = θi + ei, (3.1)
θi = x

′
iβ + ui,

where ei are sampling errors assumed to be independent with E(ei|θi) = 0 and known
Var(ei|θi) = σ2

i . The ui’s are uncorrelated area-specific random effects assumed to be
independent with E(ui) = 0 and Var(ui) = σ2

u. Further, ui and ei are assumed to be
independent. Combining the two models of (3.1) leads to the area level linear mixed
model

θ̃i = x
′
iβ + ui + ei.

From the prediction of random effects in linear mixed model under normality discussed
in Chapter 2, the BLUP of ui is given by

ûi =E[ui|θ̃i] = E[ui] + Cov[θ̃i, ui](Cov[θ̃i])−1(θ̃i − E[θ̃i])

=
σ2
u

σ2
i + σ2

u

(θ̃i − x′iβ̂).

Put γi =
σ2
u

σ2
i+σ

2
u

, for known σ2
i and σ2

u, the BLUP is then given by

θ̂i = x
′
iβ̂ + ûi = x

′
iβ̂ + γi(θ̃i − x′iβ̂) = γiθ̃i + (1− γi)x′iβ̂,

where β̂ is the GLS estimator of β. In practice the variances σ2
i and σ2

u are unknown and
are replaced by their sample estimates which yields the corresponding EBLUP.

3.2.3 Unit level model

Unit level Model also called "Nested error unit regression model" is used when the values
xij of auxiliary variables are known for every unit j in the sample from small area i and
the true area meansXi =

1
Ni

∑Ni

j=1 xij are also known. It was proposed by Battese et al.
(1988). The model is defined as

yij = x
′
ijβ + ui + εij , (3.2)

where yij denotes the value of variable of interest Y ; the random effect ui are the effect
of area characteristic that are not accounted for by the auxiliary variables and εij the
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individual random error. The two error terms ui and εij are assumed to be mutually
independent with zero means and variances σ2

u and σ2
e . Normality of ui and εij is often

assumed to hold. Under this model, the true small area means for the variable of interest
y are given by

Y i =X
′
iβ + ui + εij = µi + εij ∼= µi,

where µi =X
′
iβ + ui and εij = 1

Ni

∑Ni

j=1 εij
∼= 0 for sufficiently large Ni.

For known σ2
i and σ2

u, the BLUP for the small area means Y i is expressed as

µ̂i =X
′
iβ̂ + ûi

=X ′iβ̂ + γi(yi − x′iβ̂)

=(1− γi)X ′iβ̂ + γi

[
yi + (Xi − xi)′β̂

]
,

where β̂ is the GLS estimator of β, γi =
σ2
u

σ2
u+σ

2
e/ni

and the BLUP of ui is similarly
obtained following the prediction of random effects discussed in Chapter 2 (Henderson,
1975).

3.2.4 Unit level linear mixed model for panel data

Some studies about longitudinal surveys in small area estimation have been carried out.
For example, Ferrante and Pacei (2004) considered rotating samples and derived two-
stage longitudinal composite and one-stage longitudinal composite estimators. Fabrizi
et al. (2007) present EBLUPs for unit level models using panel survey data for both
design-based and model-based SAE methods. Singh and Sisodia (2011) have developed
the design-based estimates of population mean for small areas in longitudinal surveys. In
a PhD thesis, Nissinen (2009) gives an overview of small area estimation from unit-level
survey data collected with a panel or a rotating panel design and presents the model based-
estimators of small area total and its MSE. In The EURAREA Consortium (2004) project,
section C4, various models that borrow strength across time and space are discussed.

We consider the population U of size N divided into m non-overlapping small ar-
eas. Let Y be the survey characteristic of interest and assume that the observations
on Y are recorded for selected units n over different time points t = 1, . . . , p so that∑m
i=1

∑p
t=1Nit = N , where Nit stands for size of the population Uit of the ith area at

time t. We define the longitudinal population of each area i as

Ui = Ui1 ∪ Ui2 ∪ · · · ∪ Uip

of size

Ni =

p∑
t=1

Nit

and define the cross-sectional population at each time t

Ut = U1t ∪ U2t ∪ · · · ∪ Umt
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of size

Nt =

m∑
i=1

Nit.

The overall size of population is then given by

m∑
i=1

Ni +

p∑
t=1

Nt = N.

We also assume that the sampled units change at each time occasion and denote by
sit and rit, respectively the sample and remainder of the finite population Uit of the area
i at time t so that Uit = sit + rit.

If we suppose that there is no unit effect and the correlation between observations
from the same small area is kept constant across different time points, the linear mixed
model for a random observation yijt for unit j in small area i at time t can be defined as

yijt = x
′
ijtβ + ui + vt + eijt, i = 1, . . . ,m; t = 1, . . . , p; j = 1, . . . , Nit, (3.3)

where ui and vt are area effects and time effects assumed to be mutually independent and
to follow normal distributions with mean zero and variances σ2

u and σ2
v . Furthermore, the

row vector x′ijt represents the r-covariates (or auxiliary variables), the vector β stands for
the regression coefficients of x variables and eijt is the error term assumed to be mutually
independent of ui and vt and follows the normal distribution with mean zero and variance
σ2
e .

