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ABSTRACT 

Every year, about 4 million people die from respiratory diseases. While early prediction would 

reduce this mortality rate, till now diagnosis is only done at hospitals involving costly diagnosis 

resources and scarce healthcare professionals. Ideally, regular noninvasive breath analysis check-

ups at home would allow us to anticipate medical consultation. Considering developing country’s 

contexts, existing commercial portable diagnosis kits under proprietary licenses are expensive and 

require internet connectivity to communicate with the remote server running their cloud prediction 

analytics. Thanks to recent advances in open source edge AI frameworks, this study presents a 

design of an offline portable kit locally embedding a tiny Machine Learning (TinyML) trained 

model to predict respiratory diseases. Evaluated on an open dataset of Chronic Obstructive 

Pulmonary Disease (COPD), the resulting real-time requirements of our edge AI model is 15.9 Kb 

of ROM and 1.5 Kb RAM and performs the inference in 1 ms. In addition, the use of synthetic 

exhaled breath data to train an Edge AI model in cases of low datasets was also evaluated with the 

model performance giving accuracies similar to that based on actual datasets. Results also show 

that the accuracy and peak memory for the model are affected by pre-processing, type of sensors, 

and the number of sensors. In addition to early detection of respiratory diseases, the proposed 

solution will be of great value in the process of mass collection of exhaled breath data to 

complement synthetic data and the few breaths that are collected in healthcare facilities. This will 

enable the training of efficient AI models for respiratory diseases. Last but not least, the research 

results from this master thesis have been published in 3 IEEE scopus-indexed conferences. 

Keywords: Breathomics; Edge AI; Respiratory Diseases; Diagnostic Kit; Synthetic Data; 
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CHAPTER 1 

 INTRODUCTION 

1.0 Introduction 

Respiratory diseases affect passages of the air, including the lungs, bronchi, bronchioles, and nasal 

passages. Conditions considered respiratory-related include not only acute respiratory infections, 

such as common cold, sinusitis, pharyngitis, epiglottitis, and tracheobronchitis but also chronic 

respiratory diseases, such as lung cancer, asthma, and chronic obstructive pulmonary disease [1]. 

According to WHO reports, [2] Respiratory diseases are one of the major causes of disabilities and 

deaths across the globe with over four million people dying prematurely from such disease. 

Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of death in the globe 

with about sixty-five million people suffering from the disease and over three million dying from 

it each year [2]. Asthma is one of the most common chronic childhood diseases affecting fourteen 

percent of children globally with over three hundred and thirty-four million people suffering from 

the disease globally [2]. Pneumonia is not only the leading cause of death in children under the 

age of five but also leads to the death of millions of people yearly. Some respiratory diseases are 

also highly infectious, with the most lethal being tuberculosis (TB) that affects over ten million 

and kills over one million people each year. Lung cancer is considered the deadliest form of cancer-

killing almost two million people annually [2].  

 

Fig. 1: Mortality rates due to chronic respiratory diseases [3]  
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Fig. 1 shows mortality rates due to chronic respiratory diseases globally. The high rate of mortality 

results from late diagnosis occurring when a patient starts to experience symptoms and go to 

hospitals. Diagnosis in healthcare facilities requires expensive resources such as equipment and 

healthcare professionals to envision regular preventive check-ups for all populations. Affordable, 

free-to-use, noninvasive early prediction solutions for home use would anticipate on-time medical 

consultation and therefore treatment, and at the same time increase the datasets of biomarkers 

required to develop improved respiratory disease prediction analytics. 

The emerging concept of Internet of Things (IoT) is increasingly being used in the healthcare 

sector and provides capabilities that can be exploited in respiratory disease management from early 

detection to collection of medical data and monitoring. The use of the Internet of things offers 

many benefits by enhancing efficiency and effectiveness in remote health monitoring as compared 

to the traditional methods of health monitoring. IoT-enabled technologies allow for smaller, 

cheaper, and portable devices enabling patients to use them at any location, at any time for both 

monitoring and diagnosis of health conditions [4]. The use of IoT also allows for real-time 

monitoring of patients with critical conditions over the internet enabling immediate medical 

actions and remedies when the need arises. Moreover, IoT devices enhance the collection of a 

variety of voluminous health data at high velocity [4]. Further analytics can be performed on the 

collected data to improve diagnosis and decision-making in the health sector. 

With the integration of IoT and Artificial Intelligence, methods for example knowledge 

description, machine learning, deep learning, and expert systems, are used in the design, 

development, and implementation of medical applications that enhance precision medicine [5]. 

The most common techniques of AI used in healthcare applications are knowledge and expert-

based systems. In cases where it's not possible to design expert systems due to inadequate 

knowledge, the collected data relating to a clinical case can be analyzed using machine learning 

techniques to systematically describe a clinical knowledge that can characterize the clinical 

condition of a disease or patient [5]. The techniques can also be applied in predicting respiratory 

diseases using the data collected by the IoT sensing devices. 

Some integration of IoT and AI in predicting respiratory diseases include the use of computed 

tomography analysis, x-ray image analysis, forced oscillation tests, lung sound analysis, and 

exhaled breath analysis [6]. Particularly today, the advances in chemical-based sensor technologies 
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enable the development of cheaper non-invasive embedded systems commonly known as e-nose 

[7] that sense volatile organic compounds (VOC) from collected breath profiles. However, breath 

AI analytics for respiratory disease prediction is still in its infancy due to the lack of enough 

datasets of breath prints [8]. Open datasets in healthcare are likely to continue being a challenge 

given the strict privacy requirements limiting open sharing and also the high costs involved in 

collecting, curating, and maintaining high-quality data.   

The availability of enough and quality datasets is an essential prerequisite in developing more 

accurate predictive machine learning (ML) models. Other conventional issues with health data sets 

include missing data, inconsistencies with datasets, and replicated data [9]. In the area of exhaled 

breath data, available datasets are based on traditional diagnostic methods. There are limited 

datasets collected from the emerging IoT sensing technologies which are also mostly closed due 

to privacy concerns hindering the development of better ML models for the prediction of 

respiratory diseases. The use of synthetic data is a possible solution to the problem of datasets that 

can enhance the rapid development and validation of better ML models for predicting respiratory 

diseases [10]. Good synthetic data captures the distributions and dependencies of a real dataset 

which at the same time preserves privacies. Open source tools can be used to generate synthetic 

data with precision and accuracy.  

Existing studies [11], [12] and commercial solutions [13] integrating IoT and ML for portable non-

invasive breath analysis use an overall system architecture design centered around the cloud, 

meaning that the breath biomarkers collected by IoT sensors need to be sent to the cloud where 

the disease prediction analytics are executed. However, considering the African context, especially 

in rural areas, such an online design solution is not viable due mainly to limited and costly internet 

connectivity and also energy consumption of wireless communication technologies. Therefore, an 

offline breath analysis solution is necessary.  By moving the AI analytics at the edge, a technique 

known as edge AI [14], the design will lead to reduced costs, enhanced privacy, real-time 

diagnosis, and portability to any location without the need for connectivity concerns. Fig 2. 

Illustrates a comparison between a cloud centric and edge centric AI models. With the Edge AI 

the ML intelligence is moved to the data source unlike in the cloud centric architecture where the 

data is transported to the cloud to enjoy from ML intelligence. 
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Fig. 2: Edge AI Vs Cloud AI Architecture 

It is in this context that this thesis presents a prototype design of an edge AI portable embedded 

respiratory disease prediction kit as a way to (1) enable offline free to use and regular checkups in 

home settings and (2) collect large curated datasets to enable the development of analytics 

achieving clinical-grade accuracy. We base our design on open-source prototyping toolsets and 

evaluate the edge AI inference using an open dataset of COPD as training data. Our design is 

scalable to other diseases as long as corresponding datasets are available. This study also explored 

the use of open-source tools to generate synthetic data for the training of an Edge AI model to 

predict COPD. The results were compared against a model based on real datasets as proof of the 

capabilities of using synthetic data for ML as a solution to the dataset problem. 

