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Abstract

The flow and double-diffusive instability in porous media has been studied in this work. The linear
perturbation theory has been utilised for both thermal convection and double-diffusive convection.
We found that for the thermal convection, below the critical Rayleigh number, the system is
stable and above that number the system is unstable. For the double-diffusive convection, the
stability transition has two different behaviour: when the concentration gradient is negative, the
perturbations are in exponential form. When it is positive, we observe the oscillatory mode. The
weakly non-linear stability analysis has been studied using the Galerkin approximation approach
and we found that for different values of Rayleigh number, the solutions bifurcate. Using numerical
simulations, we found that when the base state is unstable, the perturbations do not grow forever
but saturate at a finite amplitude; however the finite-amplitude solution is not a global attractor.
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1. Introduction and Literature Review

1.1 Introduction

Double-diffusive convection in a porous medium is interesting from both physical and mathemat-
ical standpoints. Physically, it is applied in the different area of geology and engineering. Mamou
and Vasseur (1999) and Pritchard and Richardson (2007) listed areas where double-diffusive
convection is applied: some of these are contaminant transport in saturated soil, underground
disposal of nuclear waste, heat transfer in geothermal reservoirs, in electro-chemical and drying
processes. Mathematically, it involves a variety of bifurcation structures and transitions to in-
stability where numerical simulations must be used to predict the amplitude of the bifurcated
solutions.

In this work, we intend to illustrate how flow responds to the perturbations of temperature
for thermal convection, and how flow responds to the perturbations of temperature and salt
concentration for double-diffusive convection. We will use both linear perturbation theory and a
weakly non-linear approximation method.

The work is organised as follows: in section two of chapter one, we review the background
of the double-diffusive convection problem and state some types of bifurcations. In chapter
two, we describe the governing equations, including Darcy’s law, the continuity equation and
transport equations for heat and salinity. The third chapter examines the thermal convection
by considering the Horton-Rogers-Lapwood problem, where the linear perturbation theory has
been introduced leading to linear stability analysis. We describe the competition of both thermal
diffusion and viscosity against buoyancy force in the thermal instability. In chapter four, we focus
on the main problem of double-diffusive convection using the linear stability analysis, where the
thermal gradient and salt concentration gradient may be in competition. After linear analysis, the
weakly non-linear problem is studied using the Galerkin approximation approach to investigate
whether the perturbations would grow forever or would be saturated at finite amplitudes. We use
numerical simulations to see the behaviour of the solutions. Finally in chapter five, we highlight
and summarise the work done so far.

1.2 Literature Review

Natural convection is the motion of a fluid without external effects applied to it, except the
gravitational force. Usually natural convection is caused by an applied temperature gradient
which makes the fluid density different in different places (Corson, 2012). The fluid near the hot
area becomes hot and less dense compared to the rest however it will rise. When it is moving
away from the hot area, the surrounding cooler fluid, more dense than the hot fluid, also moves,
approaching the hot boundary.

We have the fluid which is moving and it transports heat. There are two contributing phenomena
to the transportation of heat; conduction and convection. Since diffusion occurs rapidly compared
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to the convective motion, it tends to minimise the temperature difference. But convection occurs
slowly due to the buoyancy effect. Charru (2011) stated that there is a destabilising phenomenon
(buoyancy) and a stabilising one (thermal diffusion).

This phenomenon had become a point of interest when Benard in 1900, observed that the
thermal instability occurring in a layer of a fluid heated from below. Sixteen years later, in 1916
Rayleigh developed a theoretical requirement for the convection of fluid to begin occurring in
the layer of a fluid with free boundaries. He came up with a number which is proportional to
the gravitational acceleration, thermal expansion of the fluid, vertical temperature gradient and
inversely proportional to the kinematic viscosity of the fluid and the thermal diffusivity of the
fluid. The number is called the Rayleigh number Ra. He showed that the temperature gradient
has to be big enough so that the number exceeds a critical value for the instability to occur
(Kundu et al., 2012).

The thermal instability in the porous medium was firstly studied by Horton and Rogers (1945).
But instead of viscous fluid in the layer, they considered a porous medium saturated with a fluid of
uniform composition. Three years later, Lapwood (1948) considered in more detail the instability
analysis in a saturated porous medium. He found that the critical value for the Rayleigh number
is 4π2 (Phillips, 2009).

The linear perturbation theory is used to determine the conditions under which convection occurs.
We assume that the base state is at rest before being perturbed. Then the issue is to examine
how the equations reveal the decay or growth of the perturbations. The disturbances are very
small so that we neglect the higher order terms (Kundu et al., 2012).

In our dynamical stability analysis we deal with how the system responds to the temperature and
flow perturbations. We say that the system is dynamically stable if once we perturb it, it is able
to come back to its initial state (the disturbance dies away). Otherwise we say that the system
is dynamically unstable.

Charru (2011) illustrated the fundamental techniques to investigate the linear stability of a base
state in fluid flow. The first one is the derivation of the equations that govern the system under
consideration for small disturbances of base state. The second one is to apply linearisation and
determination of the normal modes, and then look for the dispersion relation. This relation con-
nects the wave-vector and growth rate (Godreche and Manneville, 1998). We consider the linear
equations to admit solutions that are exponential in space and in time. And the perturbations are
assumed to be the superposition of these solutions which are evolving independently. Thus we
may say that perturbations are normal modes due to the orthogonality of the sinusoidal functions.
When we introduce these normal modes into the linear equations, we obtain an algebraic system
whose determinant is required to vanish and from this condition, we obtain the dispersion relation
which becomes a focus of the stability analysis.

The hydrodynamic instability that involves two gradients, usually temperature gradient and
species concentration gradient, was first proposed by Stommel, Arons and Blanchard in 1956
(Turner, 1973). The detailed explanation of the problem was studied by Stern in 1960 (Kundu
et al., 2012). The double-diffusive instability in porous medium was firstly studied by Nield in
1968 and it was called a ’thermohaline’ phenomenon. He generalized the problem studied pre-
viously by Horton, Rogers and Lapwood (Nield and Bejan, 2006). In thermal convection the
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density difference is produced only by the temperature gradient. But in thermohaline convection,
the density difference depends on temperature and solute concentration.

Since we are dealing with instabilities, we will need the information about bifurcation from dy-
namical systems. When the system has a parameter for which when it varies, the behaviour of
the solutions changes, we call this effect the bifurcation. The critical value of the parameters that
corresponds to this change is called a bifurcation point (Drazin, 2002). There are different types
of bifurcations. Here we are interested in the pitchfork bifurcation and saddle-node bifurcation.
Strogatz (1994) stated that these kinds of bifurcations are common to physical problems that
experience symmetry in their behaviour. We have two types of pitchfork bifurcations. The first
one is called a supercritical pitchfork bifurcation. This kind of bifurcation may appear when one
solution splits into more than one solutions after passing through the bifurcation point. The
second one is a sub-critical pitchfork bifurcation where many solutions merge into one solution
after passing through the bifurcation point. For a saddle-node bifurcation, more than one solution
grow after a saddle-node point, where before that point there were no solution (See section 3
from Strogatz (1994) for more about these types of bifurcations).



2. Governing equations of fluid flow in
porous media

In this section the equations that govern the flow of viscous fluid in a saturated porous medium,
when temperature and salt are taken into account, are presented.

A porous medium is a material that contains empty spaces, called pores. This kind of medium
has properties such as porosity and permeability. Porosity can be defined as the volume ratio
between the volume of pores and the total volume of the material (Kumar, 2012). Permeability
is the measure of the ability of a material to allow fluid to pass through. O’Brien et al. (2007)
noted that there is a correlation between porosity and permeability. But this is an empirical result
rather than the relation from the definition. In this work we will denote the permeability of the
porous medium by K and porosity will be denoted by φ.

In this model, we assume that the porosity does not evolve with time. We assume also that the
pores are much larger than the size of molecules in the fluid, but the pores are much smaller than
the volume of the considered matrix. An example is the pores in sandstone which typically have
a size of 0.1mm (Phillips, 2009). This allows us to treat the medium as a continuum.