Put

u =[u1, · · · , um, v1, · · · , vp]′,
Z =(Z1,Z2),

where

Z1 =diag(1N1 , · · · ,1Nm),

Z2 =

Z21

...
Z2m

 ,

for Z2i = diag(1Ni1 , · · · ,1Nip) and 1Nit a vector of ones of dimension Nit. The model
(3.3) becomes

y =Xβ +Zu+ e, (3.4)

where

Cov(y) = Σ =
σ2
u

σ2
e

Z1Z
′
1 +

σ2
v

σ2
e

Z2Z
′
2 + IN .
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We decompose the model (3.4) into a sample and a remainder parts

y =

[
ys
yr

]
, X =

[
Xs

Xr

]
, Σ =

[
Σss Σsr

Σrs Σrr

]
,

where the subscripts s and r corresponding to the sample and non-sample population
units. The corresponding model for the sample values is given by

ys =Xsβ +Zsu+ es with Σss =
σ2
u

σ2
e

Zs1Z
′
s1 +

σ2
v

σ2
e

Zs2Z
′
s2 + In,

where n denotes the overall number of sampled units across all time points and all areas,
Zs1 andZs2 are corresponding sample versions ofZ1 andZ2 respectively. More details
about model formulation and estimation can be found for example in The EURAREA
Consortium (2004).

For known covariance matrix Σ, the MLE for β corresponds to its GLS estimator

β̂ =
(
X ′sΣ

−1
ss Xs

)−1
X ′sΣ

−1
s ys,

as mentioned in Section 2.1.1 and referring to the Section 2.1.2, the BLUP of u is given
by

û = GZ ′sΣ
−1
ss

(
ys −Xsβ̂

)
,

where

G =

σ2
u

σ2
e
Im 0

0
σ2
v

σ2
e
Ip

 .

In this situation, the variance components σ2
u and σ2

v for random effects are assumed
to be known. However, in practice, they are unknown and have to be estimated from the
sample data. They can be estimated using the method of moments, maximum likelihood,
restricted maximum likelihood or Henderson’s method, among others. More details can
be found for example in The EURAREA Consortium (2004), Nissinen (2009), Searle
et al. (2009) and González-Manteiga et al. (2008).

Following the theory of prediction presented in Chapter 2, the BLUP δ̂ of the linear
target parameter

δ = l′sys + l
′
ryr,

is obtained by minimizing the MSE under the assumption that δ̂ is model unbiased and is
given as

δ̂ = l′sys + l
′
rŷr,

where

ŷr =Xrβ̂ + ΣrsΣ
−1
ss

(
ys −Xsβ̂

)
.
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For small area mean at time t, δ = Y it, the BLUP will have the form

Ỹ it =
1

Nit

( ∑
j∈sit

yijt +
∑
j∈rit

ỹijt

)
,

for

ỹijt = x
′
ijtβ̂ + ûi + v̂t,

where ûi and v̂t the BLUPs of the area effect and time effect, respectively, are obtained
from

û = GZ ′sΣ
−1
ss

(
ys −Xsβ̂

)
.

Example 3.1
Suppose that surveys are repeated 3 times on the survey variable y from a finite popu-
lation having 4 disjoint regions. Suppose in addition that there are 2 auxiliary variables
associated to y which values are available for all units in the sample and the true regional
means for these variables are also known (see Table 3.1 for population and sample sizes).
Therefore,

Table 3.1: Population and Sample sizes

Area (region) Population sizes Sample sizes
i Nit nit

t = 1 t = 2 t = 3 Total (Ni) t = 1 t = 2 t = 3 Total (ni)
1 N11 N12 N13 N1 · n11 n12 n13 n1 ·
2 N21 N22 N23 N2 · n21 n22 n23 n2 ·
3 N31 N32 N33 N3 · n31 n32 n33 n3 ·
4 N41 N42 N43 N4 · n41 n42 n43 n4 ·

Total (Nt) N · 1 N · 2 N · 3 N n · 1 n · 2 n · 3 n

The linear mixed model for a random observation yijt of unit j coming from area i at
time t is assumed:

yijt = β0 + x
′
ijtβt + ui + vt + eijt, i = 1, . . . , 4 j = 1, . . . , N t = 1, 2, 3,

where β0 is the intercept and x′ijt = [x′1ijt,x
′
2ijt]. The response vector for all time points

is given by

yij =

yij1yij2
yij3

 ,

with model equation

yij =Xijβ + 1ui + v + eij ,
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where

Xij =

x′ij1x′ij2
x′ij3

 , v =

v1v2
v3

 , eij =

eij1eij2
eij3

 .

Collecting vectors yij for all units yields

yi =

 yi1
...

yiNi

 ,

with model equation

yi =Xiβ + ziui +Z2iv + ei,

where

Xi =

Xi1

...
XiNi

 , zi = 1Ni
, Z2i =


1Ni1

1Ni2
0

0
1Ni3

 , ei =

 ei1
...

eiNi

 .

Combining all areas, we obtain

y =

y1
...
y4

 ,

with corresponding model equation

y =Xβ +Zu+ e,

where

X =

X1

...
X4

 , u =



u1
u2
u3
u4
v1
v2
v3


, Z = [Z1,Z2], e =

e1...
e4



for

Z1 = diag(z1, · · · , z4) =


1N1 0 0 0
0 1N2 0 0
0 0 1N3

0
0 0 0 1N4

 , Z2 =

Z21

...
Z24

 .



4
Small Area Estimation and a

multivariate linear regression model

AS stated previously, the main part of this work is devoted to the SAE for repeated
surveys with consideration of different groups within the population. It has been

shown that the multivariate approach for model-based methods in small area estimation
may achieve substantial improvement over the usual univariate approach (Datta et al.,
1999). Some studies dealing with SAE problems for longitudinal surveys have been dis-
cussed by various authors, for example The EURAREA Consortium (2004); Nissinen
(2009); Singh and Sisodia (2011). The latter has developed direct, synthetic and compos-
ite estimators for small area means at a given time point when the population units contain
non-overlapping groups.