This thesis fits in the context of applying IoT and AI for detecting respiratory diseases from 

exhaled breath. The implementation and realization of IoT for detection and monitoring of 

respiratory diseases is needed in Rwanda given the risk of getting more severe symptoms of 

respiratory diseases resulting from household air pollution that is now also a major concern in the 

country. The proposed system will also go a long way in helping the health authorities collect 

breath data that can be used for further research and planning. 

1.1 Problem Statement 

With the population size, Africa witnesses a relatively high rate of respiratory mortality and 

morbidity. The most common and highly infectious respiratory diseases in Africa include 

pneumonia and tuberculosis. High rates of infection by non-communicable respiratory diseases 
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such as asthma and COPD have also been reported [15]. According to an article in the New Times, 

It was reported that over 3 million Rwandan nationals suffer from respiratory problems annually. 

This can be translated to 1 out of 4 persons suffering from respiratory-related diseases yearly [16]. 

With emerging highly contagious and deadly respiratory diseases like COVID-19, there is a need 

to have a regular and cheap diagnosis to avoid large spreading. Currently, diagnosis is only carried 

in healthcare facilities in case the infected patient goes for consultation, most likely when his/her 

symptoms become severe. Quick, cheap self-diagnostic tools that individuals can use at home are 

thus becoming important in our daily life.  

Even though there have been attempts to design devices that can be used for self-diagnostics, they 

are still faced with several challenges. To begin with, collecting biological information necessary 

for diagnosis involves using expensive equipment in the laboratories and consultation of few and 

busy medical experts, making people waste both valuable time and resources. Secondly, e     xisting 

commercial devices are either not tailored for home use or expensive for the African population 

(For example trio-smart [16] costs $289 per unit). In addition, the solutions are centered around 

cloud analytics, an approach that is not appropriate for implementation in Africa due to 

connectivity, power, and privacy challenges. It is reported in [17] that the penetration the internet 

in Africa is the least in the world with 170 million users translating to 18% of the population which 

is significantly lower than the global average of 30 percent. 

 

Fig. 3: Global Internet Penetration [17] 



  

6 | Page 

 

Fig. 3 gives a global view of internet penetration with African having the least perpetration at 18 

percent. There is therefore a need for a solution that will not only be portable but also affordable 

to the African population with the capability to diagnose respiratory diseases from home without 

relying on the cloud. 

1.2 Aims and Objectives 

1.2.1 Aims 

The aim of this research study is to design and prototype a smart portable respiratory disease 

diagnostic device for day-to-day use considering the African context challenges such as limited 

budget, connectivity and energy supply. This aim is to be achieved by leveraging the latest 

advances in open source IoT, edge computing and AI technologies running on edge devices known 

as Tiny ML.          

1.2.2 Specific Objectives 

The following specific objectives have been defined:  

I. To understand how respiratory diseases can be detected from exhaled breath,  

II. To identify IoT and embedded technologies that are used in sensing      exhaled breath 

signatures and transmitting them from edge devices to the cloud      

III. To identify open datasets for training ML model for respiratory disease detection and also 

explore ways to synthetically generate datasets while preserving original data patterns 

IV. To identify open-source AI platforms      that can be used to train ML targeted to be 

executed on limited real-time resources devices.       

V. To design, simulate and prototype  a smart non-invasive embedded personalized diagnostic 

kit for respiratory diseases. 

VI. Publish the results of our research to high quality conferences      

1.3 Hypothesis 

Our hypotheses were as follows; 1)There are existing open data sets that can be used to train an 

AI model to predict respiratory diseases from exhaled breath. 2) Open source technologies can be 

exploited to train an Artificial Intelligence Model and optimize it for the detection of respiratory 

diseases on an embedded device from exhaled breath. 
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1.4 Research Questions 

The study was guided by the following questions;  

I. How can respiratory diseases be detected from exhaled breath?  

II. How can IoT be integrated with AI to detect respiratory diseases from exhaled breath?      

III. How can AI models be trained to be deployed on embedded devices for inference?      

IV. How to detect anomalies in exhaled breath data before inferencing? The study targets to 

infer only human exhaled breaths 

V. How can an embedded system with local AI be simulated without a HW board?      

VI. How to trade-off the number of exhaled breath sensors with respect to inference accuracy 

and costs? 

1.5 Study Scope 

Due to limited resources, and availability of datasets for the training of an AI model, this study 

was evaluated on the prediction of COPD based on open datasets and synthetically generated data. 

1.6 Significance of the Study 

The system will be of benefit to the population at large by helping them to be aware of their 

respiratory health status, and in case of infections be able to seek medical attention as early as 

possible.  Such actions will lead to healthier and more productive citizens leading to economic 

growth. Hospitalization cases resulting from respiratory diseases will also be greatly reduced 

leading to fewer strains in the health sector. 

Health care professionals will spend their time on complex issues, therefore improving the care of 

the most in need. 

The solution will be of great value in the process of mass collection of exhaled breath data, 

complementing the few breath data that are collected in healthcare facilities. This will enable the 

training of efficient AI models for respiratory diseases. 
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1.7 Organization of the Document 

The rest of this document is organized as follows: The next chapter gives a review of related 

literature; Chapter 3 describes the methodology used in the study, the research process is outlined, 

the ML process, the edge AI pipeline, synthetic data generation and the system design 

methodology and materials also presented; Chapter 4 presents the system design and analysis, the 

system architecture, the system-level design, the simulation model, and embedded system layout 

are presented; Chapter 5 System Results and analysis, shows an evaluation in the prediction of 

COPD by outlining the model training, synthetic data model, the results obtained from both the 

cloud and the embedded simulated and real system; Chapter 6 Discussion, presents the analysis of 

trade-offs in different embedded system parameters and also presents a comparison of different 

models; A conclusion  the document by presenting the recommendations drawn from this study. 
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CHAPTER 2 

LITERATURE REVIEW 

In this section a review of related literature is presented showing the basis for the Integration IoT, 

ML, and Edge Computing to Predict Respiratory Diseases.  A state of the art on the use of exhaled 

breath data to predict respiratory diseases is given by; firstly, presenting commercial smart breath 

devices and related cloud services for respiratory disease detection, secondly, prototyping works 

that show the system architecture of the exhaled breath sensor, last but not least, a quick state of 

the art of remote analytics for breath data. The use of ML in predicting respiratory diseases from 

exhaled breath is also highlighted and finally, the use of synthetic data for ML is described. 

2.1 Breathomics: the science of exhaled breaths 

Breathomics can broadly be referred to as the metabolic study of exhaled breath. It mainly focuses 

on the analysis of the volatile organic compounds (VOCs) available in human exhaled breath [18]. 

The amount of VOCs varies with the health status of an individual, thus breathomics can be used 

in the noninvasive diagnosis of a range of diseases. This is achieved by either analyzing the 

quantities of specific disease biomarkers or finding patterns relating to abnormal metabolic 

processes [18]. The analysis of exhaled breath also has the potential of providing the status 

information on different metabolic activities taking place in the respiratory tract through the 

systemic circulation.  

A human breath database [19] is proposed to make available breath VOCs, biomedical data, and 

related references through manually correlating information and automatically extracting 

biomedical data from different sources. From [19] and [20] some of the identified common 

biomarkers for respiratory diseases include carbon monoxide, nitrogen oxides, and hydrogen 

peroxides. 

Given the fact that exhaled breath VOCs originate from the respiratory tract and are passed through 

the lungs during air circulations, they can be thus effective in the prediction and diagnosis of 

respiratory diseases.  VOCs found in exhaled breath can be used to differentiate patients suffering 

from respiratory disease and healthy control subjects and thus predict those with the disease by 

analyzing various disease biomarkers.  
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2.2 Solutions for predicting respiratory diseases from exhaled breath 

Commercial solutions that apply smart breath collection are coming up. First, the Spiro Nose [13] 

integrates electronic nose technology and spirometry for the diagnosis of inflammatory disease 

and cancer. The device measures exhaled breath in real-time and transmits data securely to the 

online breath base platform for automated analysis. Second, Breath Tracker Analyzer [21] is used 

to measure the levels of methane, hydrogen, and carbon dioxide in exhaled breath. The data is used 

by medical professionals in conjunction with other clinical factors known to them for diagnosis.  