2.1 Darcy’s law

Darcy’s law (Phillips 2009, section 2.4) is an equation that connects the flow rate, the pressure
difference and the buoyancy term. This equation in a porous medium replaces the Navier-Stokes
momentum equation. When the fluid is in motion the transport velocity −→u is given as

−→u = −K
µ

(−→
∇p+ ρg

−→
k
)
, (2.1.1)

where K is the permeability of the medium and µ is the viscosity of the fluid and
−→
k is the unit

vector in the upward direction. According to Phillips (2009, section 4.2), the density is related
to the temperature T and the salinity S (see section 2.3) and reference density ρ0 by

ρ = ρ0(1− αT + βS), (2.1.2)

where ρ0 is the reference density, α is the thermal expansion and β the salinity expansion. This
linear model is valid for small changes in temperature T and in salinity S. When there is no
salinity the density ρ reduces to

ρ = ρ0(1− αT ). (2.1.3)
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2.2 The continuity equation for mass balance

When a fluid is flowing the conservation of total mass must be considered. For incompressible
fluid, where density stays the same, and when the porosity of the medium is constant, we have

−→
∇ .−→u = 0. (2.2.1)

This is the mass conservation for incompressible fluid flow (Phillips 2009, section 2.3). This
assumption that the fluid has a constant density in the continuity equation is called the Boussinesq
approximation. In 1903, Boussinesq discussed an approximation which can be described as follows:
when there is a small perturbation to the reference state, the pressure and density will be affected.
However the small changes in the density cause only very small corrections in the inertial properties
of the fluid. These corrections are neglected since they are small. The same small changes in the
density also affect the buoyancy and this effect cannot be neglected (see equations (2.1.2) and
(2.1.3)). The same approximation applies for other fluid properties like viscosity and diffusion
(Turner, 1973). In this work we will treat the fluid as being of constant density except in the
buoyancy term ρg which drives the convection.

2.3 Transport equations for heat and for dissolved chemical
species (salinity)

In the saturated porous medium, heat can be transported through both the matrix and the fluid
present in the pores. The salt can diffuse only through the fluid in the pores. Additionally when
the fluid is flowing the temperature and the salt may also be transported.

2.3.1 Thermal energy balance equation.

The transport of heat in the fluid can be expressed in terms of the heat balance. We consider a
system which contains matrix and flowing fluid. The matrix has specific heat capacity CsM and
density ρM , while the fluid has the specific heat capacity CsF and the density ρF .

When there is no heat source present in the system, we can write the energy balance equation as

M
∂T

∂t
+−→u .

−→
∇T = κ∇2T. (2.3.1)

This is known as the thermal energy balance equation (Phillips 2009, section 2.7). Here T is

the temperature, −→u is the velocity of fluid flow, M = (ρC)M
(ρC)F

is the matrix-to-fluid heat capacity

ratio and the thermal diffusivity κ = κM
(ρC)F

is the ratio between thermal conductivity of saturated
medium and heat capacity of the fluid.

2.3.2 Dissolved species balance equation.

We still have the same system composed by the matrix with porosity φ and the homogeneous
fluid with density ρ. When salt diffusion process is occurring, we consider the effect to be in
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spatial distribution, so that the concentration will change in space and in time. In this context
we define the concentration c as mass of dissolved solute per unit volume of solution, rather than
per unit mass (Phillips, 2009). We define the salinity S as the ratio between concentration c and
density ρ,

S =
c

ρ
. (2.3.2)

Now the balance equation defining the process in the system is described by the equation

∂S

∂t
+ v.
−→
∇S = D∇2S. (2.3.3)

This is known as the dissolved species balance equation (Phillips 2009, section 2.8). Here, S is
the salinity, D is the macroscopic dispersion coefficient and the mean fluid velocity v is a ratio
between the transport velocity −→u to porosity φ. The above equation can be written as

φ
∂S

∂t
+−→u .

−→
∇S = φD∇2S. (2.3.4)

This is the dissolved species balance equation which will be considered in the rest of this work.
It is important to note that the salt diffusion D is much smaller than the thermal diffusion κ.

Phillips (2009) listed several factors that cause the salt to diffuse slowly in water. The first one
is that the porosity is less than one (φ < 1). The second is, there is small molecular diffusivity
of salt on water. The last one is that the pathways made by pores are not linear, but sinuous.



3. Horton-Rogers-Lapwood problem
(Rayleigh-Darcy instability)

Consider the Figure 3.1, the porous layer has height h, the temperature decreases in the upward
z−direction. It is heated from below and cooled from the top. The instability for the porous layer
heated from below and cooled from above, is known as the Horton-Rogers-Lapwood problem.
It was first discussed by Horton and Rogers (1945) and later in 1948, Lapwood explained this
problem in more detail (Lapwood, 1948). In this chapter, the linear perturbation theory is used
to investigate this problem.

Figure 3.1: A sketch for porous layer of height h, the blue color represents water, white circles
represent sandstone. Temperature is high at the bottom and low at the top.

The top of the layer is cooler than the bottom. The mathematics behind this situation is derived
by considering the governing equations (2.1.1), (2.1.3), (2.2.1) and (2.3.1) which are Darcy’s law,
mass conservation for incompressible flows, and thermal energy balance respectively. We are
introducing linear perturbation theory in section 3.1 to analyse the problem presented here.

If we define the velocity vector −→u = (u, v, w) and
−→
∇H =

−→
i ∂
∂x

+
−→
j ∂
∂y

to be the horizontal

gradient operator then we can write equation (2.1.1) as

−→
∇Hp = − µ

K
−→u H ,

∂p

∂z
= − µ

K
w − ρg. (3.0.1)

Consider a saturated porous layer with thickness h which is heated from below. The fluid at
the bottom possesses higher temperature than the fluid near the top. This results in a smaller
density at the bottom than at the top. The fluid at the bottom will tend to move up by buoyancy.
The diffusion will influence the hot molecules to diffuse away due to temperature difference and
viscosity will also resist the motion. Hence instability will occur if the buoyancy is strong enough
relative to viscosity and diffusion.

The temperature T0 at the top of the layer is lower than the temperature at the bottom by
a temperature difference ∆T . So the conditions at the boundaries are such that at the lower
boundary : z = 0, w = 0 and T = T0 + ∆T , and the top boundary : z = h, w = 0 and T = T0.
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For steady state of rest: u = v = w = 0, p = p0(z), and ∂p0
∂z

= −ρg. For uniform temperature
gradient, we have the following equality

dT

dz
= −∆T

h
. (3.0.2)

Integrating this equation from bottom temperature Ti = T0 + ∆T to temperature T , we have

T − Ti = −∆T

h
z. (3.0.3)

Substituting for the value of Ti, we have the temperature dependence on z, as

T = T0 +
(

1− z

h

)
∆T, (3.0.4)

so that at z = 0, T = T0 + ∆T while at z = h, T = T0.

3.1 Perturbations of steady state of rest

The steady state is perturbed, with perturbations introduced in the velocity, temperature and
pressure. The perturbations are small variations in space and in time. The quantities denoted
with prime are small (and the prime does not indicate differentiation) since we are linearising
about the basic state.

−→u = 0 +−→u ′(x, y, z, t), (3.1.1)

p = p0(z) + p′(x, y, z, t), (3.1.2)

T = T0 +
(

1− z

h

)
∆T + T ′(x, y, z, t). (3.1.3)

We have −→
∇ .−→u ′ = 0. (3.1.4)

Taking the horizontal gradient of p = p0(z) + p′(x, y, z, t), we have

−→
∇Hp =

−→
∇Hp0(z) +

−→
∇Hp

′ =
−→
∇Hp

′. (3.1.5)

This implies
−→
∇Hp

′ = − µ
K
−→u ′H , (3.1.6)

where −→u ′H = (u′, v′) is the vector composed by the horizontal components of the velocity −→u ′,
which implies −→u ′ = −→u ′H + w′

−→
k .

From p = p0(z) + p′(x, y, z, t), we have p′ = p− p0. Differentiating with respect to z, and using
equations (3.0.1) and (3.1.2), we have

∂p′

∂z
= − µ

K
w′ − gρ0

(
1− α

(
T0 +

(
1− z

h

)
∆T
))

+ gρ0αT
′ − ∂p0

∂z
. (3.1.7)
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And using
∂p0

∂z
= −gρ0

(
1− α(T0 + (1− z

h
)∆T )

)
, (3.1.8)

we have
∂p′

∂z
= − µ

K
w′ + gρ0αT

′. (3.1.9)

Equations (3.1.5) and (3.1.9) are combined to get

−→
∇p′ = − µ

K
−→u ′ + gρ0αT

′−→k . (3.1.10)

Taking the curl of equation (3.1.10) and using the result that
−→
∇ × (

−→
∇p′) = 0, we have

µ

K

−→
∇ ×−→u ′ + gρ0α

−→
∇ ×

(
T ′
−→
k
)

= 0. (3.1.11)

By considering the equation (2.3.1) and introducing the perturbation from equations (3.1.1) and
(3.1.3) and since only T ′ and −→u ′ are not constant, we have

M
∂T ′

∂t
+
−→
u′ .
−→
∇T ′ −−→u ′.