In the same framework, in order to gain considerable efficiency of estimators, we
propose a model which borrows strength across both small areas and over time by in-
corporating simultaneously the effects of areas and time correlation. This model allows
for finding the small area means at each time point, per group units and particularly the
pattern of changes or mean growth profiles over time. This model accounts for repeated
surveys, group of individuals and random effects variations. The model investigated in
this chapter is connected with the realistic motivating example about regional estimation
of malnutrition presented in the Introduction.

4.1 Model formulation

We consider repeated measurements on the variable of interest y taken at p time points,
t1, . . . , tp from a finite population U of size N and partitioned into m disjoint subpopula-
tions U1, . . . , Um called small areas of sizes Ni, i = 1, . . . ,m such that

∑m
i=1Ni = N .

We also assume that in every area, there are k different groups of units of size Ng for
group g such that

∑k
g=1Ng = Ni and

∑m
i

∑k
g=1Nig = N . Suppose that a sample

s = s1, . . . , sm is selected from the population using SRSWOR where si is the sample
observed for area i of size ni. The sample remains the same over time.

25
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Let yij be the p-vector of measurements on the j-th unit, in the i-th area. That is

yij = (yij1, . . . , yijp)
′, j = 1, . . . , Ni, i = 1, . . . ,m. (4.1)

We assume the mean growth of the jth unit in area i in each group to be the polynomial
in time of degree q − 1. Furthermore, we suppose that we have auxiliary data xij of
r concomitant variables (covariates) whose values are known for all units in all m small
areas. These auxiliary variables are included in the model to strengthen the limited sample
size data from areas. The values xij can be the values of the survey from the same area in
the past and/or the values of the other variables that are related to the variable of interest.
Moreover, it can be also register based information or the data measured for characteristics
of interest in other similar areas.

The relationship between yij and xij in each small area is not always considered as
the same as the relationship between the variables in the population as whole (Chambers
and Clark, 2012). So, we have to add an area specific term to allow them to better account
for the between area variability in the distribution of yij . That is, consequently to assume
that we have uit random area-effects which vary over time. Thus, for each one of the k
groups, the unit level regression model for j-th unit coming from the small area i at time
t can be expressed by

yijt = β0 + β1t+ · · ·+ βqt
q−1 + γ′xij + uit + eijt, (4.2)

j = 1, . . . , Ni; i = 1, . . . ,m; t = 1, . . . , p,

where eijt are random sampling errors depending on the sampling scheme assumed to be
i.i.d normal with mean zero and known sampling variance σ2

e independent of uit’s. γ is
a vector of fixed regression coefficients of auxiliary variables. β0, . . . , βq are unknown
parameters assumed to be the same in all areas under the assumption that there is no area
effect on polynomial growth in time.

For all time points, the model can be written in matrix form as

yij = Aβ + 1pγ
′xij + ui + eij , (4.3)

where

A =


1 t1 t21 · · · tq−11

1 t2 t22 · · · tq−12
...

...
... · · ·

...
1 tp t2p · · · tq−1p

 , 1p = (1, 1, . . . , 1)′ : p× 1.

The vector ui is assumed to be distributed multivariate normally with zero mean and
unknown covariance matrix Σu. Collecting the vectors yij for all units in small area i
coming from the group g gives

Y ig = ABg + 1pγ
′Xig + uizig +Eig, g = 1, . . . , k, (4.4)

where Y ig = (yi1, · · · ,yiNig
); Bg = (βg, · · · ,βg)Nig ; Xig = (xi1, · · · ,xiNig );

zig =
1√
Nig

1′Nig
and Eig = (ei1, · · · , eiNig ).
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The model presented in (4.4) holds for each group unit in area i. Since we are inter-
ested in every group unit, we need to include a known design matrixCi : k×Ni of group
separation indicators when collecting all k groups in the i-th area, which are supposed to
be the same in all areas.

The model at small area level for k groups is then written as

Y i = ABCi + 1pγ
′Xi + uizi +Ei, (4.5)

where Y i = (Y i1, · · · ,Y ik); B = (β1, · · · ,βk) : q × k; Xi = (Xi1, · · · ,Xik);
zi = (zi1, · · · , zik), Eig = (ei1, · · · , eik),

Ci =

1′Ni1
0

. . .
0 1′Nik

 ,

where Ei ∼ Np,Ni(0,Σe, INi) with Σe = σ2
eIp. Y i is a p × Ni data matrix; A is a

p × q, q ≤ p known matrix called within individuals design matrix for fixed effects; B
is q × k unknown parameter matrix; Ci, rank(Ci) + p ≤ Ni is a k × Ni known matrix
called between individuals design matrix for fixed effects andXi is a r×Ni known matrix
taking the values of covariables.

Combining all small areas for N =
∑m
i=1Ni units, we get the model

Y︸︷︷︸
p×N

= A︸︷︷︸
p×q

B︸︷︷︸
q×k

H︸︷︷︸
k×mk

C︸︷︷︸
mk×N

+1pγ
′︸︷︷︸

p×r

X︸︷︷︸
r×N

+ U︸︷︷︸
p×m

Z︸︷︷︸
m×N

+ E︸︷︷︸
p×N

, (4.6)

where

Y = [Y 1, · · · ,Y m], H =
(
Ik : · · · : Ik

)
, C =

C1 0
. . .

0 Cm

 ,

X = [X1, · · · ,Xm], U = [u1, · · · ,um], Z =

z1 0
. . .