Prototype solutions have also been proposed by different authors and innovators. To begin with, 

in [22] authors present AQTech which is an embedded system that can detect the total volatile 

organic compounds (VOCs) and carbon dioxide concentration from exhaled breath and also uses 

a pulse oximeter to collect the levels of oxygen in the blood. Second, Electronic noses (e-noses) 

are reviewed in [23]. They are based on a variety of sensor arrays with the capability of responding 

to VOCs and other odorant molecules. E-nose uses pattern recognition to distinguish different 

VOCs spectrum unlike the traditional methods of mass spectrometry and gas chromatography. In 

the survey [23] several e-nose related studies show that exhaled breath analysis and profiling can 

be used in the diagnosis of both respiratory and systemic diseases. IAQD proposed in [24] is an 

Internet of Things device that is aimed at detecting respiratory diseases by measuring the body 

temperature using an infrared temperature sensor and detecting volatile organic compounds and 

carbon dioxide concentration from exhaled breath using a gas sensor.  

Other recent studies on disease detection from Exhaled breath using IoT include; Online breath 

analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer 

[25], Development of a Compact, IoT-Enabled Electronic Nose for Breath Analysis [11], 

Microelectronic Gas sensors for Non-invasive Analysis of Exhaled Gases [20],  Detection Of 

Ketosis Using Non-Invasive Method [26]. Table 1 gives a summary of the most recent studies in 

the detection of diseases from exhaled breath. 
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Table 1: Disease detection from exhaled breath 

Recent studies  on disease detection from Exhaled breath using IoT 

Study Sensors Targeted 

Gases 

Methodology Database Disease 

Electronic 

Nose To 

Detect 

Patients with 

COPD From 

Exhaled 

Breath [23] 

TGS 826, 

SP-15A 

921, TGS 

821, SP-53 

729, TGS 

822 

Ammonia 

Propane, 

butane, 

Hydrogen, 

Hydrocarbon

s, 

Organic 

dissolvent 

agents 

Samples were 

taken from 

healthy and 

diagnosed 

patients 

Local 

database 

used 

COPD 

Online breath 

analysis using 

metal oxide 

semiconducto

r sensors 

(electronic 

nose) for 

diagnosis of 

lung cancer- 

[25] 

Self-

designed 

sensors 

Alkanes 

Toxic gases 

(CO, 

NH3.H2S, 

NO, CH4) 

OH 

containing 

compounds 

(VOCs, H2) 

  

Data from 

volunteers used 

as a training set 

to model 

prediction 

Not 

specified 

Lung Cancer 

Electronic 

nose dataset 

for COPD 

detection from 

smokers and 

healthy people 

through 

exhaled breath 

analysis [27] 

MQ-3, SP-

3, TGS 822, 

TGS 813, 

TGS 800, 

MQ-138, 

MQ-137, 

and MQ-

135 

  

  

  

Data collected 

from identified 

groups based on 

3 categories 

Labview 

V14 

COPD 
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Development 

of a Compact, 

IoT-Enabled 

Electronic 

Nose for 

Breath 

Analysis [11] 

CCS811, 

SGP30, 

BME680 

iAQ-Core 

ZMOD4410 

MiCS-6814 

TGS-8100 

TGS-2620 

AS-MLV-

P2 

NH3, TVOC, 

CO, H2, 

ethanol 

The system was 

tested by taking 

breath 

samples   before 

and after healthy 

volunteers took 

peppermint 

capsule 

Blink Used to prove 

the sensors are 

applicable in 

breath analysis 

Sensor 

System 

Development 

for Bronchitis 

Detection 

from Exhaled 

Breath-[12] 

tgs 2600 

SY-HS220 

LM35 

CO content, 

humidity, 

and 

temperature 

Tested with two 

patients 
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COPD Patient 

Monitoring 
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A VOC 
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OMNIACA

RE 

COPD 

Non-invasive 

Measurement 

of Blood 

Glucose by 

Breath 

Analysis [30] 

MQ138, 

MQ6, MQ3 

Acetone, 

Alcohol , 

Propane 

Data collected 

from patients 

and learning 

done 

Excel Blood Glucose 

These solutions recommend the use of gas sensors to detect disease biomarkers from exhaled 

breath with data being processed on local computers or cloud platforms. Such solutions have 

limitations because, (1) They depend on medical professionals for further examination, (2) some 

are based on local servers and thus not scalable, (3) the use of cloud-based solutions is dependent 

on connectivity and increases security risks. This, therefore, calls for ML models that can enable 

detection on the embedded devices. To do so enough datasets will be needed for the targeted 

diseases and therefore the need to use synthetic data. 
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2.3 Transforming exhaled breaths into data 

The first step towards the digitization of breath is sample collection. The collection of breath 

samples can be done by the use of polymeric bags, canisters, or sorbent tubes [31]. The use of 

disposable bags is recommended and where not possible nitrogen can be used as a cleaning agent. 

Breath samples can also be directly sampled into the analytical hardware. In [32], breath samples 

are collected in a custom-made tube in which the sensors are also placed. The levels of CO2 and 

TVOCs are measured in parts per million (ppm). In [33] commercial Tedlar bags are used to collect 

breath samples through a one-way valve with three samples collected per patient. The bags are 

cleaned with nitrogen flows before each sample collection.  

Different sensing technologies have been applied in recent studies.  In [22], a CSS811 air quality 

sensor is used to detect the total volatile organic compounds (TVOCs) and carbon dioxide (CO2) 

concentration from exhaled breath. A study in [7] uses the enose which is made of seven metal 

oxide semiconductor sensors that are present in duplicates both inside the sensing unit, to measure 

VOCs in exhaled breath, and outside the device to measure VOCs in air. In [33], a sensor array of 

six chemical gas sensors is used to measure VOC levels and operate at their optimal temperature.  

In [27] an array of 8 gas sensors, SP-3, MQ-3, TGS 822, MQ-138, MQ-137, TGS 813, TGS 800, 

and MQ-135, are used to detect exhaled breath measurements. In [25] analog semiconductor 

commercial gas sensors (MQ138, MQ6, and MQ3) were used in detecting VOCs from exhaled 

breath. In [11] MiCS-6814 Dual Sensor, TGS-8100 and TGS-2620 were used with a TGS 2600 

used in [12] These studies prove the capabilities of commercial gas sensors in detection breath 

VOCs. We conclude that gas sensor technologies are mature and can be relied on to digitize 

exhaled breaths. 

2.4 Breath Analytics 

Commercial services and databases have been created by medical companies. Some of which 

include the Breath Base Solution [34] which provides training for reliable and reproducible 

exhaled breath measurements and immediate analyses. Breath Biopsy Services [35] offers 

biomarker discovery and validation solutions by combining mass-spectrometry and breath analysis 

expertise. These and other commercial solutions are tailored to specific services and are also 

expensive for our use case. 
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Available open-source services include OpenChrom [36], open-source software for spectrometry, 

chromatography, and spectroscopy. OpenChrom is a vendor-independent software in which data 

from different systems can be imported and analyzed. BALSAM [37] is a web platform that 

simplifies and automates the process of breath analysis, offering features for peak detection, 

preprocessing, visualization, feature extraction, and pattern discovery. The use of such solutions 

may be exploited but not applicable to our solution given the fact that they are cloud-based making 

it difficult to implement in the African context where connectivity is a challenge. 

2.5 Using ML to predict respiratory diseases from exhaled breath datasets 

Different ML techniques have been applied in predicting respiratory diseases from exhaled breath 

datasets as noted in [11]. Data available for ML training determine the performance of the resulting 

analytics. The use of open datasets such as in [27] can be explored to design better algorithms with 

better performance metrics. 

In [23], authors studied Principal Component Analysis (PCA), a non-parametric statistical 

technique primarily used for dimensionality reduction in ML. In [25] the dataset was first taken 

thought the pre-processing phase and was then split into 70% training and 30% test sets, 

classification models were trained using the training data; while the test data was used for the 

estimation of prediction possibility using logistic regression. The latter was found to be an 

adequate data-processing approach. Furthermore, two linear regressions are used [20] to analyse 

exhaled breath data.  