−→
∇
(z∆T

h

)
= κ∇2T ′. (3.1.12)

Expanding the third term on the left hand side of equation (3.1.12), we write

M
∂T ′

∂t
+
−→
u′ .
−→
∇T ′ − w′∆T

h
= κ∇2T ′. (3.1.13)

Since −→u ′.
−→
∇T ′ is a product of small quantities, we can neglect it, so our set of equations becomes

M
∂T ′

∂t
− w′∆T

h
= κ∇2T ′. (3.1.14)

We consider only two-dimensional perturbations in the (x, z) plane, with zero velocity in the
y−direction. In this context, components of the velocity can be defined in terms of a stream-
function Ψ′ as

u′ =
∂Ψ′

∂z
and w′ = −∂Ψ′

∂x
, (3.1.15)

so that
−→
∇ .−→u = 0 is automatically satisfied.

Now the differential equations (3.1.14) and (3.1.11) become

− µ

K

(
∂2Ψ′

∂z2
+
∂2Ψ′

∂x2

)
− gρ0α

∂T ′

∂x
= 0, (3.1.16)

and

M
∂T ′

∂t
+
∂Ψ′

∂x

∆T

h
= κ∇2T ′. (3.1.17)

We still have the boundary conditions that T ′ = ∂Ψ′

∂x
= w′ = 0 at z = 0 and at z = h.
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The differential equations (3.1.16) and (3.1.17) are linear, since there is no product of depen-
dent variables. We consider the solution as a superposition of the Fourier modes which evolve
independently. For sinusoidal imposed perturbations, we are looking for the separable solutions
in the form

T ′ = T̂ exp (ikx). exp (nt)F (z) and Ψ′ = Ψ̂ exp (ikx). exp (nt)G(z), (3.1.18)

where the coefficients T̂ and Ψ̂ are complex and we consider the real part to represent the physical
quantities. The functions F (z) and G(z) are real functions without loss of generality.

If we are able to understand how these modes evolve, we can express n in terms of other parameters
then we are able to identify the dominant term that can grow faster or decay faster, using the
linear stability analysis.

We substitute the expressions of T ′ and that of Ψ′ in equations (3.1.16) and (3.1.17), we have

− µ

K
Ψ̂

(
−k2G+

d2G

dz2

)
− gρ0αikT̂F = 0, (3.1.19)

and

MnT̂F +
∆T

h
ikΨ̂G = κ

(
−k2F +

d2F

dz2

)
T̂ (3.1.20)

respectively.

The separation of variables gives us the two set of equations as

1

F

(
−k2G+

d2G

dz2

)
= constant, (3.1.21)

G

F
= constant, (3.1.22)

and
1

F

(
−k2F +

d2F

dz2

)
= constant. (3.1.23)

Without loss of generality, we take G = F and then we write

1

G

(
−k2G+

d2G

dz2

)
= constant. (3.1.24)

Considering the real solutions of equation (3.1.24), we have

G(z) = A sin (mz) +B cos (mz) = F (z), for some m ∈ R. (3.1.25)

Using the boundary conditions which apply only to real variables, we have that

Re
(
T̂F (z) exp (ikx+ nt)

)
= 0 at z = 0, which implies that F (0) = 0, hence B = 0,

(3.1.26)
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and

Re
(
T̂F (z) exp (ikx+ nt)

)
= 0 at z = h,⇐⇒ F (h) = 0, hence m =

m∗π

h
for some m∗ ∈ Z.

(3.1.27)
Then we write temperature T ′ as

T ′ = A sin

(
m∗πz

h

)
exp (ikx+ nt). (3.1.28)

These boundary conditions are also satisfied for Ψ′ and we write it with a different constant as

Ψ′ = B sin

(
m∗πz

h

)
exp (ikx+ nt). (3.1.29)

At this stage we introduce the dimensionless quantities k∗, m∗∗ and n∗ defined by m∗∗ = m∗h
so that m∗ = m∗∗

h
, k∗ = kh so that k = k∗

h
and n∗ = h2Mn

κ
so that n = n∗κ

h2M
. This implies that

the solutions in equations (3.1.28) and (3.1.29) are updated to be

T ′ = A sin

(
m∗∗πz

h

)
exp

(
i
k∗

h
x+

n∗κ

h2M
t

)
and Ψ′ = B sin

(
m∗∗πz

h

)
exp

(
i
k∗

h
x+

n∗κ

h2M
t

)
.

(3.1.30)
Putting T ′ and Ψ′ in equation (3.1.16), and rearranging, simplifying the sinusoidal and exponential
terms, we have

µ

K

(
k∗2

h2
+
m∗∗2π2

h2

)
B − gρ0α

ik∗

h
A = 0. (3.1.31)

Putting T ′ and Ψ′ in equation (3.1.17), and simplifying the similar terms, after rearranging, we
have

ik∗

h

∆T

h
B +

(
n∗κ

h2
+ κ

k∗2

h2
+ κ

m∗∗2π2

h2

)
A = 0. (3.1.32)

Considering equation (3.1.31) and equation (3.1.32) simultaneously, we can use the determinant
which is required to vanish so that we have non-trivial solution. Thus, we have∣∣∣∣ µK (k

∗2

h2
+ m∗∗2π2

h2
) −igρ0α

k∗

h
ik∗

h
∆T
h

(n
∗κ
h2

+ κk
∗2

h2
+ κm

∗∗2π2

h2
)

∣∣∣∣ = 0.

From this determinant we have

µ

K

(k∗2
h2

+
m∗∗2π2

h2

)(n∗κ
h2

+ κ
k∗2

h2
+ κ

m∗∗2π2

h2

)
− k∗2

h3
gρ0α∆T = 0. (3.1.33)

Expanding the product and dividing both sides by µ
h4K

(
k∗2 +m∗∗2π2

)
κ, we have

n∗ =
k∗2

(k∗2 +m∗∗2π2)

Kgρ0αh∆T

κµ
− (k∗2 +m∗∗2π2). (3.1.34)

Using the relation between kinematic viscosity ν and dynamic viscosity µ, with the relation ν = µ
ρ0
,

and rearranging, we have

n∗ =
k∗2

(k∗2 +m∗∗2π2)
Ra− (k∗2 +m∗∗2π2), (3.1.35)

where Ra = Kgαh∆T
κν

is known as the Rayleigh number (Phillips, 2009).
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3.2 Critical conditions for instability

Since this number n∗ is real, it can be negative or positive. When it is negative, n∗ < 0, this
tells us that the perturbations will die away as time goes to infinity. This means that the basic
state is stable. When it is positive, n∗ > 0, the perturbations will grow exponentially with time
which means that the flow will experience instability. Now we need to know the critical value

when n∗ = 0, this will happen when Ra = (k∗2+m∗∗2π2)2

k∗2
.

Let us define the function Ra(k∗,m∗∗) with variables k∗ and m∗∗ as

Ra(k∗,m∗∗) =
(k∗2 +m∗∗2π2)2

k∗2
. (3.2.1)

We need to minimise the function Ra(k∗,m∗∗) over integer values of m∗∗ and over all real values
of k∗ by differentiating with respect to k∗. So we have

∂Ra(k∗,m∗∗)

∂k∗
= 2k∗ − 2m∗∗4π4

k∗3
. (3.2.2)

Setting ∂Ra
∂k∗

= 0, we have

k∗ − m∗∗4π4

k∗3
= 0. (3.2.3)

This is implies that
k∗ = m∗∗π. (3.2.4)

Substituting this value of k∗ into equation (3.2.1), we have

Ra(k∗,m∗∗) = 4m∗∗2π2. (3.2.5)

For minimum value of m∗∗ = 1, we have

Ra(k∗,m∗∗) = Racritical = 4π2 ≈ 39.43, (3.2.6)

(see section 6.1 from (Nield and Bejan, 2006)). The states with small perturbations that produce
Rayleigh number Ra . 39.43 is stable. When the Rayleigh number exceeds the critical value the
flow becomes unstable.

3.3 Temperature and stream-function solutions after linear
stability analysis

We are interested in plotting the temperature distribution and the flow of the fluid. To do this
we need to know the constants A and B in terms of the parameters under consideration.