0 zm

 ,

and

E = [E1, · · · ,Em].

It is assumed that

E ∼ Np,N (0,Σe, IN ), U ∼ Np,m(0,Σu, Im), p ≤ m.

Furthermore,

vec(Y ) ∼ NpN
(

vec(ABHC + 1pγ
′X),Σ

)
,
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for

Σ =Z ′Z ⊗Σu + IN ⊗Σe,

Σu =


σ2
u1 σu12 · · · σu1p

σu12 σ2
u2 · · ·

... · · ·
. . .

...
σu1p · · · · · · σ2

up

 : (p× p),

where the covariance between random effectsui’s at two distinct times t, s is Cov(ut,us) =
σuts = ρt,sσutσus with ρt,s standing for the correlation.

4.2 Estimation of the mean and covariance
parameters

The model defined in (4.6) is a sum of two matrix normal distributions which is normally
distributed but not in general matrix normally distributed. Therefore, in order to use
the maximum likelihood estimation approach, we make some transformations to achieve
matrix normal distribution.

First of all, we observe that the matrices Z,H,C are of full row rank and the matrix
A is of full column rank. Moreover,

C(Z ′) ⊆ C(C ′) and ZZ ′ = Im.

Both relations imply that (CC ′)−1/2CZ ′ZC ′(CC ′)−1/2 is an idempotent matrix and
thus can be diagonalized by an orthogonal matrix, say Γ with corresponding eigenvalues
1 and 0, i.e.

(CC ′)−1/2CZ ′ZC ′(CC ′)−1/2 = ΓDΓ′ = Γ

(
Im 0
0 0

)
Γ′.

Since each column of Γ is an eigenvector associated to the corresponding eigenvalue in
D, we can partition Γ =

[
Γ1 : Γ2

]
such that Γ1 corresponds to the block Im and Γ2

corresponds to the block 0, with Γ1 : mk ×m and Γ2 : mk × (mk −m). It follows that
Γ′1Γ1 = Im and Γ′2Γ2 = Imk−m.

ChooseC ′o to be a matrix which columns are unit length eigenvectors corresponding
to non zero eigenvalues of I − C ′(CC ′)−C. Then (C ′

o
)
′
C ′

o
= IN−mk and we can

make a one to one transformation on (4.6) to get [V : W ] = Y [C ′(CC ′)−1/2 : C ′
o
],

where

V =Y C ′(CC ′)−1/2 = ABH(CC ′)1/2 + 1pγ
′XC ′(CC ′)−1/2

+ (UZ +E)C ′(CC ′)−1/2, (4.7)

W =Y C ′
o
= 1pγ

′XC ′
o
+EC ′

o
, (4.8)
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since CC ′o = 0 and C(Z ′) ⊆ C(C ′) implies that ZC ′o = 0. Make a further transfor-
mation on (4.7) so that [V 1 : V 2] = Y C

′(CC ′)−1/2[Γ1 : Γ2], where

V 1 =Y C ′(CC ′)−1/2Γ1 = ABH(CC ′)1/2Γ1 + 1pγ
′XC ′(CC ′)−1/2Γ1

+ (UZ +E)C ′(CC ′)−1/2Γ1, (4.9)

V 2 =Y C ′(CC ′)−1/2Γ2 = ABH(CC ′)1/2Γ2 + 1pγ
′XC ′(CC ′)−1/2Γ2

+EC ′(CC ′)−1/2Γ2. (4.10)

Theorem 4.1
Let V 1,V 2 and W be as defined in (4.9), (4.10) and (4.8) respectively. Then, these
component models are independent and

V 1 ∼ Np,m
(
M1,Σu + Σe, Im

)
,

V 2 ∼ Np,mk−m
(
M2,Σe, Imk−m

)
,

W ∼ Np,N−mk
(
M3,Σe, IN−mk

)
,

where

M1 =ABH(CC ′)1/2Γ1 + 1pγ
′XC ′(CC ′)−1/2Γ1,

M2 =ABH(CC ′)1/2Γ2 + 1pγ
′XC ′(CC ′)−1/2Γ2,

M3 =1pγ
′XC ′

o
.

Proof: The independence of V 1,V 2 andW follows by the fact that the matrices Γ1,Γ2

and C ′o are all of full rank and pairwise orthogonal. We observe that

Γ′Γ = Imk,

and

Γ′Γ1 =

[
Im
0

]
, Γ′Γ2 =

[
0

Imk−m

]
, Γ1

′Γ =
[
Im 0

]
, Γ2

′Γ =
[
0 Imk−m

]
.

From

E ∼ Np,N (0,Σe, IN ), U ∼ Np,m(0,Σu, Im),

it follows that

UZC ′(CC ′)−1/2Γ1 ∼ Np,m
(
0,Σu,Γ

′
1(CC

′)−1/2CZ ′ZC ′(CC ′)−1/2Γ1

)
,

EC ′(CC ′)−1/2Γ1 ∼ Np,m
(
0,Σe,Γ

′
1(CC

′)−1/2CC ′(CC ′)−1/2Γ1

)
,

EC ′(CC ′)−1/2Γ2 ∼ Np,mk−m
(
0,Σe,Γ

′
2(CC

′)−1/2CC ′(CC ′)−1/2Γ2

)
,

EC ′
o ∼ Np,N−mk

(
0,Σe, (C

′o)′C ′
o
)
.
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Hence,

(UZ +E)C ′(CC ′)−1/2Γ1 ∼ Np,m
(
0,Σu + Σe, Im

)
,

EC ′(CC ′)−1/2Γ2 ∼ Np,mk−m
(
0,Σe, Imk−m

)
,

EC ′
o ∼ Np,N−mk

(
0,Σe, IN−mk

)
,

since

Γ′1(CC
′)−1/2CZ ′ZC ′(CC ′)−1/2Γ1 = Γ′1ΓDΓ′Γ1 = Im,

Γ′1(CC
′)−1/2CC ′(CC ′)−1/2Γ1 = Im,

Γ′2(CC
′)−1/2CC ′(CC ′)−1/2Γ2 = Imk−m,

(C ′
o
)′C ′

o
= IN−mk.