In a review [8] it is noted that some of the popular ML models for respiratory disease prediction 

are cloud-based and include support vector machines (SVM), random forest, and artificial neural 

networks (ANN). In addition, it is observed that deep learning models such as convolution neural 

network (CNN) and recurrent neural network (RNN) are becoming more popular lately due to the 

availability of large labelled datasets, efficient training algorithms, and advances in parallel 

processing. 

When considering bandwidth-constrained or privacy-preserving scenarios, sending collected data 

from edge sensors to the cloud may respectively not be possible or allowed.    This calls for moving 

ML inference to the edge as reported in [38] which in addition decreases latency for inferencing. 

Edge AI is still a quite new research domain with a lot of open challenges.  



  

16 | Page 

 

2.6 Use of synthetic data generation for ML  

In [10] different methods are proposed for generating synthetic data. First, data perturbation is 

done by the addition of noise to the original dataset. Second, generative models can be applied to 

the data to capture correct distributions and relationships either by hand-coding using expert 

knowledge or inferring from real data by using Bayesian networks or neural networks. Generative 

Adversarial networks are also used for generating synthetic image data. The use of synthetic data 

techniques like SMOTE is used in dealing with unbalanced or small datasets and generate data 

points to supplement existing data [23]. Different open-source tools such as Mostly AI [39] are 

now available online that can be explored for faster generation of synthetic data in different fields 

of study.  

2.7 Conclusion  

The literature review supports the capability of diagnosis of respiratory diseases from exhaled 

breath and the need for the study. The commercial solutions are expensive and do not use open 

source technologies. Reviewed prototypes are also mainly based on local databases with some not 

being portable for home use. In addition, the existing solutions depend on cloud analytics, a 

technique that is not possible to use in the African context due to poor access and cost of 

connectivity in many regions. Moreover, Africa lacks datasets of exhaled breaths. The only way 

to build African exhaled breath big data is to bring such kinds of devices to homes at a cheap price 

and also further explore the viability of synthesizing exhaled breath data. 

In this thesis, we particularly focused on setting up a tool stack for rapid prototyping of edge AI 

applications and validated the inference accuracy on an open dataset and synthetically enhanced 

datasets for predicting COPD from exhaled breath. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

In this chapter the methodology, tools and process used to conduct the study are outlined. First 

presented are the steps undertaken to complete the study, this is followed by the AI model creation 

and synthetic data generation methods and last but not least the methods used in the prototype 

design and development presented.  

3.1 Research Process 

The research process began with an idea that prompted further interrogation by undertaking of a 

comprehensive literature review. This led to the topic of the study that was formulated based on 

the identified gaps from literature and existing solutions. The research proposal was then prepared 

and presented for approval. On approval the steps that followed included; 

 (1) State the art analysis 

 (2) Identifying prototyping resources (dataset, edge AI platform, synthetic data generator, virtual 

embedded simulator)  

(3) Setting up a prototyping tool stack  

(4) Training & Deploying edge AI model on Proteus  

(5) System design and experimentation on real embedded board  

(6) Analysis of results & challenges  

7) Thesis preparation and Publication of results. 

These process can be summarized as shown below. 
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Summary of the research process 
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3.2 Edge AI Process 

As for any ML process, the edge AI process presented in Fig. 4 also requires a dataset for training. 

We assumed that a dataset had been either collected using the same types of exhaled breath sensors 

as discussed early or synthetically generated. The next step was to train the dataset with an ML 

framework that can produce a model optimized for embedded processors known as the TinyML 

model. The resulting model, was packaged in the form of a software library, and then integrated 

into our overall application and compiled to the targeted processor architecture with the help of an 

integrated development environment (IDE). The resulting embedded executable was to be 

deployed on either an embedded simulator or the targeted board itself. In the simulation context, 

the performance of edge AI inference was validated by reading test data from a file and comparing 

the inference accuracy results with the one obtained by ML inference on the cloud using the 

training platform. 

Our tool stacks to implement the above process flow was composed of 3 development 

environments: 

● Edge Impulse: an open-source platform that can be used for the development of ML models 

for edge devices. It allows direct acquisition of data from the sensing device or uploading 

of collected data in various formats. Depending on the data different processing blocks are 

available for training. Different ML techniques may also be applied and in addition to the 

expert mode, custom processing blocks may be included. 

● STM32CubeIDE: a C/C++ IDE that allows for configuration of peripherals, code 

generation, and compilation of codes, with debug tools for STM32 microprocessors and 

microcontrollers. It’s based on GCC toolchain and Eclipse/CDT framework for 

development and GDB for debugging. Existing plugins can be integrated to complete the 

features of Eclipse IDE. It also helps save development and installation time through an 

all-in-one tool experience by integrating STM32CubeMX project creation functionalities 

and STM32 configuration. 

● Arduino IDE:  This is an open software that provides an easy way of writing codes and 

uploading the same to a wide variety of Arduino development boards. It can run on diffwrnt 
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operating systems including Windows, Linux and Mac OS. Java has been used to write the 

environment that is also based on processing and other (open source) software. 

 

 

Fig. 4. The Edge AI tool stack 

3.3 Machine Learning Process 

To assist in the process of training each of the data samples had an associated label. The raw data 

was first undertaken through a preprocessing stage in which it was cleaned and formatted to ensure 

that the used set is representative. Preprocessing was followed by the extraction of features from 

the dataset. Each extracted feature was associated with a label then saved in separate files. 

Backpropagation was then used to train the model using different features and the associated 

labels, with this technique several iterations were applied to update model parameters to increase 

the chances of predicting a label until an acceptable performance was reached before deployment 

to a device. Fig. 5 shows the machine learning process. 
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Fig. 5. Machine Learning Process 

3.4 Synthetic Data Generation 

To increase data sets in cases where there are low datasets, synthetic data was generated. The steps 

for synthetic data generation are presented in Fig 6. It starts with a sample raw data that is uploaded 

into the synthetic data platform in a CSV format and submission acknowledgment given to the 

user. This is followed by the provisioning step in which free computing resources are allocated, 

thereafter the encoding process in which data is transformed is done. After encoding, a deep neural 

network model is trained and on completion used to randomly draw a synthetic dataset. After 

generation, the accuracy and privacy of the data are analyzed and a quality assurance report is 

generated. 

 

Fig. 6. Synthetic Data Generation Steps 
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3.5 Anomaly detection  

For anomaly detection, we used a K-means anomaly detection learning block. With this, the 

selected features are taken and normalized with a standard scaler. A K-means clustering is then 

run over this feature space with the number of clusters provided and for all clusters found the 

center of the cluster is determined, and the radius. The classification data is again normalized, the 

closest cluster to the incoming data checked with the anomaly score being the distance to the 

closest cluster. 

3.6 Use of Dynamic Inference 

During experimentation, dynamic inference [20] was applied. This enabled the NN to adapt their 

parameters or structures to the given inputs, unlike with static models which parameters and 

computational graph are fixed at the inference stage. This leads to computational efficiency, 

adaptiveness, and accuracy. In our study, we used a sample-wise adaptive model that processes 

each sample by first checking for anomalies then after the NN classification. Fig. 7 shows the 

dynamic inference process. 

 

Fig. 7: Dynamic Inference process 
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3.7 System Design Method 

The Agile software development method was selected to the development of the embedded system 

given it evolutionary and iterative nature. This allowed the improvement of the system and the 

edge AI model with each iteration.  With this technique it was easy to decide on areas of 

improvement with each iteration. This made the development process rational and quick allowing 

the addressing of most pressing issues immediately. Figure 8 shows the steps involved in the agile 

development method 

 

Fig 8: Agile software development steps  
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CHAPTER 4 

SYSTEM ANALYSIS AND DESIGN 
In this chapter, the material and methods used in the study are given.  The first section gives the 

high-level system architecture. This is followed by a detailed embedded System-level design 

showing the system block diagram, Original Equipment Manufacturer (OEM) components, system 

Program Description Language (PDLs), use case diagrams, and system flow charts. Lastly, the 

modelling and layout of the embedded system are given. 

