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Abstract

In this thesis, the theory of an eigenvalue of a matrix and differential operator
is described and classified. The goal of this work is to investigate how the
accurate the eigenvalues and eigenvectors, calculated using finite difference
method approximation, are. Numerical examples demonstrate how to achieve
this ambition.
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Chapter 1

Introduction

Eigenvalue problems for differential operators have attracted a lot of atten-
tion as they have many applications. In this work we are going to deal with
the eigenvalue problems for one dimensional equations with given boundary
conditions.
In linear algebra an eigenvalue λ and eigenvector x of a matrix A satisfy a
relation,

Ax = λx.

The eigenvalue problem has been studied extensively and good algorithms
for computing eigenvalues and eigenvectors exists; see [6, 23, 4]. Also given
a computed pair (x̂, λ̂) we can estimate the error by computing the residual
‖Ax̂− λ̂x̂‖2.

In physics we instead study eigenvalues and eigenfunctions of linear dif-
ferential operators

Lu = λu.

Often eigenvalues correspond to the energy in a system; and are thus of
physical importance. For instance a gas emits light because the electrons
wave functions jump between eigenstates. A single photon with energy cor-
responding to λ1 − λ2 is emitted [15].

In simple cases the eigenvalues of a differential operator L can be calcu-
lated analytically; but in most case numerical methods are needed. Often
a finite difference approximation of Lu = λu leads to a matrix eigenvalue
problem Ax = λx.

The goal of this work is to investigate how accurate the eigenvalues and
eigenvectors, calculated using finite difference approximation, are. In order
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to do so we will create an approximate eigenfunction û by, e.g., spline inter-
polation starting from the calculated eigenvector x̂. The residual ‖Lû− λ̂û‖2

should give an indication about the accuracy of the obtained approximate
eigenvalue λ̂.

The aims of this work are:

• Give a good summary of the theory of linear differential operators;
including known results about their spectra. Specifically self-adjoint
operators.

• Find a simple example where the calculations can be done analytically.

• Implement a finite difference approximation of the example above and
compare the computed eigenvalues with the analytical ones.

• Implement a procedure for obtaining an eigenfunction of L given an
eigenvector of the corresponding matrix A. Compute the residual ‖Lû−
λ̂û‖2 and compare with the actual errors.

• Try to generalize the error estimate for matrix-eigenvalues to differen-
tial operators. Possibly to self-adjoint operators with only point spec-
tra.
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Chapter 2

Literature Review

In this chapter we are going to describe briefly, linear operator , eigenvalue
of linear operator, and spectrum of linear operator. We will also give some
properties of this spectrum.

2.1 Linear operators

Let us introduce the definition of a linear operator L as a mapping of a vector
space U to itself that is to say the range R(L) ⊂ U then an eigenpair (λ, u)
satisfies

Lu = λu. (2.1.1)

The domain D(L) of L is a vector space and the range R(L) lies in a vector
space over the same field. Also, linearity means that for all x, y ∈ D(L) and
scalars α, we have [9]:

L(x+ y) = Lx+ Ly, and L(αx) = αLx.

If Lu = λu or (L− λI)u = 0 for some u 6= 0, then λ is in the point spectra,
that is λ is an eigenvalue of L. The vector u is then called an eigenvector
of L. We call (λ, u) an eigenpair of L. This means that the resolvent r(λ) =
(L − λI) where I is identity either has a non trivial null-space (consisting
of the eigenfunction). This is point spectra. Or the resolvent is unbounded
meaning null-space is empty (no eigenvector exist).

As an example let us consider differentiation L = d
dx

acting on the space
L2(−∞,∞). We note that d

dx

(
eiλx
)

= iλeiλx. This means that any number
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iλ is in spectrum. But the supposed eigenfunction u(x) = eiλx is not in the
space L2(−∞,∞) since |u| = 1 and thus∫ ∞

−∞
|u(x)|2dx =∞.

In finite dimension, one of the most important tools for studying linear
operators is certainly the notion of eigenvalues. If r(λ) is not one-to-one and
does not have an inverse. Then there is u 6= 0 satisfying Lu = λu. In this
case λ is an eigenvalue of L and belong to the point spectra of L, thus we will
mainly focus on the accuracy of eigenvalues and eigenfunction as mentioned
in our objectives in introduction of this thesis.

Let X 6= 0 be complex normed space and L : D(L)→ X a linear operator
with domain D(L) ⊂ X. With L we associated the operator

Lλ = L− λI

where λ is a complex number and I is the identity operator on D(L). If Lλ
has inverse, we denote it by RL(λ), that is

RL(λ) = L−1
λ = (L− λI)−1

and call it the resolvent operator of L.
A regular point λ of L is a complex number such that

• RL(λ) exist,

• RL(λ) is bounded,

• RL(λ) is defined on a set which is dense in X.

The resolvent set ρ(L) of L is the set of all regular values λ of L. Its com-
plement σ(L) = C − ρ(L) is the complex plane C is called the spectrum of
L, and a λ ∈ σ(L) is called spectral value of L [9].

The spectrum σ(L) is partitioned into three disjoint sets as follows.

• The point spectrum or discrete spectrum σ(L) is the set such that
RL(λ) does not exist. A λ ∈ σ(L) is called an eigenvalue of L.

• The continuous spectrum σ(L) is the set such that RL(λ) exists and is
defined on a set which is dense in X but RL(λ) is unbounded.

• The residual spectrum σ(L) is the set such that Rλ(L) exists and may
be bounded or not but does not defined on a set which is dense in X
i.e the domain of RL(λ) is not dense in X [9].
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2.2 Eigenvalues of matrices

We know that many physical systems occuring in engineering applications
can be symbolized as discrete models involving matrices. Some key param-
eters describing physical systems are closely recounted to eigenvalue of the
matrix representing the system. That is why the eigenvalue analysis is every-
where in all branches of modern engineering. Eigenvalue analysis is also used
in the design of car stereo systems, where it helps to decrease the vibration
of the car due to the music [24].

The eigenvector of a square matrix A is the non zero vector x that, after
being multiplied by the matrix, remain parallel to the original vector. For
each eigenvector, the corresponding eigenvalues is the factor by which the
eigenvector is scaled when multiplied by the matrix. The mathematical for-
mula: Given a square matrix A we can find number λ and vector x (x 6= 0)
such that

Ax = λx. (2.2.2)

This problem is called the eigenvalue problem, the number λ is called an
eigenvalue of the matrix A and the non-zero vector x is called an eigenvector
corresponding to the eigenvalue λ. Note that we are not interested in the
trivial solution x = 0. Eigenvectors are only unique up to a multiplicative
factor, means that if x satisfies (2.2.2) for some λ then so does cx, where c
is any constant [23].