The linear stability analysis discussed above shows that the critical value of the Rayleigh number
is 4π2. Below this critical value of the Rayleigh number (with n∗ < 0), the perturbations will
decay. The perturbations above this critical number (with n∗ > 0) will grow and the system
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will be unstable. The vertical and horizontal wave-numbers were minimized to be k∗ = π and
m∗∗ = 1 respectively, for n∗ = 0 .

When we substitute these minimized values in equation (3.1.31) and work in units such that
A = 1, we find B to be complex

B = gα
kh

ν2π
i. (3.3.1)

Using the expression for Ra we can write this coefficient as

B = (Ra)i
κ

2π∆T
. (3.3.2)

Since the considered critical value of Ra is 4π2, then B = i2πκ
∆T
. Substituting A and B in equation

(3.1.28) and (3.1.29), and decomposing the exponentials after setting n∗ = 0 for marginal state,
we have

T ′ = sin
(πz
h

)(
cos
(πx
h

)
+ i sin

(πx
h

))
and Ψ′ = i

2πκ

∆T
sin
(πz
h

)(
cos
(πx
h

)
+ i sin

(πx
h

))
.

(3.3.3)
Considering the real part for physical quantities, we have

T ′ = sin
(πz
h

)
cos
(πx
h

)
and Ψ′ = −2πκ

∆T
sin
(πz
h

)
sin
(πx
h

)
. (3.3.4)

We consider the combination of background temperature gradient of base state and its pertur-
bation as

T = T0 + (1− z/h) ∆T + ε sin
(πz
h

)
cos
(πx
h

)
, (3.3.5)

where ε� 1. The horizontal and vertical components of the velocity are provided by substituting
equation (3.3.4) into equation (3.1.15) as follow

u′ = − 2κ

∆T

π2

h
cos
(πz
h

)
sin
(πx
h

)
and w′ =

2κ

∆T

π2

h
sin
(πz
h

)
cos
(πx
h

)
. (3.3.6)

The stream-function from equation (3.3.4) is plotted in Figure 3.2 with the perturbed background
temperature distribution from equation (3.3.5) as well. Figure 3.2 represents the cellular patterns
that appear as the fluid experiences convection due to density difference. The flow in Figure
3.3 can be interpreted relating to how the temperature is high or low. Where there is a peak
of temperature, the flow is upward, see at x = ±2 and at x = 0. Where there is a trough of
temperature, the flow is downward see at x = ±1. Then the flow completes the circulation, as
it is shown by the vector field, in the horizontal flow.

In fact, as temperature increases, hot fluid moves upward into a cooler area and gradually loses
its heat. As it continues to move, it experiences the temperature difference and deviates until
it becomes tangential to the top boundary. It continues to deviate in the downward motion to
complete the circulation where it becomes tangential to the bottom boundary.
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Figure 3.2: Background colour scale:The orange color at top for low and pink
at the bottom for high temperature; lines are contours of Ψ′, i.e streamlines
in the (x, z) plane for Ra = 4π2, the value of ε = 0.2.

Figure 3.3: Background colour scale:The orange color at top for low and pink
at the bottom for high temperature ; vectors show (u′, w′) in the (x, z) plane
for Ra = 4π2, the value of ε = 0.2.



4. Double-Diffusive Convection

In this section, the double-diffusive convection that involves thermal and salinity gradients is
described and analysed using linear perturbation theory. The non-linear analysis is also studied
using the Galerkin approximation method. Figure 4.1 shows the system: the porous layer has
height h; the thermal and salinity gradients are allowed to be negative or positive. They diffuse
but at different rates.

Figure 4.1: A sketch for porous layer with height h, the blue color represents water, white circles
represent matrix like sandstone. Here ∆T or ∆S can be negative or positive.

4.1 Linear stability analysis

We say that the system experiences double diffusion when both heat and salt diffuse. The
diffusivity of salt in liquid (say water) is small compared to that of heat (Kundu et al., 2012).
We assume that the temperature gradient and salinity gradient are in the vertical direction.

The system that we are considering is the same as that in chapter 3, except that there is
salt present in the fluid located in the pores. We consider the density of the fluid to depend
on temperature and salinity as presented in equation (2.1.2). But now both the temperature
gradient and salinity gradient may be either positive or negative.

The steady state of rest of the system is given by u = v = w = 0, p = p0(z), ∂p0
∂z

= −ρg.

The temperature depends on z as provided in equation (3.0.4), the salinity also depends on z as

S = S0 +
(

1− z

h

)
∆S, (4.1.1)

so that at the lower boundary we have T = T0 + ∆T, S = S0 + ∆S, while at the upper boundary
T = T0, S = S0.

15
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4.1.1 Perturbation of the steady state of rest.
The small perturbations give the equations (3.1.1)− (3.1.3) and an addition of salinity as

S = S0 +
(

1− z

h

)
∆S + S ′(x, y, z, t). (4.1.2)

Consider equation (3.1.10), and replace the density by its equivalent from equation (2.1.2), we
have

∂p′

∂z
= − µ

K
w − ρ0g (1− αT + βS)− ∂p0

∂z
. (4.1.3)

After introducing the perturbations to T and S and cancelling the terms relating to ∂p0
∂z

, we have

∂p′

∂z
= − µ

K
w + ρ0gαT

′ − ρ0gβS
′. (4.1.4)

Then we have the equation (3.1.10) as

−→
∇p′ = − µ

K
−→u + (ρ0gαT

′ − ρ0gβS
′)
−→
k . (4.1.5)

If we take the curl of this equation we obtain

µ

K

−→
∇ ×−→u +

−→
∇ ×

(
(ρ0gαT

′ − ρ0gβS
′)
−→
k
)

= 0. (4.1.6)

Let us introduce perturbations to equation (2.3.4), we have

φ
∂
(
S0 +

(
1− z

h

)
∆S + S ′

)
∂t

+−→u ′.
−→
∇
(
S0 +

(
1− z

h

)
∆S + S ′

)
= φD∇2

(
S0 +

(
1− z

h

)
∆S + S ′

)
.

(4.1.7)
Only S ′ and −→u ′ are not constant, so we have

φ
∂S ′

∂t
+−→u ′.

−→
∇S ′ −−→u ′.

−→
∇(

z∆S

h
) = φD∇2S ′. (4.1.8)

We neglect −→u ′.
−→
∇S ′ because it is a product of two small quantities, and write

φ
∂S ′

∂t
−−→u ′.

−→
∇
(
z∆S

h

)
= φD∇2S ′. (4.1.9)

Using −→u ′ = (u′, v′, w′) and
−→
∇( z∆S

h
) = (0, 0, ∆S

h
), we write

φ
∂S ′

∂t
− w′∆S

h
= φD∇2S ′. (4.1.10)

Introducing the streamfunction ψ′ as we did in chapter 3, we get the following set of equations

∂2ψ′

∂x2
+
∂2ψ′

∂z2
=
K

µ
ρ0g

(
−α∂T

′

∂x
+ β

∂S ′

∂x

)
, (4.1.11)

M
∂T ′

∂t
+
∂ψ′

∂x

∆T

h
= κ∇2T ′, (4.1.12)
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φ
∂S ′

∂t
+
∂ψ′

∂x

∆S

h
= φD∇2S ′. (4.1.13)

We define according to Phillips (2009), the dimensionless variables σ∗, θ∗, Ψ∗, t∗, x∗ and z∗ such
that

S = σ∗∆S, T ′ = θ∗∆T, ψ′ =
K

µ
ρ0ghα∆TΨ∗, t =

h2

κ
t∗ and (x, z) = h(x∗, z∗). (4.1.14)

Here, σ∗ represents the salinity in dimensionless analysis, T ∗ represents the temperature, Ψ∗

represents the stream function, t∗ represents time and (x∗, z∗) are the horizontal and vertical
coordinates respectively.

Substituting equation (4.1.14) into equation (4.1.11), we have

∂2Ψ∗

∂x∗2
+
∂2Ψ∗

∂z∗2
= − ∂θ

∂x∗
+
β∆S

α∆T

∂σ∗

∂x∗
. (4.1.15)

Applying the transformations to equation (4.1.12), we have

M∆T
κ

h2

∂θ∗

∂t∗
+

(∆T )2

h

K

µ
ρ0gα

∂Ψ∗

∂x∗
= κ

∆T

h2
∇2θ∗. (4.1.16)

Dividing equation (4.1.16) by κ∆T
h2

and introducing kinematic viscosity ν = µ
ρ0

, we have

M
∂θ∗

∂t∗
+
K

νκ
ghα∆T

∂Ψ∗

∂x∗
= ∇2θ∗. (4.1.17)

This can be written as

M
∂θ∗

∂t∗
+ (Ra)

∂Ψ∗

∂x∗
= ∇2θ∗, (4.1.18)

where Ra = K
νκ
ghα∆T is the Rayleigh number.