4.1 System Architecture 

4.1.1 High-level System Architecture 

Fig. 9 presents the high-level operational context of the solution. A given person breathes into a 

tube that canalizes the exhaled air towards VOC sensors. The VOC sensors then translate the 

detected breath sample into a digital format for further processing and analysis. An edge AI model 

is then used to first check for any anomalies in the collected sample and if there are no anomalies 

inference is done to determine the respiratory health status of the person. A status notification is 

then being given via an LCD screen and LEDs with a green LED is lit when healthy and a red 

LED lit if infections are detected. Additionally, a provision is included for sending feedback to a 

user’s mobile phone via Bluetooth technology. A heating pad is used to maintain the humidity 

within the sensing unit with a humidity sensor being used to monitor the humidity levels from time 

to time. 
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Fig. 9: High-level System Architecture 

4.1.2 IoT System Architecture 

The three-layer IoT Architecture [40] was selected for the solution. Fig. 10 shows the different 

layers of the system architecture and their functionalities 

 

Fig. 10: IoT System Architecture 

Health 

Status 

Person breaths 

into the tube 
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4.2 Embedded System-Level Design 

4.2.1 System Block Diagram 

As shown in Fig. 11, our embedded system is made up of 4 commercial gas sensors that can detect 

volatile organic compounds in exhaled breath (MQ-3 Alcohol Sensor, MQ-138 Formaldehyde 

Sensor, MQ-137 Ammonia Sensor, and MQ-135 Air Quality Sensor), an ARM Cortex 4 MCU for 

executing the inference locally, LEDs and an LCD screen to inform the user about the inference 

results in a user-friendly way. Furthermore, the system is equipped with a short-range wireless 

personal area network technology such as Bluetooth Low Energy (BLE) to potentially link the 

embedded device with the user’s mobile phone.  

Even though the proposed system may be powered by mains, our design relies mainly on a battery 

power supply to facilitate its portability and use anywhere, anytime.  

 

Fig. 11. System Block Diagram 

4.2.2 Hardware Components 

The main hardware components for the prototype include the following; 

● Arduino Nano BLE sense 

● MQ-135 Sensor 

● MQ-137 Sensor 

● MQ-3 Sensor 

● MQ-138 Sensor 

● LCD 

● RGB LED 
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BLE Module 
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A. Arduino Nano BLE sense 

The Arduino Nano 33 BLE sense is built upon the nRF52840 microcontroller. It runs on ARM 

Mbed OS making it appropriate for solutions that involve embedded machine learning. In addition, 

it has an integrated Bluetooth low energy module and a variety of sensors including temperature 

and humidity sensors [41]. Fig. 12 shows the pin layout for the board. 

 

Fig. 12: Arduino Nano BLE Sense pin layout 

B. MQ-3 Gas Sensor 

The MQ-3 module [42] can detect Benzine, Alcohol, Hexane, CH4, Carbon monoxide, and liquid 

petroleum gas. SnO2 is the sensitive material in an MQ-3 gas sensor, whose conductivity reduces 

based on the cleanliness of the air. When the sensor detects a targeted alcohol gas, the sensor’s 

conductivity rises as the concentration of the gas increases. There is the resistance across an A and 

B inside the sensor which varies on detection of a targeted gas. The targeted alcohol concentration 

is measured by measuring this resistance. The concentration of alcohol is inversely proportional 

to the resistance. The sensor and load resistor form a voltage divider, and the lower the sensor 

resistance, the higher the voltage reading will be. Fig. 13 below shows the sensor module pinout 
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Fig. 13: MQ-3 Module Pinout 

C. MQ-135 Gas sensor 

The MQ-135 Gas sensors [43] are used to measure air quality. They are suitable for measuring or 

detecting Alcohol, NH3, Smoke, NOx, CO2, Benzene, The MQ-135 sensor module has a digital 

Pin making it possible to operate without a microcontroller especially when trying to detect a 

particular gas. However, if there is a need to measure the concentration of a gas in PPM the analog 

pin is used. MQ-135 gas sensor applies SnO2 which has higher resistance in the clear air as a gas-

sensing material. The resistance of the gas sensor increases with an increase in polluting gases. 

Fig. 14 shows the pin layout for the MQ-135 sensor 

 

Fig. 14: MQ-135 Sensor pin layout 
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D. MQ-137 Gas Sensor 

The MQ-137 Gas sensor [43] can measure or detect the concentration of Carbon Mono-oxide (CO) 

and Ammonia (NH3). The MQ-137 sensor module has a digital Pin like the MQ-135 sensor 

making it possible to operate without a microcontroller especially when trying to detect a particular 

gas. However, if there is a need to measure the concentration of a gas in PPM the analog pin is 

used. The resistance of the gas sensor increases with an increase in polluting gases. Figure X shows 

the pin layout for the MQ-135 sensor. Fig. 15 shows the sensor pin layout. 

 

Fig. 15: MQ-137 Sensor pin layout 

 E. MQ-138 Gas Sensor 

The MQ-138 [44] can detect the levels of VOC in the air and air quality. SnO2 is used a sensitive 

material of the gas sensor given the ability to change conductivity based on air quality. the sensor’s 

conductivity increases with the gas concentration rising when VOCs are detected in a gas. The 

change of conductivity can be converted to correspond to the signal output of the gas concertation 

by using a simple circuit. The MQ138 gas sensor has a high sensitivity to acetone, toluene, alcohol, 

methanol, with the capability of monitoring hydrogen and other organic vapour. Fig. 16 show a 

representation of MQ135 gas sensor  
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Fig. 16: MQ-138 Sensor 

F. LCD Module 

An LCD screen is a module for electronic displays. Liquid crystal is used to produce visible 

images. The LCD comes in various shapes and sizes for example 16×2 LCD can display 2 lines 

with a maximum of 16 characters per line. In this LCD each character is displayed in a 5×7-pixel 

matrix [45]. Fig. 17 shows a 16x2 LCD pinout. 

 

Fig. 17: 16X2 LCD pinout diagram 

 

 

 



  

31 | Page 

 

4.2.3 System PDL  

Program description language (PDL) is free format English like text and was used to describe the 

flow of control and data in the system.  The program is initiated when device is turned ON with 

the initialization of variables and a display of welcome messages. A button rise ISR triggers the 

collection of breath samples while a button fall ISR triggers the anomaly detection and 

classification of the samples followed by a use notification on health status. A collection of 

keywords is used when writing the PDL to describe the operation of a program in a logical and 

stepwise manner as outlined below. 

 

  BEGIN 
   Initialize Variables 

   DOFOREVER 
      CALL WELCOME 

      Register ButtonRise_ISR 

      Display Instruction 

   ENDDO 

 END 

BEGIN/WELCOME 
   Display Device Brand 

   Display Welcome 

   Wait 5 Seconds 

   Clear LCD 

END/WELCOME 

BEGIN/BUTTONRISE_ISR 
      DO WHILE button is pressed 
            Display Instruction 
            Display 10 to 1 countdown  
            Sense breath VOC 
            Display Sampling Notification 
       ENDDO 
       Register ButtonFall_ISR 
END/BUTTON_ISR 

BEGIN/BUTTONFALL_ISR 
      Check sample for Anomaly 
      IF anomaly detected THEN 
         Display Anomaly Notification 
         Light Blue LED 
      ELSE 
         Run Classifier  
         Display health status 
         Send health status notification 
         IF person Healthy THEN 
            Light Green LED 
         ELSE 
            Light RED LED 
         ENDIF 
      ENDIF 
END/BUTTONFALL_ISR 
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4.2.4 System Flow Charts 

The flow charts for various sub-functions of the system are shown in Fig. 18. There is a main 

function with three sub routines; welcome, button rise ISR and button fall ISR. The main function 

initializes variables and then calls the welcome function that displays the welcome messages. 

Thereafter, the main function listens for button interrupts. The button rise ISR triggers the 

sampling process for exhaled breath while the button fall triggers the prediction model for the 

system. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: System flow charts 
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4.2.6 Use Case Diagram  

Fig. 19 shows the use case diagram for the system. The use case diagram presents a summary of 

the system's users (often referred to as actors) details and their anticipated interactions with the 

system. The main identified actors were the user, the system administrator and the embedded 

system. 