If we want to find the eigenvalue, we note that λx = λIx with I an
identity matrix. The equation (2.2.2) can be written as

Ax− λIx = 0,

or
(A− λI)x = 0. (2.2.3)

Equation (2.2.3) has non trivial solution x 6= 0, so the matrix A− λI of this
system is singular, which means that

det(A− λI) = 0. (2.2.4)

This demonstrates that the following theorem holds:

Theorem 2.2.1 A number λ is an eigenvalue of a square matrix A if and
only if, it satisfies the equation

det(A− λI) = 0. (2.2.5)
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If (λ, x) is an eigenpair then (A − λI)x = 0, x 6= 0, and therefore the
eigenvalues are the roots of pA(λ) = det(A−λI) = 0, since pA(λ) has n roots
we may write

pA(λ) = (λ1 − λ)(λ2 − λ) . . . (λn − λ).

this question is called the characteristic equation of the matrix A representing
the linear operator. For a finite dimensional vector space, eigenvalues of a
linear operator are solutions of a the characteristic equation.

Eigenvalue have to be computed numerically in practice. And only ap-
proximate eigen pairs can be obtained. The residual r = Ax̂ − λ̂x̂, offers a
way to judge the accuracy of an approximate eigenvalue λ̂.

Since eigenvalues are very sensitive to small changes in the coefficients
of the characteristic polynomial and the insufficiency of this representation
become understandable with the approach of the modern digital computer
that why is extremely important to calculate the residual since it should give
us an indication about the accuracy of the obtained approximate eigenvalue
λ̂.

Proposition 2.2.2 Let A ∈ Cn×n be non-defective with eigenvector matrix
X. Let (x̂, λ̂) be an approximate eigenpair of A, with ‖x̂‖2 = 1 and put the
residual r = Ax̂− x̂λ̂. There is an eigenvalue λ of A such that

| λ− λ̂ |≤ κ2(X)‖r‖2.

proof: Let (x̂, λ̂) be an approximate eigenpair and r = Ax̂− λ̂x̂ then let

B = A− rx̂H ,

we see that

Bx̂ = (A− rx̂H)x̂

= Ax̂− rx̂H x̂
= λ̂x̂,

so (x̂, λ̂) is an exact eigenpair of B. Let X be the matrix of eigenvectors of
the matrix A so, X−1AX = D, and transform

X−1BX = X−1AX −X−1rx̂HX

= D + F
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where D = diag(λi), since λ̂ is an eigenvalue of D + F, as D + F and B are
similar[5], there is an eigenvector u 6= 0 such that

(D + F )u = λ̂u

This means that
Du+ Fu = λ̂u,

so that
(D − λ̂I)u = −Fu =⇒ u = −(D − λ̂I)−1Fu

On the other hand

‖u‖2 ≤
1

min|λ− λ̂|
‖F‖2‖u‖2

=⇒ min|λ− λ̂ ≤ ‖F‖2

= ‖X−1rx̂HX‖2

≤ ‖X‖2‖X−1‖2‖r‖2‖X‖2

= κ2(X)‖r‖2

since ‖X‖2 = 1 and ‖X‖2‖X−1‖2 = κ2(X), thus

| λ− λ̂ |≤ κ2(X) ‖ r ‖2 .

A similar result but not exactly the same can be found in [5]. Hence for
motivating the proof can you look at [4].

If A is symmetric, then any two eigenvectors from different eigenvalues
are orthogonal. This can be seen as follows:

Let u1 and u2 be two eigenvectors from two eigenvalues λ1 and λ2. Let
us show that that (u1, u2) = 0

λ1(u1, u2) = (λ1u1)Tu2 (by definition)

= (Au1)Tu2 (definition of eigenvector)

= uT1A
Tu2 (transpose of product)

= uT1 (Au2) (A is symmetric)

= uT1 (λ2u2) (definition of eigenvector)

= λ2(u1u2)

Thus (λ1 − λ2)(u1, u2) = 0 but λ1 − λ2 6= 0 since two eigenvalues are
different. Consequently (u1, u2) = 0.
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Corollary 2.2.3 If A is symmetric or hermitian then | λ− λ̂ |≤ ‖r‖2.

Proof: For symmetric or hermitian matrix, the matrix X of eigenvectors is
orthogonal or unitary so that X−1 = XH and

‖X‖ = ‖XH‖ = 1.

Therefore κ(X) = 1, and we have

| λ− λ̂ |≤ ‖r‖2.

Note that if A is n× n matrix , then (2.2.3) is a polynomial equation (in λ)
of degree n and it has n solutions; also Solution to equation (2.2.3) may be
repeated in this case we say that the eigenvalue λ has multiplicity mλ ≥ 1;
if A is n× n matrix; then mλ ≤ n.

Example 2.2.4 Consider the matrix

A =

3 6 −8
0 0 6
0 0 2


to find the eigenvalues of A, we must compute the det(A− λI) = 0 and set
this expression equal to 0, and solve for λ.

A− λI =

3 6 −8
0 0 6
0 0 2

−
λ 0 0

0 λ 0
0 0 λ

 =

3− λ 6 −8
0 −λ 6
0 0 2− λ


we can use the given lemma above to find its determinant

det(A− λI) = −λ(3− λ)(2− λ)

Setting this equal to 0 and solving for λ, we get that λ = 0, 2, or 3. These
are the three eigenvalues of A.

Another result that is sometimes useful is

Theorem 2.2.5 If A ∈ Cn×n is partitional as follows,

A =

[
A11 A12

0 A22

]
Then λ(A) = λ(A11) ∪ λ(A22)
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Proof:

Ax =

[
A11 A12

0 A22

] [
x1

x2

]
= λ

[
x1

x2

]
,

where x1 ∈ Cp and x2 ∈ Cq, with p number of rows and q number of columns.
If x2 6= 0, then A22x2 = λx2 and so λ ∈ λ(A22). If x2 = 0, then A11x1 = λx1

and so λ ∈ λ(A11). It follows that λ(A) ⊂ (λ(A11) ∪ λ(A22)). Since λ(A)
and λ(A11) ∪ λ(A22) have both the same cardinality, we therefore have that
λ(A) = λ(A11) ∪ λ(A22); see [5].

Corollary 2.2.6 If A is a triangular matrix then the eigenvalues of A are
the diagonal entries .