Applying again the transformations to equation (4.1.13) and dividing both sides by κ∆S
h2

, we have

φ
∂σ∗

∂t∗
+ (Ra)

∂Ψ∗

∂x∗
= φLe∇2σ∗, (4.1.19)

where for fixed temperature and salinity, at z∗ = 0 and at z∗ = 1, θ∗ = σ∗ = 0,Ψ∗ = 0.
Le = D

κ
is called the Lewis number, which is typically small and of order of 10−2 but we can take

Le = O(10−1) for plotting purposes.

Proceeding as in chapter 3, the solutions of equations (4.1.15), (4.1.18) and (4.1.19) have the
form

θ∗ = A1 sin(m∗πz∗)eik
∗πx∗ent

∗
, (4.1.20)

Ψ∗ = B1 sin(m∗πz∗)eik
∗πx∗ent

∗
, (4.1.21)

and
σ∗ = C1 sin(m∗πz∗)eik

∗πx∗ent
∗
, (4.1.22)
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where A1, B1 and C1 are real constants. Replacing these solutions in (4.1.15), (4.1.18) and
(4.1.19), and after simplification we get

ik∗πA1 − ik∗π
β∆S

α∆T
C1 − π2

(
k∗2 +m∗2

)
B1 = 0, (4.1.23)(

Mn+ π2
(
k∗2 +m∗2

))
A1 + i(Ra)k∗πB1 = 0, (4.1.24)(

φn+ φLeπ2
(
k∗2 +m∗2

))
C1 + i(Ra)k∗πB1 = 0. (4.1.25)

Solving simultaneously the system from equations (4.1.23), (4.1.24) and (4.1.25), we require that
the determinant vanish,∣∣∣∣∣∣

ik∗π −ik∗π β∆S
α∆T

−π2 (k∗2 +m∗2)
Mn+ π2 (k∗2 +m∗2) 0 i(Ra)k∗π

0 φn+ φLeπ2 (k∗2 +m∗2) i(Ra)k∗π

∣∣∣∣∣∣ = 0.

The determinant expansion gives

k∗2π2(Ra)φ
(
n+ Le

(
k∗2 +m∗2

))
− k∗2π2(Ra)

β∆S

α∆T

(
Mn+ π2

(
k∗2 +m∗2

))
−π2

(
k∗2 +m∗2

) (
Mn+ π2

(
k∗2 +m∗2

)) (
φn+ φπ2Le

(
k∗2 +m∗2

))
= 0.

Expanding the product we have

k∗2π2φ(Ra)n+ Lek∗2π4φ(Ra)
(
k∗2 +m∗2

)
− k∗2π2(Ra)

β∆S

α∆T
Mn− k∗2π4(Ra)

β∆S

α∆T

(
k∗2 +m∗2

)
−π2

(
k∗2 +m∗2

)
Mφn2 − π4

(
k∗2 +m∗2

)2
φn− π6

(
k∗2 +m∗2

)3
φLe− π4

(
k∗2 +m∗2

)2
φLeMn = 0

Dividing by −φπ2 (k∗2 +m∗2) and grouping the terms together, we have

Mn2 +

(
k∗2(Ra)

(k∗2 +m∗2)

(
−1 +

β∆S

α∆T

M

φ

)
+ π2

(
k∗2 +m∗2

)
+ π2

(
k∗2 +m∗2

)
LeM

)
n

−Lek∗2π2(Ra) + k∗2π2(Ra)
β∆S

α∆T

1

φ
+ π4

(
k∗2 +m∗2

)2
Le = 0.

(4.1.26)

Equation (4.1.1) can be written in the form of quadratic equation in n as

an2 + bn+ c = 0, (4.1.27)

where
a = M, (4.1.28)

b =
k∗2(Ra)

(k∗2 +m∗2)

(
−1 +

β∆S

α∆T

M

φ

)
+ π2

(
k∗2 +m∗2

)
+ π2

(
k∗2 +m∗2

)
LeM (4.1.29)

and

c = −Lek∗2π2(Ra) + k∗2π2(Ra)
β∆S

α∆T

1

φ
+ π4

(
k∗2 +m∗2

)2
Le. (4.1.30)
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4.1.2 Double-diffusive stability analysis.
From the equation (4.1.27), let us define

Ras = (Ra)
β∆S

α∆T
(4.1.31)

so that

b = − k∗2(Ra)

(k∗2 +m∗2)
+

k∗2Ras
(k∗2 +m∗2)

M

φ
+ π2

(
k∗2 +m∗2

)
(1 + LeM) (4.1.32)

and

c = −Lek∗2π2(Ra) +
k∗2π2

φ
Ras + π4

(
k∗2 +m∗2

)2
Le. (4.1.33)

The quadratic equation (4.1.27) has the solutions n+ and n− as

n± =
−b±

√
b2 − 4ac

2a
(4.1.34)

We must consider two cases for transition to instability. The first case is when b2 − 4ac > 0, we
have n+ and n− as purely real.

But n− < n+, so when n+ < 0 for all k∗,m∗ the base state is stable, while if n+ > 0 for some
k∗ and m∗, the base state is unstable.

The stability boundaries that separate stable regions from unstable one is at n+ = 0,

−b+
√
b2 − 4ac

2a
= 0⇐⇒ b =

√
b2 − 4ac⇐⇒ 4ac = 0⇐⇒ c = 0 ( since 4a > 0) . (4.1.35)

The condition c = 0 means that

− Leφk∗2π2(Ra) +
k∗2π2

φ
Ras = −π4

(
k∗2 +m∗2

)2
Le. (4.1.36)

Then we have the line defined by

L1 ≡ Ra =
1

φLe
Ras +

π2 (k∗2 +m∗2)
2

k∗2
. (4.1.37)

The intersection of line L1 with the Ras−axis is at the point

(Ras0, 0) =

(
−π

2 (k∗2 +m∗2)Leφ

k∗2
, 0

)
. (4.1.38)

The intersection of line L1 with the Ra−axis is at the point

(0, Ra0) =

(
0,
π2 (k∗2 +m∗2)

k∗2

)
. (4.1.39)
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The second case is when b2 − 4ac ≤ 0, n+ and n− are complex numbers. We write

n± =
−b± i

√
4ac− b2

2a
. (4.1.40)

Here the real parts for n+ and for n− are equal to

Re(n+) = Re(n−) = − b

2a
. (4.1.41)

If b > 0, then Re(n+) < 0 since a > 0, so the base state is stable to this perturbation. If b < 0,
then the base state is unstable to this perturbation.

Then the boundary of the stable region is at Re(n+) = 0, which means that

− b

2a
= 0 =⇒ b = 0. (4.1.42)

Using the condition b = 0, we have

− k∗2(Ra)

(k∗2 +m∗2)
+

k∗2Ras
(k∗2 +m∗2)

M

φ
= −π2

(
k∗2 +m∗2

)
(1 + LeM). (4.1.43)

Then we have the line defined by

L2 ≡ Ra =
M

φ
Ras +

π2 (k∗2 +m∗2)
2

k∗2
(1 + LeM) . (4.1.44)

The intersection of line L2 with the Ras−axis is at the point

(Ras0, 0) =

(
−π

2 (k∗2 +m∗2)

k∗2
φ

M
(1 + LeM), 0

)
. (4.1.45)

The intersection of line L2 with the Ra−axis is at the point

(0, Ra0) =

(
0,
π2 (k∗2 +m∗2)

k∗2
(1 + LeM)

)
. (4.1.46)

We have to minimize the line L1 and L2 over k∗ and m∗ to obtain the minimum value for Ra.
Let us differentiate L1 with respect to k∗.

∂L1

∂k∗
= π2

(
2k∗ − 2m∗4

k∗3

)
= 0. (4.1.47)

This gives
k∗4 = m∗4 which implies that k∗ = m∗. (4.1.48)

We differentiate L2 with respect to k∗ to obtain the same relation between k∗ and m∗.