 

Fig. 19: Use case diagram 

4.3 Edge AI model training architecture 

The architecture for training our edge AI model is presented in Fig. 20. Raw data is taken into the 

pipeline and slashed into smaller windows, signal processing blocks are then used to for feature 

extraction, and then a learning block is used for the classification of the new data. For same inputs 

the same values are always returned by the Signal processing blocks and are used to make 

processing of raw data easier. The learning blocks learn from past experiences. The learning block 

has two parallel training processes, one for detecting abdominal observations and the second one 

for classifying observations as healthy against COPD or not.  
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Fig. 20. Architecture for Training our COPD Edge AI Model 

4.4 System Simulation 

The hardware configurations were done on STM32Cube IDE. Figures 21 and 22 show the clock 

configuration and pinout for the selected STM32 board respectively 

 

Fig. 21: STM32F401CEUx Clock Configuration 
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Fig. 22: STM32F401CEUx Board pinout 

Fig. 23 shows our simulation model on the Proteus design suite which enables the rapid design 

testing and layout of printed circuit boards based on a combination of ease of use and a powerful 

embedded-compliant feature set. Two options of displaying the results on LCD and virtual 

terminal were used for the simulation. Due to the unavailability of the required sensors on the 

Proteus design suit. Data was given through an input file on an SD card to represent data collection 

from sensors. 
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Fig. 23. Proteus Simulation Model 

4.4 Embedded Device Set-Up 

For the purposes of prototyping the MQ135 was used. The hardware components were connected 

as follows:  

A. MQ135 Sensor 

This sensor has 4 pins that were connected as follows: 

● 5V to the Arduino 5V pin, it supplies power to the module. 

● GND   connected to the GND pin on the Arduino, this is the ground pin. 

● DOUT was not used. 

● AOUT connected to A2 pin of the Arduino, this is the Analog output connected. 
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B. LED 

Connected the longer pin of RGB led is the cathode was connected to the GND of Arduino Nano 

33 BLE sense with the remaining three pins of the RGB led being connected to pins 13, 12, 11 of 

Arduino through a 220 ohm resistors. The resistors were used for preventing the excess amount of 

current from flowing through the RGB led. 

C. LCD 

The LCDs have a parallel interface; this means that the number of interface pins have to be 

manipulated by the microcontroller at once to control the display. The following pin make up the 

interface: 

● RS: A register selects pin that controls wherein the LCD's memory  

● R/W: A Read/Write pin that selects writing mode or reading mode 

● Enable: An Enable pin for enabling writing to the registers 

● Data Pin (D0 -D7): The state of the pins are either high or low and are the bits that are 

written or read from the registers 

● Others include power supply pins (+5V and Gnd) used to power the LCD, a display contrast 

pin (Vo) that is used are used to control the display contrast, and LED Backlight pins. 

When wiring the LCD screen to the Arduino board, the pins were connected as follows: 

● RS pin to digital pin 8 of the Arduino Nano 33 BLE sense 

● The LCD Enable pin to digital pin 7 pin 8 of the Arduino Nano 33 BLE sense 

● D4 pin to digital pin 6 pin 8 of the Arduino Nano 33 BLE sense 

● D5 pin to digital pin 5 pin 8 of the Arduino Nano 33 BLE sense 

● D6 pin digital pin 4 pin 8 of the Arduino Nano 33 BLE sense 

● D7 pin digital pin 3 pin 8 of the Arduino Nano 33 BLE sense 

● R/W pin GND pin 8 of the Arduino Nano 33 BLE sense 

● VSS pin GND pin 8 of Arduino Nano 33 BLE sense 

● VCC pin 5V pin 8 of the Arduino Nano 33 BLE sense 

● LED+ to 5V of the Arduino Nano 33 BLE sense through a 220-ohm resistor 

● LCD LED- to GND Additionally, wired a 10k pot to +5V and GND, with it's wiper 

(output) to LCD screens VO pin (pin3). 
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Fig 24 shows the embedded system image showing the different components 

Figure 24: Embedded system prototype  
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CHAPTER 6 

SYSTEM RESULTS AND ANALYSIS 

The evaluation of our rapid prototyping tool stack has experimented in the use case of predicting 

COPD disease from exhaled breaths.  This section first presents an evaluation using open data sets 

in which it introduces the input dataset, then presents our edge AI Tiny Model training process 

before describing the inference simulation results on a virtual and real embedded board. The 

second section presents experimentation of the use of synthetic data in cases of low datasets for 

the prediction of COPD. 

5.1 Edge AI model 

5.1.1 Open datasets 

The open dataset of COPD data used in our experiment has been found in, [8]. The dataset was 

collected using a device with an array of 8 gas sensors (SP-3 VOC sensor, MQ-3 Alcohol Sensor, 

TGS 822 Organic Solvent Vapor Sensor, MQ-138 Formaldehyde Sensor, MQ-137 Ammonia 

Sensor, TGS813 Combustible Gases Sensor (Methane, Propane, Iso-butane), TGS800 Carbon 

Monoxide Sensor, and MQ-135 Air Quality Sensor) that captured the respective gas measurements 

in exhaled breath. Figure 5 gives a sample of the collected data. The data collection campaign 

involved 10 healthy people, 20 people suffering from COPD, and 10 samples from the air. Two 

breath samples were taken from each participant making a total of 60. Each observation had 500 

samples at a sampling rate of 2ms with 16 observations per person. Figures 25 and table 2 give a 

representation of the sensing device and sample collected respectively. 

 

Fig. 25. Data collection device setup. The person breathes into the sensing unit. Data is collected 

by the sensors and sent wirelessly to a computer. 
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Table 2: Sample collected data. Data from all the 8 sensors recorded on a CSV format at a sample 

rate of 2ms 

  

5.1.2 Training Steps 

The first step is to send data to the Edge impulse service. Data was uploaded using a preformatted 

JSON format according to their specifications. Two sets of data were uploaded, a dataset of 

samples taken from healthy persons labeled as healthy and a dataset of samples from people who 

were diagnosed to be suffering from COPD labeled as COPD. Fig.26 shows the raw data plot for 

COPD. 

 

Fig. 26. Raw data - COPD 

In a second step, features were extracted from the uploaded data before training. This is done to 

anticipate the fact that during the inference process, feature extraction on raw data by a deep 

learning model would require more processing power than available in embedded systems.  
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In the last stage, the observations are fed to 2 parallel TinyML training blocks; the first one being 

for detecting abnormal observations like air samples and the second being for inferencing the 

COPD disease.  

5.1.3 Training parameters and output 

As configuration, we set the model cluster count to 32 with the threshold value of 0.30.  For the 

COPD inference, we used a Neural Network (NN) classifier composed of four layers with the input 

layer having 4,000 features, two dense layers of 20 and 10 neutrons respectively, and an output 

layer of 2 features. The window size was set to 1000ms. 

For both training runs, different numbers of training epochs were tested and obtained a good 

performance already at 50 epochs, with the learning rate set at 0.0005 and the minimum confidence 

rating at 0.60. A validation accuracy of 95.3% was achieved with a loss of 0.16%. Fig. 27 shows 

the confusion matrix for the validation set.  

 

Fig. 27: Confusion matrix for the model on the validation dataset. 

5.1.4 Inference on a virtual embedded board 

The edge AI model developed in the previous section was first packaged as a TinyML library 

targeting CMSIS-PACK compliant STM32 boards. Using STM32Cube as Integrated 

Development Environment (IDE), the resulting library was integrated into our COPD disease 

prediction application as a library dependency before compiling and building the full application 

into an embedded executable to be deployed in our embedded simulation platform, which was 

proteus. For simulation, we used the STM32F401CE board. 
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In our embedded simulation environment, the same test data used during the training phase were 

read from a CSV file. The output inference results are written back to an output CSV file to be 

used to compare the accuracy of the results obtained during the training phase in the cloud.  Fig. 

28 shows the inference result of one test observation on an LCD in proteus respectively. 

The comparison of inference simulation results and inference results obtained using the Edge 

Impulse cloud platform shows that the edge AI model achieves similar inference accuracy when 

running on embedded processors as well as on the cloud.   

 

Fig. 28: COPD infected Sample Simulation Output on both the LCD and the serial monitor. 