Example 2.2.7 Find the eigenvalues of the matrix

A =

[
1 1
0 2

]
Use corollary (2.2.6) the eigenvalues of A are λ1 = 1 and λ2 = 2.

Theorem 2.2.8 The eigenvalues of a symmetric matrix A (with real en-
tries) are real and the eigenvalues of a non symmetric matrix A are complex
conjugate pairs

Example 2.2.9 Find the eigenvalues of the matrix

A =

[
1 1
1 2

]

A− λI =

[
1 1
1 2

]
−
[
λ 0
0 λ

]
=

[
1− λ 1

1 2− λ

]
.

Let us solve the characteristic equation det(A − λI) = 0. This means that
(1 − λ)(2 − λ) − 1 = 0. Thus the eigenvalues of A are λ1 = 3

2
+ 1

2

√
5,

λ2 = 3
2
− 1

2

√
5.
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Example 2.2.10 Find the eigenvalues of the matrix

A =

[
1 1
−1 2

]

A− λI =

[
1 1
−1 2

]
−
[
λ 0
0 λ

]
=

[
1− λ 1
−1 2− λ

]
Let us solve the characteristic equation det(A − λI) = 0. This means that

(1−λ)(2−λ)+1 = 0. Thus the eigenvalues of A are λ1 = 3
2
+
√

3
2
i, λ2 = 3

2
−
√

3
2
i.

2.3 Linear Differential Operators

The eigenvalue for a boundary value problem for a partial differential equa-
tion can be expressed as follows: Consider the two problems

Problem 1 Find λ and u(x) 6= 0 such that{
−u′′(x) = λu, 0 ≤ x ≤ l,
u(0) = u(l) = 0.

Problem 2 Find λ and u(x) 6= 0 such that
u′′(x) + λu = 0, 0 ≤ x ≤ l,
u(0) = 0,
u(l) + u′(l) = 0.

A non-zero solution u only exists for certain values of λ, i.e. the eigenval-
ues. In order to make the relation between this and the previous eigenvalue
problem for matrices or linear operators clear, we need to introduce nota-
tion. Note that both the problems involve the same differential operator, i.e.
−d2/dx2, but since the boundary conditions differ we get different eigenvalues
and eigenfunctions.

It is very important to introduce differential operator in our work be-
cause linear differential equation can be expressed in terms of the differential
operator notation. Differential operator is frequently denoted by L that is
dy
dx

= Ly. The symbol L is called a differential operator because it transforms
a differentiable function into another function. Moreover, we require this to
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be a linear operator: we must have L(αf(x) + βg(x)) = αLf(x) + βLg(x)
for any constants α and β and functions f and g [14].

A general second order linear differential operator in one variable x can
be written as

Lu = a2(x)
d2u

dx2
+ a1(x)

du

dx
+ a0(x)u,

where a0,a1, and a2 are the coefficients.
A linear operator has a domain D(L) and a range R(L). For the eigen-

value problem to work out both the domain and the range needs to be subset
of the same underlying space. In order to have a norm and a scalar product
we use the Hilbert space L2 of square integrable functions as the basis space.
It is also common to use the Sobolev space H1 [17].

The space L2(Ω) where Ω is an interval is a collection of complex valued
square integrable functions f on Ω i.e.,

∫
Ω
|f(x)|2dx <∞, with inner product

〈f, g〉 =

∫
Ω

f(x)g(x) dx

and associated norm

‖f‖ =

√∫
Ω

|f |2 dx.

The domain is the restriction of functions from L2(Ω) that have a sufficient
number of derivatives:

D(L) =
{
u ∈ C2(Ω) and

∫
Ω

|u(x)|2dx <∞
}

= C2(Ω) ∩ L2(Ω)

If we take Ω = [0, 1] and Dirichlet boundary condition are u(0) = 0 and
u(1) = 0, then

D(L) =
{
u ∈ C2([0, 1]) ⊂ L2(Ω), such that u(0) = u(1) = 0

}
The range is the large space R(L) = C0(Ω) ⊂ L2(Ω).
Returning to Problem 1 we note that

C2([0, 1]) ⊂ L2([0, l])

so we can define the domain as follows:

D(L) =
{
f ∈ C2([0, l]), f(0) = f(l) = 0

}
.
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Then the operator is

L : D(L) ⊂ L2([0, l])→ L2([0, l]).

with
Lu = −u′′.

The differential operator equation can be written as

Lu = λu.

For Problem 1, observe that since sin(Ωx)′′ = −Ω2 sin(Ωx) and sin(0) =
sin(nπ) = 0, we can construct eigenvalues and eigenfunctions using sines.
We have the following result:

Lemma 2.3.1 Let {
−u′′(x) = λu, 0 ≤ x ≤ l,
u(0) = u(l) = 0

be an eigenvalue problem with boundary value conditions, and let λ and
u(x) 6= 0 be an eigenvalue and eigenfunction respectively, for λn satisfying
the equation ((nπ)/l)2 − λ = 0 we have u(x) = sin((nπ)x)/l).

Returning to Problem 2 to find the eigenvalues, let us examine the three
possibilities λ < 0, λ = 0, λ > 0.

If λ < 0 the general solution is of the form

u(x) = a cosh(
√
−λx) + b sinh(

√
−λx).

Thus,
u′(x) =

√
−λ(a sinh(

√
−λx) + b cosh(

√
−λx)).

Using the boundary condition u(0) = 0, we get a = 0 and on the other hand,
the boundary condition u(l) + u′(l) = 0 implies that

b[sinh(
√
−λl) +

√
−λ cosh(

√
−λl)] = 0.

But since
sinh(

√
−λl) +

√
−λ cosh(

√
−λl) > 0

we have that b = 0. Hence the problem does not have negative eigenvalues.
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If λ = 0 then the general solution is of the form

u(x) = ax+ b.

The boundary conditions give u(0) = 0 when b = 0 and u(l) + u′(l) = 0
means that a = 0, thus λ = 0 is not an eigenvalue of the problem.

Finally, if λ > 0 the general solution is

u(x) = a cos(
√
λx) + b sin(

√
λx)

and its derivative given by

u′(x) = −a
√
λ sin(

√
λx) + b

√
λ cos(

√
λx).