Now consider the two components W and V 2 and recall that the covariance matrix
Σe = σ2

eIp is known. Put

K1 =H(CC ′)1/2Γ1, K2 =H(CC ′)1/2Γ2,

R1 = C ′(CC ′)−1/2Γ1, R2 = C ′(CC ′)−1/2Γ2.

Then,

W =Y C ′
o
= 1pγ

′XC ′
o
+EC ′

o
,

V 2 =Y R2 = ABK2 + 1pγ
′XR2 +ER2.

The corresponding loglikelihood of the joint density function is given by

l(γ,B) = lW (γ) + lV 2
(γ,B),

where lW (γ) and lV 2
(γ,B) denote the loglikelihood functions for W and V 2 respec-

tively. Therefore,

l(γ,B) =− p(N −mk)
2

log (2π)− (N −mk)
2

log |Σe| −
p(mk −m)

2
log (2π)

− mk −m
2

log |Σe| −
1

2
tr
{

Σ−1e

(
W − 1pγ

′XC ′
o
)(
W − 1pγ

′XC ′
o
)′}

− 1

2
tr
{

Σ−1e

(
V 2 −ABK2 − 1pγ

′XR2

)(
V 2 −ABK2 − 1pγ

′XR2

)′}
=co −

(N −m)

2
log |Σe| −

1

2
tr
{

Σ−1e

(
W − 1pγ

′XC ′
o
)(
W − 1pγ

′XC ′
o
)′

+ Σ−1e

(
V 2 −ABK2 − 1pγ

′XR2

)(
V 2 −ABK2 − 1pγ

′XR2

)′}
,

where co is a constant not depending on the parameters.
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The first and second derivatives with respect to γ andB are

dl(γ,B)

dγ
=σ−2e

[(
XC ′

o
(C ′

o
)
′
+XR2R

′
2

)
Y ′1p − p

(
XC ′

o
(C ′

o
)
′
X ′ +XR2R

′
2X
′
)
γ

−XR2K
′
2B
′A′1p

]
,

d2l(γ,B)

dγ2
=− p

(
XC ′

o
(C ′

o
)
′
X ′ +XR2R

′
2X
′
)
,

dl(γ,B)

dB
=σ−2e A′

(
Y R2 −ABK2 − 1pγ

′XR2

)
K ′2,

d2l(γ,B)

dB2 =− σ−2e (K2K
′
2)⊗A

′A.

Therefore, the likelihood equations can be expressed as(
XC ′

o
(C ′

o
)
′
+XR2R

′
2

)
Y ′1p − p

(
XC ′

o
(C ′

o
)
′
X ′+XR2R

′
2X
′
)
γ

−XR2K
′
2B
′A′1p =0, (4.11)

A′
(
Y R2 −ABK2 − 1pγ

′XR2

)
K ′2 =0. (4.12)

Lemma 4.1
The likelihood equation given by (4.12) admits a non unique solution for the parameter
matrixB.

Proof: The likelihood equation (4.12) is equivalent to

A′ABK2K
′
2 = A′Y R2K

′
2 −A

′1pγ
′XR2K

′
2.

This equation admits a non unique solution if and only if one or both matrices A and
K2 are not of full rank. Since A is a full rank matrix, we need to show that the matrix
K2 =H(CC ′)1/2Γ2 is not of full rank.

It follows from the construction of Γ2 that

C(Γ2) = C
(
(CC ′)1/2(CZ ′)o

)
.

But for any matrices of proper sizes, if C(F ) = C(G), then C(EF ) = C(EG) (see for
example Harville (1998) for more details). Therefore,

C
(
H(CC ′)1/2Γ2

)
= C

(
HCC ′(CZ ′)o

)
.

Moreover, if two matrices have the same column space then they have the same rank.
Using this result and the following rank formula which can be found for example in Kollo
and von Rosen (2005)

rank(F : G) = rank(F ′Go) + rank(G),

we get

rank(H(CC ′)1/2Γ2) =rank(HCC ′(CZ ′)o) = rank(CC ′H ′ : CZ ′)− rank(CZ ′).
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Since C(Z ′) ⊆ C(C ′), then Z ′ = C ′Q for

Q =


1√
N1

1k 0

. . .
0 1√

Nm
1k

 .

It follows that

rank(H(CC ′)1/2Γ2) =rank(HCC ′(CZ ′)o)
=rank(CC ′H ′ : CC ′Q)− rank(CC ′Q)

=rank(H ′ : Q)− rank(Q)

=rank(H ′) + rank(Q)− dim(C(H ′) ∩ C(Q))− rank(Q)

=rank(H ′)− dim(C(H ′) ∩ C(Q)),

since the matrixCC ′ is of full rank and where dim denotes the dimension of a subspace.
It remains to show that C(H ′) and C(Q) are not disjoint.

Let v1 = 1k and v2 = (
√
N1, · · · ,

√
Nm)′ and recall thatH =

(
Ik : · · · : Ik

)
. Then

we have

H ′v1 = 1mk and Qv2 = 1mk.