5.1.5 Inference on the real embedded board 

The edge AI model developed in the previous section was first packaged as a TinyML library 

targeting Arduino boards. Using Arduino IDE as the Integrated Development Environment (IDE), 

the resulting library is integrated into our COPD disease prediction application as a library 

dependency before compiling and building the full application into an embedded executable to be 

deployed in our embedded prototype based on Arduino Nano 33 BLE Sense.  

In our first inference experiment, the same test data used for inference in the cloud was applied for 

inference on the real board. Fig. 29 shows the inference result outputs from the embedded device. 
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Fig. 28: Inference results on real board 

This was followed by a collection of breath samples from a few volunteers who breathe into the 

prototype device and inference done to determine if they are healthy or not. Figure 29 shows a 

sample output from the embedded device. The sample result shows that the probability of the 

person being healthy was 84% with that of being infected at 16% hence the person is considered 

healthy and the LED lights green. 

 

Fig 29. Inference output from embedded device 
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The comparison of inference simulation results and inference results obtained using the Edge 

Impulse cloud platform shows that the edge AI model achieves similar inference accuracy when 

running on embedded processors as well as on the cloud.  Interestingly, our model successfully 

classified air samples as an anomaly. From the results, we conclude that our edge AI model is 

effective in predicting whether someone is infected by COPD or healthy from exhaled breath. 

Anomaly detection helped in avoiding the risk of the edge AI model inference of an input that is 

not a valid exhaled breath. In our case, this enabled us to identify the air samples cluster that is 

different from the exhaled breath cluster with an accuracy of 100% on the available test dataset, 

even though further validation with other datasets will be needed. 

5.1.6 Inference on local machines  

The model was also deployed as a WebAssembly library. This packaged the learning blocks, signal 

processing blocks and configuration as a single package. This package was included in web pages 

or as part Node.js application in user devices. This allowed the running of the prediction model 

locally without the need for compilation. For running on webpages python 3 was required to be 

installed in the devices and needed code written as shown in the appendices. Figure 30 and 31 give 

the outputs from the browser and Node.js respectively. 

 

Fig. 30: Browser prediction output 
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Fig. 31: Sample prediction output from Node.js 

5.2 Experimentation on use of synthetic data 

To prove the applicability of the use of synthetic data for cases of low data sets experimentation 

with synthetic data was done. This section presents the embedded machine learning process using 

the synthetic data for the prediction of COPD from exhaled breaths. 

5.2.1 Input: Raw COPD Dataset 

An open dataset for COPD [8] was used as the basis for the generation of synthetic data. This data 

set was collected by analyzing exhaled breath samples using an array of 8 gas sensors (SP-3, MQ-

3, TGS-822, MQ-138, MQ-137, TGS-813, TGS-800, and MQ-135). Data was collected at the rate 

of 500 samples per second with 20 samples from healthy people and 40 samples from those 

infected with COPD. From every person, 8 samples were taken. 

5.2.2 Synthetic Data Generation 

Mostly AI [21], an online synthetic data generation tool was used to generate the synthetic exhaled 

breath data. Raw data was first uploaded to the platform in a CSV format. The number of processed 

subjects and the number of generated subjects were then set at 80,000. Table parameters were then 

set to include data from all 8 sensors and the number of training epochs set at a maximum of 100 

with a batch size of 32 and a learning rate of 0.001. The generation process began following the 

synthetic data generation steps that included submission, provisioning, encoding, training, 
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generation, and analysis. The best model was reached at 74 epochs. The data was then synthesized 

and analyzed and a QA report was given. 

5.2.3 Synthetic Data Quality Measurement 

To ensure the quality of the generated synthetic data, an investigation was conducted to find out if 

the generated data was a statistical representation of the actual data and not an over-fitted copy of 

the real dataset. A holdout record was randomly selected from the actual dataset for reference 

because they have the same distribution but have not been seen during training. Even though the 

synthetic records should be as close as possible to the training data, their closeness to the holdout 

data should not be closer than expected since this would mean an information leak and not data 

pattern learning.  

The similarity levels were quantified by first investigating the Identical Match Share (IMS) and 

ensuring that the matches of the synthetic data with the training data were not significantly 

different from the matches with the hold out data. Secondly, a check was done to ensure that 

occurrences in the actual data set were also present in the synthetic dataset by investigating the 

overall distribution of their distance to closest records (DCR). This was done by comparing the 

quantities of empirical distribution functions using statistical set tests. Lastly, the Nearest Neighbor 

Distance Ratio (NNDR) was used to normalize the distance to the closest record to the overall 

density within a data space region, by dividing it by the distance to the 2nd closest record. A check 

was done to ensure that the NNDRs for synthetic records are not systematically any closer than 

expected from holdout records. The similarity-based tests are presented in fig. 32.  
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Fig. 32: similarity based and privacy tests [20] 

5.2.4 Embedded ML model generation 

The training process for the models followed the following steps. First, two different projects were 

created, one for the actual data model and the other for the synthetic data model. The data sets 

were first preformatted and a custom python script was used to create a JSON file for uploading 

to the edge impulse service. For each project, three sets of files were uploaded, one file with 

samples from healthy persons, one set with data from COPD-infected persons, and a test set that 

included 20% of raw data from each category. The holdout method as shown in fig. 33 was applied 

to randomly separate the uploaded 80% training data to 60% training set and 20% validation set. 

 



  

48 | Page 

 

 

Fig. 33. Holdout Method. Data divided into 60% training set, 20% validation set, and 20% test set 

 

The window size was set at 1000ms with a sampling rate of 2ms and a window size increase of 

1000ms. A raw data processing block was then added with the input axis from all the 8 sensors 

selected. A Neural Network (NN) learning block and K-means anomaly detection learning block 

were added with raw data as input and 3 output features (Health person, COPD Infected, and 

anomaly). Fig. 34 shows a raw data sample plot. 

 

Fig. 34. Raw data sample 
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The features from the data were extracted before the model training this was done to reduce the 

amount of processing power that will be needed to generate the features in an embedded system. 

Fig. 35 shows a sample of the generated features. 

 

Fig. 35. Generated synthetic data features 

The number of training epochs for both projects was set at 50 with a 0.0005 learning rate and 0.80 

minimum confidence rating. The neural network architectures were each composed of four layers; 

an input layer with 4,000 features, 2 dense layers with 10 and 20 neurons respectively and an 

output layer with 2 features. 

5.2.5 Synthetic data generation results 

A validation accuracy of 94.2% was achieved with a loss of 0.11% for the model based on a 

synthetically enhanced data set. Fig. 36 shows the confusion matrix for the validation set 

 

Fig. 36. Synthetic data model confusion matrix  
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CHAPTER 6 

DISCUSSIONS 

After validating the effectiveness of our edge AI process in predicting COPD disease directly on 

end-user embedded devices, this section discusses different trade-offs between edge AI inference 

accuracy and embedded real-time resources. This trade-off analysis is a basis to understand the 

importance of precision edge AI development that consists of co-designing the embedded 

hardware and the TinyML model. This co-design will be deeply explored in our future research.   

6.1 Real-time embedded processor specifications 

According to edge Impulse estimation, the generated TinyML model performs the inference within 

1ms and requires a memory of 1.5kB and 15.9kB respectively for peak RAM and ROM usage. On 

STM32cube compilation, it was observed that this tends to slightly increase with inference time 

up to 13ms, and memory of 18.7kB and 77.86 kB respectively for RAM and ROM. On the Arduino 

Nano 33 BLE sense board, the inferences time was 17ms  with a dynamic memory usage of 46kB 

and program storage space of 143kB. However, the used resources on both the simulator and the 

embedded device are still less than 20% of the available resources in the embedded devices making 

the model appropriate for such devices. Fig. 37 shows the real-time embedded device resource 

usage. 

 

Fig. 37: Real Time embedded device resource usage 
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The projected on device performance for the edge AI model based on open dataset data and that 

based on synthetic data were the same. A variation was only witnessed depending on the preferred 

optimization for the NN classifier. For the quantized(int8) model a RAM usage of 5.4Kb, ROM 

usage of 92.9Kb, and a latency of 12ms are projected while the unoptimized (float32) model a 

RAM usage of 17.0Kb, ROM usage of 327.7Kb, and a latency of 54ms are projected. This shows 

that the optimized edge AI model will use less energy and therefore a longer device lifespan. 