Since m∗ is an integer and m∗ 6= 0 for non-trivial solutions, the lowest value that it can take is
m∗ = 1. This implies that k∗ = 1 from the minimization condition.
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At this stage the line equations L1 and L2 have the minimized expressions

L1min ≡ Ra1
min =

Ras
φLe

+ 4π2, (4.1.49)

and

L2min ≡ Ra2
min =

MRas
φ

+ 4π2 (1 + LeM) . (4.1.50)

4.1.3 Solutions for marginally stable modes.
We want to plot the temperature function and the flow field in the (x, z) plane. Therefore we
need to find out the coefficients A1, B1 and C1 of equations (4.1.20), (4.1.21) and (4.1.22). Since
the roots n± = nr ± ini, firstly we consider where the minimized values k∗ = m∗ = 1 are for
nr = ni = 0 and we can work in unit such that A1 = 1. Substituting this value of A1 in the
equation (4.1.24), we get the expression for B1 to be

B1 =
2π

Ra1
min

i. (4.1.51)

Substituting this value of B1 into equation (4.1.25), we get the expression for C1 to be

C1 =
1

φLe
. (4.1.52)

Hence the equations (4.1.20), (4.1.21) and (4.1.22) will be

θ∗ = sin(πz∗) (cos(πx∗) + i sin(πx∗)) , (4.1.53)

Ψ∗ = i
2π

Ra1
min

sin(πz∗) (cos(πx∗) + i sin(πx∗)) , (4.1.54)

and

σ∗ =
1

φLe
sin(πz∗) (cos(πx∗) + i sin(πx∗)) . (4.1.55)

By considering the real parts for physical quantities, we have

θ∗ = sin(πz∗) cos(πx∗), (4.1.56)

Ψ∗ = − 2π

Ra1
min

sin(πz∗) sin(πx∗), (4.1.57)

and

σ∗ =
1

φLe
sin(πz∗) cos(πx∗). (4.1.58)

We have a line L1 that gives the minimized value of Ra1
min. Substituting this minimum value of

Ramin into equation (4.1.49), we obtain the streamfunction Ψ∗ as

Ψ∗ = − 2π(
Ras
φLe

+ 4π2
) sin(πz∗) sin(πx∗). (4.1.59)
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The horizontal and vertical velocity components are

u′ = − 2π2(
Ras
φLe

+ 4π2
) cos(πz∗) sin(πx∗), (4.1.60)

w′ =
2π2(

Ras
φLe

+ 4π2
) sin(πz∗) cos(πx∗). (4.1.61)

Secondly, we are considering real part of n to be zero and the imaginary part to be different
from zero, where the minimized values k∗ = m∗ = 1 are for nr = 0 but ni 6= 0. We use these
conditions to find the coefficients A1, B1 and C1. Again we can work in units such that A1 = 1.
Then

ni =

√
|4ac− b2|

2a
, (4.1.62)

where the minimized values for a, b and c are

a = M , b = −Ra
2

+
RasM

2φ
+ 2π2(1 + LeM) and c = −Leπ2Ra+ π2Ras

φ
+ 4π4Le (4.1.63)

respectively.

Now we substitute the value of A1 in the equation (4.1.24) to find B1. So we have

iMni + 2π2
iRaπB1 = 0. (4.1.64)

This is

B1 = −Mni
Raπ

+ i
2π

Ra
. (4.1.65)

Substituting this value of B1 in the equation (4.1.25) to find the coefficient C1, we get

(ini + 2Leπ2)φC1 + iRaπ(−Mni
Raπ

+ i
2π

Ra
) = 0. (4.1.66)

This is

C1 =
iMni + 2π

(ini + 2Leπ2)φ
. (4.1.67)

By conjugating the complex number in the denominator, we have

C1 =
(iMni + 2π)

(ini + 2Leπ2)φ

(−ini + 2Leπ2)

(−ini + 2Leπ2)
. (4.1.68)

Then we have

C1 =
Mn2

i + 4Leπ4

(n2
i + (2Leπ2)2)φ

+ i
2MniLeπ

2 − 2π2ni
(n2

i + (2Leπ2)2)φ
. (4.1.69)

Substituting these values of A1, B1 and C1 in the set of equations (4.1.20)− (4.1.22), we have
the temperature as

θ∗ = sin (πz∗) exp (iπx∗). exp (nt∗). (4.1.70)
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Since n = ±ni, we have

θ∗ = sin (πz∗) exp (iπx∗) (exp (init
∗) + exp (−init∗)) . (4.1.71)

This is
θ∗ = 2 sin (πz∗) (cos (πx∗) + i sin (πx∗)) cos (nit) . (4.1.72)

We consider the real part of this function to obtain the physical quantity. The we have

θ∗ = 2 sin (πz∗) cos (πx∗) cos (nit) . (4.1.73)

Then the streamfunction Ψ∗ will become

Ψ∗ = B0
1 sin (πz∗) exp (iπx∗) exp (init

∗) +B1
1 sin (πz∗) exp (iπx∗) exp (−init∗), (4.1.74)

where B0
1 and B1

1 are the constants. Replacing the expressions of these coefficients B0
1 and B1

1 ,
we have

Ψ∗ =

(
−Mni
Raπ

+ i
2π

Ra

)
sin (πz∗) (cos (πx∗) + i sin (πx∗)) (cos (nit

∗) + i sin (nit
∗))

+

(
Mni
Raπ

+ i
2π

Ra

)
sin (πz∗) (cos (πx∗) + i sin (πx∗)) (cos (nit

∗)− i sin (nit
∗)) . (4.1.75)

Expanding and collecting like terms we have

Ψ∗ = i
4π

Ra
sin (πz∗) cos (πx∗) cos (nit

∗)− i2Mni
Raπ

sin (πz∗) cos (πx∗) sin (nit
∗)

− 4π

Ra
sin (πz∗) sin (πx∗) cos (nit

∗) +
2Mni
Raπ

sin (πz∗) sin (πx∗) sin (nit
∗) . (4.1.76)

Taking the real part for the physical quantity, we have

Ψ∗ = − 4π

Ra
sin (πz∗) sin (πx∗) cos (nit

∗) +
2Mni
Raπ

sin (πz∗) sin (πx∗) sin (nit
∗) . (4.1.77)

The horizontal and vertical vector components u′ and w′ are

u′ = −4π2

Ra
cos (πz∗) sin (πx∗) cos (nit

∗) +
2Mni
Raπ

sin (πz∗) sin (πx∗) sin (nit
∗) , (4.1.78)

w′ =
4π2

Ra
sin (πz∗) cos (πx∗) cos (nit

∗) +
2Mni
Raπ

sin (πz∗) sin (πx∗) sin (nit
∗) . (4.1.79)

The concentration will be

σ∗ =

(
Mn2

i + 4Leπ4

(n2
i + (2Leπ2)2)φ

+ i
2MniLeπ

2 − 2π2ni
(n2

i + (2Leπ2)2)φ

)
sin(πz∗)×

(cos(πx∗) + i sin(πx∗)) (cos(nit
∗) + i sin(nit

∗))

+

(
Mn2

i + 4Leπ4

(n2
i + (2Leπ2)2)φ

− i2MniLeπ
2 − 2π2ni

(n2
i + (2Leπ2)2)φ

)
sin(πz∗)× (4.1.80)

(cos(πx∗) + i sin(πx∗)) (cos(nit
∗)− i sin(nit

∗)) .
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Also expanding and collecting like terms we have,

σ∗ =
2Mn2

i + 4Leπ4

(n2
i + (2Leπ2)2)φ

sin(πz∗) cos(πx∗) cos(nit
∗)−2MniLeπ

2 − 2π2ni
(n2

i + (2Leπ2)2)φ
sin(πz∗) cos(πx∗) sin(nit

∗)

+i
2MniLeπ

2 − 2π2ni
(n2

i + (2Leπ2)2)φ
sin(πz∗) sin(πx∗) cos(nit

∗)−i2MniLeπ
2 − 2π2ni

(n2
i + (2Leπ2)2)φ

sin(πz∗) sin(πx∗) sin(nit
∗).

(4.1.81)
Taking the real part for the physical quantity, we have

σ∗ =

(
2Mn2

i + 4Leπ4

(n2
i + (2Leπ2)2)φ

cos(nit
∗)− 2MniLeπ

2 − 2π2ni
(n2

i + (2Leπ2)2)φ
sin(nit

∗)

)
sin(πz∗) cos(πx∗).