Thus, the two spaces are not disjoint since they include a common vector. This completes
the proof of the lemma.

The second equation (4.12) gives

B =(A′A)−1A′Y R2K
′
2(K2K

′
2)
− − (A′A)−1A′1pγ

′XR2K
′
2(K2K

′
2)
−

+ T 1(K2K
′
2)
o′,

for an arbitrary matrix T 1. Plugging in the value ofB into equation (4.11) yields(
XC ′

o
(C ′

o
)
′
+XR2R

′
2

)
Y ′1p − p

(
XC ′

o
(C ′

o
)
′
X ′ +XR2R

′
2X
′
)
γ

−XR2K
′
2(K2K

′
2)
−K2R

′
2Y
′1p + pXR2K

′
2(K2K

′
2)
−K2R

′
2X
′γ = 0.

Then, the restricted maximum likelihood (RMLE) for γ andB are obtained by

γ̂ =
(
pXC ′

o
(C ′

o
)
′
X ′ + pXR2R

′
2X
′ − pXR2K

′
2(K2K

′
2)
−K2R

′
2X
′
)−

×
(
XC ′

o
(C ′

o
)
′
Y ′ +XR2R

′
2Y
′ −XR2K

′
2(K2K

′
2)
−K2R

′
2Y
′
)
1p

+
(
pXC ′

o
(C ′

o
)
′
X ′ + pXR2R

′
2X
′ − pXR2K

′
2(K2K

′
2)
−K2R

′
2X
′
)o
t2,

B̂ =(A′A)−1A′Y R2K
′
2(K2K

′
2)
− − (A′A)−1A′1pγ̂

′XR2K
′
2(K2K

′
2)
−

+ T 1(K2K
′
2)
o′,

for an arbitrary vector t2 and an arbitrary matrix T 1.
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Put

P =XC ′
o
(C ′

o
)
′
+XR2R

′
2 −XR2K

′
2(K2K

′
2)
−K2R

′
2. (4.13)

Then

γ̂ =
1

p
(PX ′)−PY ′1p + (PX ′)ot2,

B̂ =(A′A)−1A′Y R2K
′
2(K2K

′
2)
− − 1

p
(A′A)−1A′1p1

′
pY P

′(XP ′)
−
XR2K

′
2(K2K

′
2)
−

− (A′A)−1A′1pt
′
2(PX

′)o
′
XR2K

′
2(K2K

′
2)
− + T 1(K2K

′
2)
o′.

According to Lemma 4.1, the parameter matrix B is not unique. However, there is also
information aboutB in V 1 as given by (4.9) which we now try to utilize. Recall that

V 1 = Y R1 =ABK1 + 1pγ
′XR1 +ER1,

ER1 ∼ Np,m
(
0,Σu + Σe, Im

)
.

Inserting the values of γ andB in V 1 yields

Y R1 =A(A′A)−1A′Y R2K
′
2(K2K

′
2)
−K1

− 1

p
1p1

′
pY P

′(XP ′)
−
XR2K

′
2(K2K

′
2)
−K1

− 1pt
′
2(PX

′)o
′
XR2K

′
2(K2K

′
2)
−R1 +AT 1(K2K

′
2)
o′K1

+
1

p
1p1

′
pY P

′(XP ′)
−
XR1 + 1pt

′
2(PX

′)o
′
XR1 + (UZ +E)R1.

Set

V 3 =Y R1 −A(A′A)−1A′Y R2K
′
2(K2K

′
2)
−K1

+
1

p
1p1

′
pY P

′(XP ′)
−
XR2K

′
2(K2K

′
2)
−K1 −

1

p
1p1

′
pY P

′(XP ′)
−
XR1,

with model equation

V 3 =AT 1(K2K
′
2)
o′K1 + 1pt

′
2(PX

′)o
′
XR1

− 1pt
′
2(PX

′)o
′
XR2K

′
2(K2K

′
2)
−R1 + (UZ +E)R1,

or equivalently,

V 3 = AT 1C˜ 1 + 1pt
′
2C˜ 2 +E˜ ,

where

C˜ 1 = (K2K
′
2)
o′K1,

C˜ 2 = (PX ′)o
′
X(I −R2K

′
2(K2K

′
2)
−)R1,

E˜ = (UZ +E)R1,
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and

E˜ ∼ Np,m
(
0,Σu + Σe, Im

)
.

Hence, we have obtained an EGC model with nested subspace condition C(1p) ⊆ C(A).
Referring to the Theorem 2.3, the MLEs for the parameter matrices T 1, t2 and Σu are
given by

t̂2 = (1′pS
−1
1 1p)

−1(C˜ 2QC˜′1C˜ ′2)−C˜ 2QC˜′1V ′3S−1
1 1p + (C˜ 2QC˜′1)o′t′211p, (4.14)

T̂ 1 = (A′S−1
2 A)−1A′S−1

2 (V 3 − 1pt̂
′
2C˜ 2)C˜ ′1(C˜ 1C˜ ′1)− +A′T 11C˜ o

1, (4.15)

Σ̂u =
1

m
(V 3 −AT̂ 1C˜ 1 − 1pt̂

′
2C˜ 2)(V 3 −AT̂ 1C˜ 1 − 1pt̂

′
2C˜ 2)

′ − Σe, (4.16)

for an arbitrary vector t21 and an arbitrary matrix T 11, where

S1 = V 3Q(C˜ ′1:C˜ ′2)V ′3,
S2 = S1 +Q1p,S

−1
1
V 3PQC′1

C′2
V ′3Q

′
1p,S

−1
1

for

PA =A(A′A)−A′,

QA =I − PA,
PA,B =A(A′BA)−A′B,

QA,B =I − PA,B.