The boundary condition u(0) = 0 is possible when a = 0. With the boundary
condition u(l) + u′(l) = 0 we have

b sin(
√
λl) + b

√
λ cos(

√
λl) = 0 (2.3.6)

From equation (2.3.6) we can find the value of

−
√
λ = tan(

√
λl) (2.3.7)

This equation implies that the values of the eigenvalues λ are intersections
of the graphs of two functions y =

√
λ and y = − tan(

√
λl). Note that there

are infinitely many intersections. So the eigenfunctions are

u(x) = sin(
√
λnx) (2.3.8)

for n = 1, 2, . . ..
We can now find the eigenvalues λn, n = 1, 2, . . . from equation (2.3.7).

Observe that here we do not include zero eigenvalue since an eigenfunction
is just a sine function.

Let
√
λl = µ, then

√
λ = µ

l
. We therefore have from (2.3.7) the following

equation:

−µ
l

= tan(µ).

To find the solution of (2.3.7) means to find the intersection of the graphs of
function tanµ with the graph of −µ

l
we can see that there are infinite number

of intersection points. Let αn =
√
λn then αn satisfy nπ − π

2
< αn < nπ for

all n ≥ 1 means that our solution belongs in the second and the fourth
quadrants of circle.
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Lemma 2.3.2 Let 
u′′(x) + λu = 0, 0 ≤ x ≤ l,
u(0) = 0,
u(l) + u′(l) = 0;

be an eigenvalue problem with boundary value conditions, and let λ and
u(x) 6= 0 be an eigenvalue and eigenfunction respectively. For λn satisfy-
ing the equation tan(

√
λnl) +

√
λn = 0 we have u(x) = sin(

√
λnx).

Since in our work we deal with operator L which is symmetric, or self
adjoint [9], then the eigenvalues are real and eigenfunctions corresponding to
different eigenvalues are orthogonal with respect to each other. Let us show
orthogonality of our eigenfunctions with n 6= m,∫ 1

0

sinαnx sinαmxdx =
1

2

∫ 1

0

cos(αn − αm)xdx− 1

2

∫ 1

0

cos(αn + αm)xdx

=
1

2(αn−αm)
sin(αn−αm)− 1

2(αn+αm)
sin(αn+αm)

Using the fact that sinαn = −αn cosαn

sin(αn − αm)

2(αn − αm)
=

1

2(αn − αm)
[sinαn cosαm − sinαm cosαn)]

=
1

2(αn − αm)
[−αn cosαn cosαm + αm cosαn cosαm]

=
1

2(αn − αm)
(− cosαn cosαm)[αn − αm]

= −1

2
cosαn cosαm.

Similarly,
1

2(αn + αm)
sin(αn + αm) = −1

2
cosαn cosαm

Therefore,∫ 1

0

sinαnx sinαmxdx = −1

2
cosαn cosαm +

1

2
cosαn cosαm

= 0.
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To show that zero boundary conditions in the PDE means the space D(L)
is linear. Let us verify if the linear combination of two solutions is belong in
the space D(L).

If u1 and u2 satisfy our problem, then ∀α, β ∈ R, αu1 + βu2 also satisfy
our problem, in fact

(αu1 + βu2)′′(x) + λ(αu1 + βu2)(x) = α(u′′1 + λu1) + β(u′′2 + λu2)

= 0, 0 ≤ x ≤ l

(αu1 + βu2)(0) = αu1(0) + βu2(0) = 0

(αu1 + βu2)′(l) + (αu1 + βu2)(l) = α(u1(l) + u′1(l)) + β(u2(l) + u′2(l)) = 0

Therefore zero boundary conditions in the partial differential equation means
the space D(L) is linear.

2.4 Partial Differential Equations

Let x = (x1, . . . , xn)T be independent variables and u = u(x) be a differen-
tiable function. A partial differential equation (PDE) involves a differential
operator that includes derivatives in more than one of the independent vari-
ables x1, . . . , xn.

As an example, let Ω = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1} a domain in
R2 and consider the Helmholtz equation with Dirichlet boundary conditions:

uxx + uyy + λ2u = 0, (x, y) ∈ Ω,
u(0, y) = 0, 0 < y < 1,
u(1, y) = 0, 0 < y < 1,
u(x, 0) = 0, 0 < x < 1,
u(x, 1) = 0, 0 < x < 1.

This is an eigenvalue problem where a solution u 6= 0 only exists for certain
values λ. The differential operator

L =
∂2

∂x2
+

∂2

∂y2

, involves derivatives in two independent variables. For simplicity we restrict
ourselves to functions of one variable. In that case, we deal with ordinary dif-
ferential equations. Let us mention here that ordinary differential equations
are more used for describing the trajectory of a classical particle moving in
one dimension, the state of a quantum particle moving in one dimension, . . . .
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Chapter 3

Discretization and
Approximate Eigenvalues of
Linear Operators

Discretization is the process by which an infinite dimensional problem is
replaced by a finite dimensional one. This can be described by a continuous
function being replaced by its value at a certain set of discrete points. One
can also refer to a differential or an integral equation being approximated
by analogous expressions which prescribe values at only a finite number of
discrete points. During the discretization process, linear operators are also
approximated by matrices. The standard definition of derivative is

u′(x) = lim
h→0

u(x+ h)− u(x)

h
.

Computers cannot deal with the limh→0 and hence a discrete analogue of the
continuous case needs to be used in order to approximate the derivatives.

In the following, we introduce the notation that will be used in this sec-
tion. Let x1, x2, . . . , xn be equidistant grid points on the interval [a, b] of the
real line and ui = u(xi) denote the value of the function u at the node xi of
the computational grid. We collect all the function values in a vector

U = (u1, u2, . . . , un)T .

Thus the vector U is a discrete approximation of the function u(x). The
stepsize is

hi = max
1≤i≤n−1

|xi+1 − xi|.

17



If the grid points are equally spaced, i.e., all intervals are of equal size; then
the stepsize h is constant.

In the next subsection we will describe corresponding discretizations of
linear differential operators. Always keeping in mind that by u we mean a
function and U we mean the vector representing its discretizations.

3.1 The finite difference method

The finite difference methods are used to approximate derivatives to solve
differential equations numerically. They thus allow us to replace the differ-
ential equations by finite difference equations. For more clarification, see for
example [14, 18, 8].