6.2 Impact of Preprocessing 

When raw data was used without pre-processing and deep learning was used to learn features an 

accuracy of 96.9% was achieved with an estimated on device performance of 5.4Kb peak RAM, 

94.9Kb ROM, and 12ms inference time. However, when the axis was flattened to a single value 

for each of the 500 samples per second accuracy of 95.3% is achieved with a better on device 

performance estimation of 1.5Kb RAM, 15.9Kb ROM, and inference time of 1ms. Fig. 38 shows 

the impact of feature reduction on accuracy and memory. 

 

Fig. 38: Effect of feature reduction on accuracy and memory. 
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6.3 Importance of different sensors in inference accuracy 

Another important question is to understand the importance of each of the 8 sensors on inference 

accuracy. Considering the worst case where only one sensor is used at run-time, the accuracy 

reduces to as low as 70% for a raw data-based model and 64.9% for a flattened based model. As 

the number of used sensors increases so does the inference accuracy at the cost of more RAM 

requirements. Fig. 39 shows the relative accuracy improvement for the raw-based model.  

 

Fig. 39: On-device performance as the number of sensors is increased 

Individually MQ sensors performed better than TGS and SP sensors on inference. Fig. 40 gives a 

comparison of individual inference performance by each sensor. Different combinations of 4 

sensors were combined based on the accuracy achieved by individual sensors with a combination 

of MQ sensors giving the best result during inference. With this, we can conclude that if there were 

constraints one would confidently use an array of 4 MQ sensors and still achieve good inference 

results. Fig. 41 shows the inference performance of different sensor combination 
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Fig. 40: Individual Sensor performance 

 

 

Fig. 41: Sensor combination performance 
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6.4 Applicability of Synthetic Data 

The training accuracy of 96.9% was achieved with the model based on the open dataset with an 

accuracy of 94.2% being achieved on the model based on synthetic data. Figure 42 and 43 gives 

the confusion matrices for the two models. When test data was applied both models correctly 

predicted healthy and COPD-infected cases. The results prove that synthetic data can be relied 

upon for the training of models for the prediction of respiratory diseases. 

 

Fig. 42: open dataset model confusion matrix 

 

 

Fig. 43: Synthetic data model confusion matrix 
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6.5 Comparison to related works 

A. Model Accuracy 

The model performs better than that used to analyze the dataset in, [8]. In the previous study, the 

PCA method was used in a standalone computer to analyze the dataset with an accuracy of 92% 

being achieved. This is below 95.3% accuracy for our model. 

B. Model Architecture and simulation 

Our model is the first to be implemented at the Edge for the prediction of COPD and can be 

deployed in resource-constrained embedded devices. We are also the first to simulate a machine 

learning model from edge impulse on proteus. 

C. Cost of the device 

The device cost is approximated at USD 10,000 this is cheaper than the available commercial 

solutions which cost over USD 200. In addition, there is no need for transmission of data to the 

cloud which will automat Illy lead to savings on energy and data charges as shown in the table 

below. It is assumed that a person uses the device once as day. 

 Active energy for data 

transmission via GSM 

Costs 

Our Edge based Solution 0 Purchase of device USD 100 

A cloud based Solution 2A*30 =60 A per month USD 6 per month for 

connectivity 

Dr. consultation fees USD 10 

per visit = 300 per month if 

visited daily 

Lab costs USD 10 per visit 

average =300 per month 

 

Totals= 606  

 

 

D. Portability for home use 

Due to the fact that our device does not need any internet connectivity, it is portable for use at 

home irrespective of the availability of internet connection 
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6.6 Synthetic data generation results 

From the holdout data, the Identical Match Share (IMS) was 1.9% with that of the synthetic data 

being 0.8%. This shows that the share of subjects within the synthetic data that matches an actual 

subject from the target data is not significantly bigger than the share that is to be expected when 

analyzing the target data itself.  

From the holdout data, the 5th percentile of the Distance to Closest Record (DCR) was 0.6 with 

that for the synthetic data being equal to 0.8. This shows that the normalized distance for synthetic 

subjects to their closest actual subject within the target data is not significantly closer than the 

distance that is to be expected when analyzing the target data itself. 

The Nearest Neighbor Distance Ratio (NNDR) for the 5th percentile of the holdout data was 0.6 

and 0.7 for the synthetic data. This means the distance ratio between nearest and second-nearest 

records for synthetic subjects to their closest actual subject within the target data is not significantly 

closer than the ratio that is to be expected when analyzing the target data itself. 

The overall accuracy achieved was 97.3% with a univariate distribution, the probability 

distribution of one random variable, of 99.7%, and a bivariate distribution, probability distribution 

of a random vector consisting of multiple random variables, of 97.3%. This confirms that Mostly 

AI is an effective platform and the generated synthetic data is representative of the raw data and 

can be depended upon in cases of law datasets 

6.7 Evaluation of synthetic data Model Performance on test data 

From the test set accuracy of 97.78% was achieved with the model based on the actual dataset with 

an accuracy of 93.33% being achieved on the model based on synthetic data when the same test 

data was used. Fig. 44 gives the confusion matrix test data classification based on the synthetic 

data-based model. The results prove that synthetic data can be relied upon for the training of 

models for the prediction of respiratory diseases. 
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Fig. 44: Synthetic data model test result 

6.8 Effect of data size on model Accuracy 

The performance of the models was also evaluated based on the size of the dataset. Fig. 45 shows 

a plot of accuracy against the size of datasets. The results show that the accuracy increases as the 

data size increases up to until an adequate amount of data is reached. This proves the need to 

synthetically enhance data in cases of low datasets. 

 

Fig. 45: A plot of data size vs accuracy of the model 
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CONCLUSION 

Respiratory disease is one of the main causes of death across the globe. The use of IoT and 

AI provide opportunities that can be explored for early prediction of the diseases, However, 

the development of better ML models for the prediction of respiratory diseases has been 

hindered by lack of enough datasets and privacy issues limiting access to data. This 

research thesis presents an embedded experimentation-driven methodology for designing 

and developing portable edge AI-based disease prediction kits, focusing as a starting point 

to early prediction of COPD from exhaled breath signatures before scaling to other 

respiratory diseases. From experimentation, we successfully validated the edge AI 

inference accuracy to predict COPD to be very similar to the optimal accuracy when using 

the cloud for inferencing. We analyzed the impact of varying different embedded real-time 

resources such as the number of exhaled breath sensors on both inference accuracy and 

embedded processor memory requirements.   

This study also explored the use of synthetic data as a solution to the lack of datasets. An 

evaluation was done with open data sets on COPD. Two models were trained one based on 

an open dataset and the other on synthetic data, with both models performing at almost the 

same accuracies of 96.9% and 94.2% respectively. This confirms the hypothesis that 

synthetic data could be used in cases of low datasets for better ML for the prediction of 

respiratory diseases. In addition, the study shows that TinyML can be used to train ML 

models for the prediction of respiratory diseases on an embedded device. The resulting 

model requires limited resources with the simulation result showing the possibilities for 

embedded inference. The implementation of the proposed solution will help overcome the 

problem of limited datasets in healthcare. This will lead to better ML models and thus less 

dependent on medical personnel and reduced costs. In addition, the prediction of 

respiratory diseases at the edge will ensure that the challenges of connectivity and privacy 

are addressed. 

We conclude that precision edge AI should go beyond optimization of embedded processor 

specs alone as done by edge AI model generation frameworks to consider the joint co-

design of the edge AI model (software) and the main embedded hardware components such 

as processor peripherals.     
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Future works will involve the collection of datasets from volunteers suffering from other 

respiratory diseases to predict more diseases. We will also explore synthetic data 

generation to produce artificial data for other respiratory diseases. 
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Appendix 3: Thread on inference simulation attracting many readers 

We were the first to simulate an Edge AI model created from edge impulse on proteus. We 

encountered challenges and had to hold discussion with the edge impulse CEO and other staff for 

almost a month to solve the problem. This thread has since April attracted over 600 views showing 

the impact of our experimentation. 

  