With the above calculations, we are now ready to give a theorem which summarize the
main results about estimation of the formulated model.

Theorem 4.2
Consider the model given by (4.6). Then, the RMLEs of γ, B and Σu can be expressed
as

γ̂ =
1

p
(PX ′)−PY ′1p + (PX ′)ot̂2,

B̂ = (A′A)−1A′Y R2K
′
2(K2K

′
2)
−

−1

p
(A′A)−1A′1p1

′
pY P

′(XP ′)
−
XR2K

′
2(K2K

′
2)
−

−(A′A)−1A′1pt̂
′
2(PX

′)o
′
XR2K

′
2(K2K

′
2)
− + T̂ 1(K2K

′
2)
o′,

Σ̂u =
1

m
(V 3 −AT̂ 1C˜ 1 − 1pt̂

′
2C˜ 2)(V 3 −AT̂ 1C˜ 1 − 1pt̂

′
2C˜ 2)

′ −Σe,

where T̂ 1 and t̂2 are given by (4.15) and (4.14), respectively.
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4.3 Prediction of random effects

The small area means in a given area i are defined as the conditional mean given the real-
ized area effects (Battese et al., 1988). Thus, estimates of random area effects are needed
in the estimation of small area means. As pointed out by Pinheiro and Bates (2000), al-
though technically the random effects are not model parameters, in some ways they do
behave like parameters and since they are unobservable we want to predict their values.
The idea is to predict unobservable random variable from some realized values. Robin-
son (1991) discusses the need of prediction of random effects and presents the theory of
BLUP. Searle et al. (2009) present the theory of prediction of random variables. As stated
by these authors, the minimum variance is used for estimation of a fixed parameter while
the minimum mean square is used for estimation of the realized value of a random vari-
able. In this section, we use the Henderson’s approach as presented in Chapter 2 which
consists of maximizing the joint density between the observable random variable and non
observable random variable.

Consider the model in (4.6) given by

Y =ABHC + 1pγ
′X +UZ +E,

and maximize the joint density f(Y ,U) with respect to U assuming the covariance ma-
trices Σu and Σe to be known. We get

f(Y ,U) =h(U)g(Y |U)

=λ exp
{
− 1

2
tr{U ′Σ−1u U}

}
exp

{
− 1

2
tr{Σ−1e (Y −ABHC − 1pγ

′X −UZ)

× (Y −ABHC − 1pγ
′X −UZ)′}

}
,

where λ is a constant.
Then, the estimating equation for U equals

Σ−1e (Y −ABHC − 1pγ
′X −UZ)Z ′ −Σ−1u U = 0,

which is equivalent to

ΣeΣ
−1
u U +UZZ ′ = (Y −ABHC − 1pγ

′X)Z ′, (4.17)

and since ZZ ′ = Im

(ΣeΣ
−1
u + Ip)U = (Y −ABHC − 1pγ

′X)Z ′.

Thus, we get the following theorem about the prediction of random effects

Theorem 4.3
Consider the model defined by (4.6). Then, the prediction of random effects is given by

Û =
(
ΣeΣ̂

−1
u + Ip

)−1
(Y −AB̂HC − 1pγ̂

′X)Z ′.

where γ̂, B̂ and Σ̂u are given in Theorm 4.2.
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4.4 Prediction of target small area means

We assume that the small area model holds for the sample data which means that no
sample selection bias and that the sampling design is not informative. The model in (4.6)
comprises two important parts of sampled and non sampled units. That is

Y︸︷︷︸
p×N

= (Y
(s)
1 , · · · ,Y (s)

m ,Y
(r)
1 , · · · ,Y (r)

m ),

where

Y
(s)
i︸︷︷︸

p×ni

= (yi1, · · · ,yini
),

represents the sampled ni observations from the i-th small area, and

Y
(r)
i︸︷︷︸

p×(Ni−ni)

= (yini+1
, · · · ,yiNi

),

which corresponds to the non sampled (Ni − ni) units from the i-th small area.
Then, split the sample si into sig, g = 1, . . . , k with corresponding sample sizes nig

for k groups. Therefore, the target vector in small area i which elements are area means
at each time point is given by

yi =fiY
(s)

i + (1− fi)Ŷ
(r)

i ,

where Y
(s)

i is the vector of small area means corresponding to sampled units, Ŷ
(r)

i is the
vector of predicted small area means corresponding to non-sampled units and 1−fi is the
finite population correction factor with fi = ni

Ni
the sampling fraction, that is the fraction

of the population that is sampled.
Therefore,

yi =
fi
ni
Y

(s)
i 1ni

+ (
1− fi
Ni − ni

)Ŷ
(r)

i 1(Ni−ni)

=
1

Ni

(
Y

(s)
i 1ni

+ Ŷ
(r)

i 1(Ni−ni)

)
,

where

Ŷ
(r)

i = AB̂Ci + 1pγ̂
′Xi + ûizi, (4.18)

for non sampled units. It is convenient to not that γ̂ , B̂ and ûi used in (4.18) are esti-
mators computed from Theorem 4.2 and Theorem 4.3 , respectively using observed data
where the predicted vectors ûi’s are the the columns of the predicted matrix Û . Then, the
target vector of small area means for each group g across all time points is given by

yig =
1

Nig

(
Y

(s)
ig 1nig

+ Ŷ
(r)

ig 1(Nig−nig)

)
, g = 1, . . . , k.
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Equivalently,

yig =
1

Nig

∑
j∈sig

yij + (1− nig
Nig

)Aβg +
1

Nig

∑
j /∈si

1pγ
′xij + (1− nig

Nig
)ui +

1

Nig

∑
j /∈sig

eij .