Let us now describe that technique. We first discretize the domain of
the given problem. For this, let [0, l] be an interval and divide it into N
equally spaced intervals of size h defined by h = l/N . In that case, there are
a total number of N + 1 grid points labeled xi for uniform grid xi = ih, i =
0, 1, . . . , N . As mentioned above, the value of the function u at the grid
point xi is denoted by ui = u(xi). We now describe the finite differences for
derivatives. In our work we focus on the central difference. We thus define
the first and second order derivatives of the function u with respect to x as(

∂u

∂x

)
i

≈ ui+1 − ui−1

2h

and (
∂2u

∂x2

)
i

≈ ui+1 − 2ui + ui−1

h2
,

respectively. We observe that the derivatives are approximated by differences
between function values at adjacent points in the grid. This means that the
continuous differential operator, acting on the function u, is replaced by a
matrix A acting on the vector U . The discrete approximation is close to the
continuous one, and use the value of the function evaluated at a point and
adjacent point(s) to approximate the derivative of the function at the point.
The hypothesis made here is that the functions to be differentiated are well
behaved.

In summary, a finite difference solution basically involves three steps:

• Dividing the solution into grids of nodes. Divide the interval [0, l] into
N equally spaced intervals of size h, also let ui = u(xi) . Then h = l/N ,
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there are a total of N+1 grid points labeled xi for uniform grid xi = ih,
i = 0, 1, ..., N . Since we focus on central difference, the approximation
of first-order derivative is

(
∂u

∂x
)i ≈

ui+1 − ui−1

2h

and approximation of second-order derivative is

(
∂2u

∂x2
)i ≈

ui+1 − 2ui + ui−1

h2

• Approximating the given differential equation by finite difference equiv-
alence that approximates derivatives by differences between function
values at different grid points.

• Solving the difference equations subject to the prescribed boundary
and/or initial conditions.

3.2 The finite difference approximation of a

differential operator

Let us approximate the second order derivative of the given function by using
central difference which has the following formula:

u′′(xi) ≈
u(xi+1)− 2u(xi) + u(xi−1)

h2
.

In this section, we describe the finite difference discretization of the differen-
tial operator problem

Lu = λu, (3.2.1)

so that we can end up with a matrix problem.
For simplicity, the differential operator L is defined by d2

dx2
. At each

interior grid point xi we have

Lu(xi) = λu(xi)

and for such grid point xi we use a central difference approximation, i.e.,

L(u(xi)) = u′′(xi) =
u(xi+1)− 2u(xi) + u(xi−1)

h2
. (3.2.2)
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Using the definition of our differential operator this system can be written
as 

u′′(x0) = λu(x0)

u′′(x1) = λu(x1)

u′′(x2) = λu(x2)
...

u′′(xn) = λu(xn).

(3.2.3)

The above system is valid for all interior points. Thus we have n−2 linear
equations. At the boundary points different equations are needed. This will
be explained in details when concrete problems are solved. Now we have a
system of n equations.

Substituting u′′(xi) into the system (3.2.3) we get a system on n linear
combination

u(x1)− 2u(x0) + u(x−1)

h2
= λu(x0),

u(x2)− 2u(x1) + u(x0)

h2
= λu(x1),

u(x3)− 2u(x2) + u(x1)

h2
= λu(x2),

...
u(xn+1)− 2u(xn) + u(xn−1)

h2
= λu(xn),

from which we can define the vector

U =


u(x0)
u(x1)

...
u(xn−1)
u(xn)


In this case, the system (3.2.3) may be written as

AU = λU (3.2.4)

where A is a matrix having the coefficients of each u(xi) in the system of
linear equations and λ is an eigenvalue of A.
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We return to our Problem 1 that was discussed in section 2.2 to do the
following example we can follow the same procedure as we did for problem 2.
We now apply the idea above to the Problems 1 and Problem 2. We start
with Problem 1. We recall that this problem consists of finding eigenvalues
and eigenfunctions of {

−u′′(x) = λu, 0 ≤ x ≤ l

u(0) = u(l) = 0,
(3.2.5)

As previously seen the eigenvalues and eigenfunctions for (3.2.5) are given
by (nπ/l)2 and u(x) = sin((nπx)/l), respectively. Following now the previous
discussions on the finite difference for differential operator, let us introduce
a vector

U =


u(x0)
u(x1)

...
u(xn−1)
u(xn)

.
The vector U contains n + 1 unknowns so that the matrix A that approxi-
mates the differential operator is of size (n+ 1)× (n+ 1). Incorporating the
boundary conditions u0 = un = 0, we can eliminate unknowns and reduce
the dimension of the problem. We are left with the vector that contains
unknowns U = (u1, . . . , un−1)T and an (n− 1)× (n− 1) matrix A.

For the numerical computation, after solving the eigenvalue problem for
the matrix A, we have to add u0 = un = 0 to get the approximated eigen-
functions.

We consider now Problem 2 that consists of determining eigenvalues and
eigenfunctions of 

−u′′(x) = λu, 0 ≤ x ≤ l

u(0) = 0,

u(l) + u′(l) = 0.

(3.2.6)

As described in Lemma 2.3.2, the eigenvalues are obtained in the intersection
of the graphs of the functions y = tan(

√
λnl) and y = −

√
λn. The eigen-

functions are given by u(x) = sin(
√
λnx). For the finite difference of the
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differential operator, we get the vector U of unknowns defined by

U =


u(x0)
u(x1)

...
u(xn−1)
u(xn)

.
We now discuss how the boundary conditions for this problem are included .
The boundary condition u0 = 0 means that the unknown can be eliminated
from the equation: The matrix will thus have dimension n−1. For the bound-
ary condition u(l) + u′(l) = 0, the last row of the matrix A; matrix whose
entries are the coefficients of each u(xi) in the system of linear equations,
should contain the finite difference approximation of u′′(l). We give some
details following G.D. Smith; see [18]. Let us introduce a ghost point xn+1

and write

−u′′(xn) ≈ −u(xn+1) + 2u(xn)− u(xn−1)

h2
. (3.2.7)

The boundary condition u′(xn) + u(xn) = 0 is discretized as

u(xn+1)− u(xn−1)

2h
+ u(xn) = 0.

From this, we have that

u(xn+1) = −2hu(xn) + u(xn−1).

Replacing the above expression of u(xn+1) in (3.2.7) we get

−u′′(xn) ≈ −2u(xn−1) + 2(1 + h)u(xn)

h2
.

Thus, the coefficients of u(xn−1) and u(xn) are inserted in the last row of the
matrix A.

3.3 The approximation of eigenfunctions us-

ing cubic splines

A spline function is a function that consists of polynomial parts connected
together with certain smoothness condition [16, 7, 11]. More precisely, a
cubic spline function, having knots x1, x2, . . . , xn is a function φ such that
knots change from x1 to xn and
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• on each interval [xi−1, xi], φ is a cubic polynomial.

• φ has continuous derivative on [x0, xn].