(4.1.82)

4.1.4 Linear stability results.
The stability diagram for double-diffusive convection drawn in Figure 4.2 describes the situation
where the fluid can be stable or unstable. This figure contains four quadrants. We will use
equations (2.1.2), (3.0.4) and (4.1.1) to locate the temperature salinity of water within the
saturated porous layer. In the first quadrant Ras > 0, which says that salinity gradient is
negative, while Ra is positive, means that the thermal gradient is negative. This says that cold
fresh water overlies the hot salty water. The second quadrant has negative thermal gradient
and positive salinity. Here cold salty water overlies the hot fresh water. The third quadrant has
positive thermal and salt gradients. This means that hot salty water overlies cold fresh water.
The last quadrant has positive thermal gradient and negative salinity gradient. Here hot fresh
water overlies cold salty water.

Figure 4.2: Stability diagram for double-diffusive convection in (Ras, Ra) plane

We have to consider the stability boundaries on which Re(n+) = 0, where n+ is defined by the
equation (4.1.40). This boundary consists of two lines. We have the red line L2 which is from
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the root n+ of the quadratic equation when its imaginary part is not zero. The line L1 in green
represents the root n+ when it is purely real.

Any point below L1 and L2 is in the stable region. Any other point in the (Ras, Ra) plane is
in the unstable region as indicated in Figure 4.2. Points belonging to the right hand part of line
L2 are neutrally stable (also called ’marginal state’), as are the points belonging to the left hand
part of L1.

When the state of the system is passing from the stable region to the unstable region, two
crucial things may happen. The first one is when the system is passing from the stable region to
the unstable region through line L1, where the root n+ is real, the perturbation starts to grow
exponentially; this is called direct onset. We can have this situation in the third quadrant where
hot, salty water overlies the cold fresh water. Consider a hot, salty fluid element which is displaced
downward. Since the temperature diffuses faster, it will lose temperature but it will remain with
its salt concentration. Then it will be more dense than its surroundings and will continue to
descend. Since the surrounding is viscous fluid, the viscosity will tend to stop the flow and it
is called a stabilising effect however, when the salinity forces the flow, is called a destabilising
effect. Phillips (2009) discussed that when a small region of a fluid is moved upward, it becomes
hotter compared to its surrounding although it remains fresh. It will therefore possess less density
which will allow it to continue the upward motion. This kind of motion produces the effect called
fingering which was discussed by Turner (1973).

The second way for instability to develop is that at the onset, the flow is oscillatory. This is
observed when the state of the system is passing from stable region to unstable region through
line L2. This is happening in the first quadrant where cold fresh water overlies hot salty water.
In this case the growth rate n+, is complex and can be represented as n+ = nr + ini, where nr
is the real part and ni is the imaginary part. The real part contributes to the growth or decay of
the oscillation depending on whether we are in the unstable or the stable region. The imaginary
part contributes to the oscillation. When the system is passing through line L2, we will say that
it is oscillatory onset. The fluid element becomes hot, it will be displaced upward and it will lose
its temperature little by little but its salt concentration will remain the same. Hence it will be
heavier than the surroundings. Eventually, it will tend to move back due to buoyancy, it will then
oscillate.

The two Figures 4.3 and 4.4 illustrate the flow pattern at the onset of the convection. The flow
is in the third quadrant, hot salty water overlies the cold fresh water. In Figure 4.4 at a point
x = ±1, the flow is upward: this is where the contour is perturbed upward, so the perturbation
raises water of low salinity, and thus the salinity is perturbed downward. At a point x = ±2 and
at x = 0, the flow is downward: this is where the contour has moved downward. The fluid is
heavy and flow is reinforcing the perturbation of the concentration.

In Figure 4.3, the temperature perturbations are small compared to that of concentrations. This
is because the temperature diffuses faster than salt. The heat is at the top, the fluid element will
move downward. It will carry hot fluid into the cold area.

We are considering the oscillatory flow over a period of 2π. We are interested in how the
perturbation of temperature and that of salinity contribute to the flow over a period. The
Figures 4.5 up to 4.8 (and in the Appendix, Figure A.1 to Figure A.6) are showing the sequence
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Figure 4.3: From third quadrant, the pink color at the top for high and orange at the bottom
for low temperature and velocity field for ε = 0.01 , Ras = −5, Ra = −160.521, φ = 0.25,
Le = 0.1 and M = 0.5.

Figure 4.4: From third quadrant, the pink color at the top for high and orange at bottom for low
concentration and velocity field,for ε = 0.01, Ras = −5, Ra = −160.521, φ = 0.25, Le = 0.1
and M = 0.5.

of the snapshots through a half period from 0 to π.

At x = 0, by observing Figure 4.5, the contours of temperature are perturbed upward, so the fluid
is relatively hot. The contours of salinity are perturbed upward (see Figure 4.6), and the fluid is
relatively salty. This means that there is competition between temperature and salt concentration.
The temperature wins slightly and the flow is in the upwards direction with small magnitude.

In Figure 4.7 at x = 0, the temperature perturbation is smaller than the temperature in Figure
4.5 and Figure 4.6. Hence the concentration wins so that we have the flow in downwards motion
with quite high magnitude (see Figure 4.8).

In Figure A.1 (see Appendix) and Figure A.2 (see Appendix) respectively at x = 0, it is hard to
see due to the figure size but temperature and salinity perturbations are downwards. The fluid is
cold and slightly salty, so it will continue downward motion, with velocity magnitude of the same
order as in the previous situation presented in Figures 4.7 to 4.8.

In Figure A.3 (see Appendix) and in Figure A.4 (see Appendix) at x = 0, it is clear that
temperature and salinity are perturbed downward respectively. But the fluid is relatively cold and
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Figure 4.5: From first quadrant, the orange color at the top for low and pink at the bottom for
high temperature and velocity field for ε = 0.025, Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 0, for x = 0, maximum scaled velocity ' 0.767 at z = 0.5.

Figure 4.6: From first quadrant, the orange at the top for low and pink at the bottom for high
concentration and velocity field,for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1 and
M = 0.5; at nit

∗ = 0, for x = 0, maximum scaled velocity ' 0.767 at z = 0.5.

relatively fresh. However, the coldness wins and the flow is downward, though not as strongly as
it was for the situation presented in Figures A.1 to A.2 (see Appendix).

In Figure A.5 (see Appendix) and Figure A.6 (see Appendix) at x = 0, the situation is exactly
opposite to the situation presented in Figures 4.5 to 4.6. This is the end of the downward phase
and the beginning of the upward phase.

This process of upward flow motion, will be in the reverse compare to former cases until it will
reach 2π to begin the next period (see AppendixA from Figure A.7 to Figure A.14). Hence the
oscillations will continue as time grows.

This kind of oscillatory motion may undergo decay or growth depending on whether Re(n±) 6= 0.
This will result in instability when Re(n±) > 0 and stability when Re(n±) < 0.
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Figure 4.7: From first quadrant, the orange color at the top for low and red at the bottom for
high temperature and velocity field for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = π/4 for x = 0, maximum scaled velocity ' −5.351 at z = 0.5.

Figure 4.8: From first quadrant the orange color at the top for low and pink at the bottom for
high concentration and velocity field, for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = π/4 for x = 0, maximum scaled velocity ' −5.351 at z = 0.5.

4.2 Galerkin method for non-linear double-diffusive stabil-
ity analysis

When we were doing mathematical manipulation to have the partial differential equations with
linear terms, we neglected the terms that should make the equations non-linear. The reason
to consider these non-linear terms is because the linear analysis only predicts the infinitesimal
amplitudes of perturbations but it can not predict the absolute amplitudes. In practice, when the
base state is unstable, the perturbations do not grow exponentially forever, they saturate at finite
amplitude. The issue is to predict this amplitude. To tackle this kind of problem, we use the
Galerkin approximation method. At this stage we are now considering the governing equations
of our system including the non-linear terms.