The first term of this expression on the right side is known and, by the strong law of
large numbers, if Nig is large, the last term is approximately equal to zero. Following
(Henderson, 1975) as discussed in section (3.2.1) of Chapter 3, the BLUP of

yig = (1− nig
Nig

)Aβg +
1

Nig

∑
j /∈sig

1pγ
′xij + (1− nig

Nig
)ui

is given by

ŷig = (1− nig
Nig

)Aβ̂g +
1

Nig

∑
j /∈sig

1pγ̂
′xij + (1− nig

Nig
)ûi. (4.19)

where β̂g are columns of the estimated parameter matrix B̂. Therefore,

yig =
1

Nig

∑
j∈sig

yij + (1− nig
Nig

)Aβ̂g +
1

Nig

∑
j /∈sig

1pγ̂
′xij + (1− nig

Nig
)ûi. (4.20)

Note that the population means of auxiliary variables x in area i at time t must be known
so that the non-sampled mean

∑
j /∈si x

′
ijt is then obtained by substracting the correspond-

ing sample means from the population mean.

4.5 Simulation study example

In this section, we present a simulation study where we consider four times repeated
surveys on a population of size N = 15000 having 8 small areas and draw a sample of
size n = 450 with the following small area sample sizes given in Table 4.1,

Table 4.1: Sample sizes

Area Group 1 Group 2 Group 3 Total
1 n11=12 n12=18 n13=16 n1=46
2 n21=21 n22=23 n23=12 n2=56
3 n31=10 n32=20 n33=15 n3=45
4 n41=16 n42=24 n43=17 n4=57
5 n51=24 n52=26 n53=21 n5=71
6 n61=20 n62=12 n63=28 n6=60
7 n71=27 n72=13 n73=14 n7=54
8 n81=20 n82=14 n83=27 n8=61

m=8 g1=150 g2=150 g3=150 n=450
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We assume that we have r = 3 covariables.

The design matrices are chosen as

A =


1 1
1 2
1 3
1 4

 , C =

C1 0
. . .

0 C8


for

Ci =

(
1′ni1
⊗
(
1
0

)
: 1′ni2

⊗
(
0
1

))
, i = 1, · · · , 8,

and the parameter matrices are

B =

(
8 9 10
11 12 13

)
, γ =

1
2
3

 .

The sampling variance is equal to σ2
e = 0.16 and the covariance for the random effects

is

Σu =


4.1 1.8 1.2 2.4
1.8 3.6 2.4 1.4
1.2 2.4 6.0 2.2
2.4 1.4 2.2 9.6


Then, the data are randomly generated from

vec(Y ) ∼ Npn(vec(ABHC + 1pγ
′X),Σ, In),

using MATLAB Version 8.3.0.532 (The MathWorks, Inc. USA), where the matrix of
covariatesX is randomly generated and then taken as fixed.

The simulations are repeated 500 times using the formulas presented in Theorem 4.2
and the following average estimates are obtained :

B̂ =

(
8.0226 9.0551 9.9728
11.0002 11.9997 13.0002

)
,

γ̂ =

0.9681
1.9743
3.0222

 ,

Σ̂u =


4.1683 1.8835 1.2804 2.5056
1.8835 3.6705 2.4316 1.4471
1.2804 2.4316 5.9460 2.1355
2.5056 1.4471 2.1355 9.3509

 .

From the above simulations, we see that these estimates are close to the true values
and thus, the proposed estimators support the theoretical results.



5
Concluding Remarks

THE overall conclusion and some suggestions for further research are presented below.

5.1 Conclusion

The main task in the present thesis has been the prediction of small area means for re-
peated measures data using the model-based approach under SAE techniques. We have
considered longitudinal surveys under SRSWOR repeated over time whose target popu-
lation is divided into non-overlapping groups available in all small areas.

In order to address the problem of SAE under these settings, we have proposed a mul-
tivariate linear regression model that borrows strength across both small areas and over
time. This model accounts for repeated measures data, group individuals and random
effect variations over time. The estimation of model parameters has been discussed with
a likelihood based approach. The model is split into three component models, some al-
gebraic transformations are performed to achieve the matrix normal distribution of each
component thereby follows the derivation of explicit restricted maximum likelihood esti-
mators. Prediction of small area means is presented at all time points, at each time point
and by group units. These theoretical results have also been illustrated in a simulation
study.

5.2 Further research

In future work we wish to study properties of all proposed estimators. In particular,
the uniqueness of the estimators, the moments and approximation of the distribution of
estimators for this SAE multivariate linear regression model.

The formulation of the multivariate linear regression model investigated in this work
was based on the assumption that the sampling units remain the same at different time

39
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occasions. However, in repeated surveys, it often happens to consider different sampling
units at each time occasion where some units come in and others are dropped out. This
study can be extended to such kind of panel data set.

Moreover, we have assumed the sampling scheme to be simple random sampling with-
out replacement with equal selection probabilities. The model can be adapted to other
more complex sampling schemes.

The assumption of independence of random effects is also questionable and therefore,
some studies in SAE find reasonable to assume the correlation of random effects of the
neighborhood areas in term of distance between them. This work can be extended to the
modeling of the spatial correlation among small area random effects as an additional input
consideration.
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