We remark from this first condition that on each interval [xi−1, xi] the spline
function φ(x) is cubic polynomial. We can thus write

φi(x) = aix
3 + bix

2 + cix+ di, xi−1 ≤ x ≤ xi, i = 1, 2, . . . , n, (3.3.8)

where ai, bi, ci, and di are the coefficients of the polynomial. This means that
it is easy to compute derivatives or integrals of spline functions. From the
second condition, we remark that the second derivative is expressed by

φ′′i (xi−1) = φ′′i−1, φ′′i (xi) = φ′′i , i = 1, 2, . . . , n. (3.3.9)

In order to uniquely determine a cubic splines we need to specify function
values at the knots, x1, . . . , xn. We also need to specify two end point condi-
tions. In our experiments we want to use cubic splines to take eigenvectors of
the finite difference equations and extend them into functions that approx-
imate eigenfunctions of the underlying linear differential operator. Thus we
have function values ui at the grid points, and the boundary conditions for
the differential operator L gives us natural end point conditions that makes
the natural cubic spline unique.
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Chapter 4

Numerical results

In this section we present a few numerical experiments that illustrate the
results in the previous sections. We also study the accuracy of the finite
different approximation for computing eigenvalues and eigenvectors.

4.1 Numerical results for Problem 1

Here we present the numerical results for Problem 1 that is solved in the
interval [0, 1]. In other words, we consider the following problem{

−u′′(x) = λu, 0 ≤ x ≤ 1,
u(0) = u(1) = 0.

We first choose a computational grid of size N = 10 and compute eigenvalues
and eigenvectors of the matrix A as described above in Section 3.2. We then
select, for tests, the second eigenvalue λ2 and the corresponding eigenvector
u2(x). We interpolate the vector u2(x) in order to get zero boundary data at
the points x = 0 and x = 1; see Figure 4.1 on the left. We also differentiate
u2(x) twice using cubic splines and show that the given differential equation
is satisfied, i.e., −u′′2 ≈ λ2u2(x). The approximated results are displayed
in Figure 4.1 on the right. Though not respresented here with supporting
figures, we have observed that as we increase the grid size the graphs of −u′′2
and λ2u2(x) are more closely.

In Figure 4.2 (left), we illustrate the results corresponding to the first 10
analytical (λk) and numerical (λ̄k) eigenvalues, respectively. In this case,
we choose a finite difference discretization of size N = 50. We also display
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Figure 4.1: On the left, we display the interpolation of the eigenvector u2.
On the right the black line correspond to λ2u2 while the blue line correspond
to −u′′2 . All the figures correspond to Problem 1.

in Figure 4.2 (right) the semilogy plot of the error between the computed
and analytical eigenvalues, i.e., |λk − λ̄k|, k = 1, 2, . . . , 10. The numerical
eigenvalues are close to the analytical ones and the error is small.
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Figure 4.2: The first n = 10 eigenvalues λk for the Problem 1. We display
the exact eigenvalues (left graph, blue x) and the numerical approximation
obtained using a finite difference discretization of size N = 50 (black o). We
also show the semilogy plot of the error |λk − λ̄k| (right graph).

For results in Figure 4.3, we display the numerical approximations of
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eigenfunctions u2(x) and u7(x). The computational grid has size N = 50.
We observe that the frequency of oscillation becomes high or as the eigenvalue
increases. This is the expected result since the analytical eigenvectors have
the form un(x) = sin(nπx), for n = 1, 2, . . ..
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Figure 4.3: We display two eigenvectors u2(x) on the left and u7(x) on the
right for the Problem 1.

In Figure 4.4, we present the absolute errors |λk − λ̄k| for different sizes
of the computational grid, namely N = 20, 60, and 100. We observe that
the error is reduced considerably as the grid size increases.
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Figure 4.4: We display errors |λk− λ̄k| for different grid sizes, N = 20 (black
x), N = 60 (blue o) and N = 100 (red �).
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4.2 Numerical results for Problem 2

Since the interpretations on the numerical results for Problem 2 are the
same as for Problem 1, we only present corresponding graphs. Recall that
we aim at finding eigenvalues and eigenfunctions in the interval [0, 1]. We
first choose a computational grid of size N = 10 and compute eigenvalues
and eigenvectors of the matrix A as described above in Section 3.2. We then
pick, for tests, the second eigenvalue λ2 and the related eigenvector u2(x).
For the cubic spline interpolation we need boundary conditions at x = 0 and
x = 1 and u(1)+u′(1) = 0. Here we make sure the condition u(1)+u′(1) = 0
is vanished at x = 1, where is used as the end point condition for the spline;
see Figure 4.5 on the left. We also differentiate u2(x) twice using cubic splines
and show that the given differential equation is satisfied, i.e., −u′′2 ≈ λ2u2.
The results are displayed in Figure 4.5 on the right.
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Figure 4.5: On the left, we display the interpolation of the eigenvector u2.
On the right the black line correspond to λ2u2 while the blue line correspond
to −u′′2 . All the figures correspond to Problem 2. Note that for this problem
u(1) + u′(1) = 0 where is used as the end point condition for the spline.

For results in Figure 4.7, we display the numerical approximations of
eigenfunctions u2(x) and u7(x). The computational grid has size N = 50.
We observe that the frequency of oscillation becomes high or as the eigenvalue
increases. This is the expected result since the analytical eigenvectors have
the form u(x) = sin(

√
λnx), for n = 1, 2, . . ..

In Figure 4.8, we illustrate the absolute errors |λk− λ̄k| for different sizes
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Figure 4.6: The first n = 10 eigenvalues λk for the Problem 2. We display
the exact eigenvalues (left graph, blue x) and the numerical approximation
obtained using a finite difference discretization of size N = 50 (black o). We
also show the semilogy plot of the error |λk − λ̄k| (right graph).
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Figure 4.7: We display two eigenvectors u2(x) on the left and u7(x) on the
right for the Problem 2.

of the computational grid, namely N = 20, 60, and 100. We observe that
the error is reduced considerably as the grid size increases.
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Figure 4.8: We display errors |λk− λ̄k| for different grid sizes, N = 20 (black
x), N = 60 (blue o) and N = 100 (red �).

4.3 Estimation of Error based on the Resid-

ual

It is important to compute eigenvalues and eigenfunctions accurately. The
eigenvalues of a matrix can be computed with good precision. Direct method,
for example the QR algorithm, are only available for relatively small matrix
sizes. Thus having approximate eigenvalues and eigenfunctions of a matrix
or generally a linear operator we need to be able to judge the accuracy.

Previously we investigated the accuracy for approximate eigenpairs for
matrices. The results were given in Proposition 2.2.2 and, for symmetric
matrices in Corollary 2.2.3. In this section we will investigate whether the
same results can be used also for linear differential operators. Since we
investigate only self-adjoint differential operators we will use the following
estimate:

| λ− λ̂ |≤‖ r ‖2,

where the approximate eigenvalue λ̄k is obtained from the finite difference
approximation, and the approximate eigenfunction ûk is obtained by spline
interpolation on the eigenvectors of the discretized problem.

Since the eigenfunctions are obtained using cubic spline interpolation we
have in the interval xi−1 < x < xi the eigenfunction given by a cubic poly-
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nomial pi(x). Thus we can compute the residual by integrating

Ii =

∫ xi

xi−1

(
− d2

dx2
pi(x)− λ̄pi(x)

)2

dx.

This can easily be calculated analytically using Matlab functions for working
with polynomial expressions. This makes it easier to compute L2–norms of
the approximate eigenfunctions and of the residuals. Even if an eigenvector
Uk is normalized (in Euclidean norm) this does not imply that the eigenfunc-
tion uk(x) is normalized in the L2–norm so we need to normalize it before
we calculate the error estimate.

Suppose we want an approximate eigenpairs of a discrete problem of
size N1; obtained by discretizing a differential equation using finite differ-
ences. But its too large to compute using direct methods. Instead we pick a
smaller dimension N2 � N1 and solve the eigenvalue problem for the smaller
discretization. We then get eigenpairs (λ̄k, x̄k) where the eigenvectors are in
RN2 . Using the spline interpolation technique we can find the interpolating
cubic spline corresponding to x̄k. The spline is then evaluated on the com-
putational grid of size N1 that correspond to the large eigenvalue problem.
This creates the eigenpair (λ̄k, x̃k). Even though we can’t solve the eigen-
value for the large size we can still setup the finite difference matrix A(of size
N1 ×N1) and compute the norm of the residual. Thus we can see if we get
the expected approximate eigenpair (λ̄k, x̃k).

For the experiment we pick N2 = 50 and N1 = 500 and we consider
N1 = 500 which is considered too large for direct eigenvalue methods. We
instead chose N2 = 50 and compute the first 10 eigenvalues of the smaller
matrix. The eigenvectors are then interpolated onto the larger grid of size
N1 = 500 giving us approximate eigenvalues λk(N2) and also approximate

eigenvectors u
(N2,N1)
k . In Figure 4.9 we show the error |λ(N1)

k − λ
(N2)
k | and

the corresponding residual based error estimates from Corollary 2.2.3. We
observe that Actual errors and the error estimated are very close.

We also display four graphs in order to compare error for first 10 computed
eigenvalues and first 10 analytical eigenvalues for problem 1 and problem 2
see Figure 4.10.

For the experiment we choose size of eigenvectors N1 = 500 and compu-
tational grid of size N2 = 50 and we compute eigenvalues and eigenvectors of
the matrix A. Here we show that the finite difference discretizations lead to
two different matrices A(N1) and A(N2). The approximate eigenpairs for A(N1)
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Figure 4.9: We display errors |λk(N1)−λk(N2)| for different grid sizes, N1 =
500 and N2 = 50. On the left (blue o) and (red o) correspond to actual errors
and (black –) and (green line) represent estimated error for Problem 1 and
on the right(blue o) and (red o) represent actual errors and (black –) and
(green line) correspond to estimated error for Problem 2.

are constructed using eigenpairs of A(N2). On the left plot we show the ap-
proximation for the second eigenvector u

(N2,N1)
2 λ

(N2)
2 u

(N2,N1)
2 and A(N1)u

(N2,N1)
2

see Figure 4.11. After we compute residual estimate for N2 taken as size of
eigenvectors and we interpolate to a grid of size N1.

By computing the norm of the residual and the difference between λi for
N1 and N2 we get 1.7467 and 1.5776 respectively. We conclude that the
investigation of the accuracy for approximate eigenpairs for matrices satisfy
the conditions given in Proposition 2.2.2 and, for symmetric matrices in
Corollary 2.2.3.
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Figure 4.10: We display errors |λk − Λk| for different grid sizes, N = 25 and
N = 50. On the left, above we have a graph for problem 1 for N = 25 and
below we have a graph for problem 2 for N = 25. On the right, above we have
a graph for problem 1 for N = 50 and below we have a graph for problem 2
for N = 50.For all graphs (blue x) represent errors in the first 10 numerical
eigenvalues when compared to the analytical ones and (red �) correspond to
estimated error.
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(N2,N1)
2 and both lines correspond exactly . This

figure correspond to Problem 1.

33



In Figure 4.12 (left), we illustrate the semilogy plot of actual error cor-
responding to the first 10 eigenvalues. In this case, we choose a finite dif-
ference discretization of size N = 25, 50, 100, 200. We also display in Fig-
ure 4.12(right) the semilogy plot of the error estimation between the com-
puted and analytical eigenvalues, i.e., |λk−λ̄k|, k = 1, 2, . . . , 10 for problem 1.
The results show that the error estimate holds for this case and is relatively
sharp.
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Figure 4.12: The first n = 10 eigenvalues λk for the Problem 1. On left
graph using we display the exact error where (black x) correspond to N = 25,
(blue o) correspond to N = 50 (red �) correspond to N = 100 and (green �)
correspond to N = 200. We also show the semilogy plot of the error estimate
|λk − λ̄k| (right graph) for different grid sizes, N = 25 (black line), N = 50
(blue line), N = 100 (red line) and N = 200 (green line).

In Figure 4.13 (left), we present the semilogy plot of actual error corre-
sponding to the first 10 eigenvalues. In this case, we choose a finite difference
discretization of size N = 25, 50, 100, 200. In Figure 4.13(right) the semilogy
plot of the error estimation between the computed and analytical eigenvalues,
i.e., |λk − λ̄k|, k = 1, 2, . . . , 10 for problem 2.
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Figure 4.13: The first n = 10 eigenvalues λk for the Problem 2. On left graph
using we display the exact error where (black x) correspond to N = 25, (blue
o) correspond to N = 50 (red �) correspond to N = 100 and (green �)
correspond to N = 200. We alsoshow the semilog plot of the error estimate
|λk − λ̄k| (right graph) for different grid sizes, N = 25 (black line), N = 50
(blue line), N = 100 (red line) and N = 200 (green line).
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Conclusion and
Recommendations

The residual based on error estimate gives a good indication of the actual
error for the matrices. So the estimate in the proposition (2.2.2) is usually
fairly sharp. By using the numerical eigenvectors and spline interpolation
we create approximation eigenfunctions of the original differential operator
acting on the approximate eigenfunction. So the residual based error esti-
mate gives us a way to estimate the error in the discretization of the dif-
ferential operator. For future work there are other interpolation schemes,
e.g. trigonometric interpolation, that uses basis functions that can easily
be differentiated or integrated, and that can be made to satisfy boundary
conditions. One suggestion that we recommend is to investigate alternatives
to splines.

36



Bibliography

[1] Anton Howard, Chris Rorres (2005). Elementary Linear Algebra, 9th
edition, John Wiley & Sons, New York.

[2] Arfken George B, Hans J. Weber (2011). Mathematical Methods for
Phyisicst, Miami University, Oxford, OH, University of Virginia, Char-
lottesville, VA.

[3] Arieh, Iserles (1996).A First Course in the Numerical Analysis of Dif-
ferential Equations, Cambridge Univ. Press.

[4] Berntsson F (2014). Computational Linear Algebra, 2009. Linköping
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Chapter 5

Matlab codes

Appendix A: Analytical eigenvalues matlab code

for problem1

function[Lambda] = AnalyticalEigenvaluesExample1(N,L)

% This is about the analytical computation of eigenvalues Lambda =

% (n*pi/L)^2

%

Lambda = zeros(N,1);

for n= 1:N

Lambda(n)= ((n*pi)/L)^2;

end

Appendix B:Matlab code to create eigenpairs

for problem1

function [x,U,lambda,A]=CreateEigenPairsExample1(N,L)

x=(0:N-1)/(N-1); % x(1)=0 and x(N)=L are the boundary values. So

%the unknowns are

% u(x(2)),....,u(x(N-1)).
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h=L/(N-1);

% code for example from your example but with N-2 dimension.

A=sparse(N-2,N-2); %the matrix has only zeros initially

A(1,1)=2/h^2;

A(1,2)=-1/h^2;

A(end,end)=2/h^2;

A(end,end-1)=-1/h^2;

for i=2:N-3

A(i,i+1)=-1/h^2;

A(i,i-1)=-1/h^2;

A(i,i)=2/h^2;

end

% Solve eigenvalue problem

[X,D]=eig(full(A));

% Now the eigenfunctions are X(:,1), X(:,2), etc.

lambda=diag(D); % eigenvalues

% Due to boundary conditions each eigenfunction should have u(0)=0 and

% u(1)=0. So put en extra zero row first and last in the matrix X to

% create the full eigenfunction.

U=[zeros(1,N-2) ; X ; zeros(1,N-2)];

%

% Order eigenvalues so smallest absolute value first

%

[s,ind]=sort(abs(lambda),’ascend’);

lambda=lambda(ind);

U=U(:,ind);

end
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Appendix C:Matlab codes to interpolate eigen-

function for problem1

function [pp]=InterpolateEigenfunctionExample1( x , U )

% Example 1 has zero boundary conditions. These are included in the

% vector U so just use natural end point conditions.

pp=csape(x,U,’variational’);

end

Appendix D:Matlab codes to normalize eigen-

function

function[pp]=NormalizeEigenFunction(pp)

I=0;

for i=1:length(pp.breaks)-1,

a=pp.breaks(i);b=pp.breaks(i+1);

c=pp.coefs(i,:);

r=conv(c,c);r=polyint(r); % conv is multiply so r:= r^2

I=I+polyval(r,b-a)-polyval(r,a-a); % integrate r^2 on [a,b]

end

I=sqrt(I);

%

% Normalized eigenfunction

pp.coefs=pp.coefs/I;
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Appendix E: Analytical eigenvalues matlab code

for problem2

function Lambda = AnalyticalEigenvaluesExample2(n,L)

% Create a function that implements equation (2.7)

f=@(lambda) tan(sqrt(lambda))+sqrt(lambda);

% Create a vector with the first eigenvalues. The first root is zero.

% Ignore

Lambda = 0;

x0=0.1; % starting guess

x=0;

for i=2:n+1 % Should find n eigenvalues

while (x-Lambda(end))<10^5*eps

x0=x0+0.1;

[x,fval,flag]=fzero( f , x0 , optimset(’TolFun’,100*eps ));

if flag ~= 1 , x=Lambda(end); , end

end

Lambda(i)=x;

end;

Lambda=Lambda(2:end)’;

Appendix F:Matlab code to create eigenpairs

for problem2

%Function(A): Matrix(N-2,N-2)

% This function creates a sparse matrix A from the finite difference

%discretization of

% the Dirichlet eigenvalue problem -u’’=Lambda u, 0<x<L, with boundary

%conditions u(0)=u(L)+u’(L)=0 and display
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% eigenpair [V,D].

% Input: N- size of the matrix, L=bound

% Output: A-matrix, V eigenvector , D eigenvalues (diagonal)

function [x,U,lambda,A]=CreateEigenPairsExample2(N,L)

x=(0:N-1)/(N-1); % x(1)=0 and x(N)=L are the boundary values.

%So the unknowns are

% u(x(2)),....,u(x(N-1)).

h=L/(N-1);

% code for example from your example but with N-2 dimension.

A=sparse(N-1,N-1); %the matrix has only zeros initially

A(1,1)=2/h^2;

A(1,2)=-1/h^2;

for i=2:N-2

A(i,i+1)=-1/h^2;

A(i,i-1)=-1/h^2;

A(i,i)=2/h^2;

end

A(end,end)=2*(1+h)/h^2;

A(end,end-1)=-2/h^2;

% Solve eigenvalue problem

[X,D]=eig(full(A));

% Now the eigenfunctions are X(:,1), X(:,2), etc.

lambda=diag(D); % eigenvalues

% Due to boundary conditions each eigenfunction should have u(0)=0.

% So put en extra zero row first in the matrix X to

% create the full eigenfunction.
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U=[zeros(1,N-1) ; X ];

%

% Order eigenvalues so smallest absolute value first

%

[s,ind]=sort(abs(lambda),’ascend’);

lambda=lambda(ind);

U=U(:,ind);

end

Appendix G:Matlab codes to interpolate eigen-

function for problem2

function [pp]=InterpolateEigenfunctionExample2( x , U )

% Example 2 has zero boundary conditions. These are included in the

% vector U so just use natural end point conditions.

pp=csape(x,U,[2 1],[0 -U(end)]);

end
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