We consider the equations (3.1.13),(4.1.6) and (4.1.8) which we write in terms of dimensionless
variables as

∂2Ψ∗

∂x∗2
+
∂2Ψ∗

∂z∗2
+
∂θ∗

∂x∗
− β∆S

α∆T

∂σ∗

∂x∗
= 0, (4.2.1)
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M
∂θ∗

∂t∗
+Ra

(
∂Ψ∗

∂z∗
∂θ∗

∂x∗
− ∂Ψ∗

∂x∗
∂θ∗

∂z∗

)
+Ra

∂Ψ∗

∂x∗
− ∂2θ∗

∂x∗2
− ∂2θ∗

∂z∗2
= 0, (4.2.2)

and

∂σ∗

∂t∗
+
Ra

φ

(
∂Ψ∗

∂z∗
∂σ∗

∂x∗
− ∂Ψ∗

∂x∗
∂σ∗

∂z∗

)
+
Ra

φ

∂Ψ∗

∂x∗
− Le∂

2σ∗

∂x∗2
− Le∂

2σ∗

∂z∗2
= 0. (4.2.3)

We can deduce approximate solutions following Mamou and Vasseur (1999) and Pritchard and
Richardson (2007) where they have assumed that basic circulation is as it was in the linear
perturbation theory but has a time dependent coefficient. For temperature and concentration
they have additional terms which are in function of the vertical axis z and time t.

We consider equations (4.2.1), (4.2.2) and (4.2.3) and use the solutions of the linear equations
discussed in section 4.1, but instead of considering the exponential forms, they will be sinusoidal
in x and in z. Then their coefficients are time dependent and they are not allowed to be complex.

From the linear solutions, when k∗ = m∗ = 1 we have

θ∗ = A1(t) cos(πx∗) sin(πz∗), (4.2.4)

Ψ∗ = B1(t) sin(πx∗) sin(πz∗), (4.2.5)

and
σ∗ = C1(t) cos(πx∗) sin(πz∗). (4.2.6)

The Galerkin approximation allows us to extend these solutions to experience the weak-non
linear effects. In our case, the weak non-linear effects are close to the stability boundary,
the perturbations are small but not infinitesimal. When considering the solutions in equations
(4.2.4) to (4.2.6) that contain the time dependent coefficients, the non-linear terms in equations
(4.2.1) to (4.2.3) produce the terms proportional to sin(2πz∗). From this fact we extend the set
of solutions (4.2.4), (4.2.5) and (4.2.6) to be

θ∗ = a1(t) cos(πx∗) sin(πz∗) + d1(t) sin(2πz∗), (4.2.7)

Ψ∗ = b1(t) sin(πx∗) sin(πz∗) (4.2.8)

and
σ∗ = c1(t) cos(πx∗) sin(πz∗) + e1(t) sin(2πz∗). (4.2.9)

These extended solutions will not exactly satisfy the non-linear equations, because the Galerkin
approach is approximated. Substituting these proposed solutions (4.2.7)− (4.2.9) into the equa-
tions (4.2.1), (4.2.2) and (4.2.3), and performing the Galerkin projection where the coefficients
of sin(πz∗) and that of sin(2πz∗) are required to vanish, and ignoring the higher harmonics, we
have the respective equations as

a1(t) + 2πb1(t)− β∆S

α∆T
c1(t) = 0, (4.2.10)

Mȧ1(t) +Raπ2b1(t)d1(t) +Raπb1(t) + 2π2a1(t) = 0, (4.2.11)

ḋ1(t)−Raπ
2

2
a1(t)b1(t) + 4π2d1(t) = 0, (4.2.12)
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ċ1(t) +
Ra

φ
π2b1(t)e1(t) +

Ra

φ
πb1(t) + 2Leπ2c1(t) = 0, (4.2.13)

and

ė1(t)− π2

2

Ra

φ
b1(t)c1(t) + 4Leπ2e1(t) = 0. (4.2.14)

For the steady state, the first derivatives are zero, and so we have the set of equations

a1(t) + 2πb1(t)− β∆S

α∆T
c1(t) = 0, (4.2.15)

Raπ2b1(t)d1(t) +Raπb1(t) + 2π2a1(t) = 0, (4.2.16)

−Raπ
2

2
a1(t)b1(t) + 4π2d1(t) = 0, (4.2.17)

Ra

φ
π2b1(t)e1(t) +

Ra

φ
πb1(t) + 2Leπ2c1(t) = 0, (4.2.18)

and

− π2

2

Ra

φ
b1(t)c1(t) + 4Leπ2e1(t) = 0. (4.2.19)

From equation (4.2.15), we have the value of a1 as

a1 = −2πb1 +
β∆S

α∆T
c1. (4.2.20)

Putting this value of a1 in equation (4.2.16), we have

Raπ2b1d1 +Raπb1 − 4π3b1 + 2π2 β∆S

α∆T
c1 = 0. (4.2.21)

Putting a1 in equation (4.2.17), we have the value of d1 as

d1 = −πRa
4

b2
1 +

Ras
8
b1c1. (4.2.22)

Put this value of d1 in equation (4.2.21), we have c1 as

c1 =
2Ra (Ra2π2b3

1 − 4 (Ra− 4π2) b1)

Ra2Rasπb2
1 + 16πRas

. (4.2.23)

From equation (4.2.19), we have

e1 =
Ra

8πLeφ
b1c1. (4.2.24)

Put c1 in equation (4.2.24), we have

e1 =
Ra

8πLeφ
b1

(
2Ra (Ra2π2b3

1 − 4 (Ra− 4π2) b1)

Ra2Rasπb2
1 + 16πRas

)
. (4.2.25)
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Put the values of c1 and e1 in equation (4.2.18), we have a polynomial in b1 as follows

b1

(
Ab4

1 +Bb2
1 + C

)
= 0, (4.2.26)

where
A = Ra5π4, (4.2.27)

B = −4Ra3π2
(
Ra− 4π2

)
+ 4LeRa3Rasπ

2φ+ 16Le2φ2π4Ra3, (4.2.28)

and
C = 64π2φLeRaRas − 64Le2φ2π2Ra

(
Ra− 4π2

)
. (4.2.29)

The critical Rayleigh number Rac is calculated by setting C = 0,

64π2φLeRaRas − 64Le2φ2π2Ra
(
Ra− 4π2

)
= 0. (4.2.30)

Solving this for Ra, we get the critical Rayleigh number Rac to be

Rac = 4π2 +
Ras
Leφ

. (4.2.31)

This is the same as what we found in section 4.1, in the equation (4.1.49).

4.2.1 Bifurcation diagrams for steady state.
The polynomial in equation (4.2.26), has the variable b1 which is the coefficient of the stream-
function that gives the velocity components. The polynomial has two factors: the first one on
the left corresponds to the base state b1 = 0. The second factor is a quadratic and its solution is

b2
1 = − B

2A
±
√
B2 − 4AC

2A
. (4.2.32)

If B > 0 and C < 0 so that B2 < 4AC is satisfied, we have only one positive real solution for
b2

1, which implies that we have two solutions for b1 additional to the trivial solution. We have
three solutions indeed. If C > 0, then there is no real solution for b1 except the trivial solution.
Hence at the point C = 0, the number of real solutions for b1 changes.

If B < 0 and C > 0 but B2 − 4AC > 0, there are two positive real solutions for b2
1, which

implies four solutions for b1 additional to the trivial one of b1 = 0. So we have five solutions. If
C < 0, there is no real solution except the trivial one. This says that when C = 0, the number of
solutions changes. In dynamical system, we call such a point a bifurcation point. The diagrams
showing the bifurcations in double-diffusive convection are presented in Figure 4.9 and Figure
4.10.

In Figure 4.9, the amplitude b1 is plotted against the Rayleigh number Ra for Ras = −5. At
the point D, there is a supercritical pitchfork bifurcation at the critical value Rac ' −160.521.
At this point two important things happen, the first one is that the number of solutions changes
from one to three. The second one is that the stability of the base state changes from stable
to unstable. The amplitude of the stream-function and that of flow field are increasing from the
bifurcation point D.
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Figure 4.9: Bifurcation for b1, an amplitude
for stream function as function of Ra, when
Ras = −5 and Rac ' −160.521.

Figure 4.10: Bifurcation for b1, an ampli-
tude for stream function as function of Ra,
when Ras = 5 and Rac ' 239.478.

In Figure 4.10, the amplitude b1 is plotted against the Rayleigh number Ra for Ras = 5. At the
point A, there is a sub-critical pitchfork bifurcation where below the critical value Rac ' 239.478
there are five solutions but after that point the solutions reduce to three, because there are three
solutions which merge to give one solution. There are two symmetric saddle-node bifurcation at
point B and at point C, the solutions are split into two.

The amplitude of stream function and that of flow field are finite since the growth after point B
and after point C became steady. This is happening when B2 − 4AC = 0, which correspond to
Ra ' 44.915. The Rayleigh number corresponding to the stability boundary for base state which
was obtained using linear stability analysis (see equation (4.1.50)), is at Ra ' 51.452.

4.2.2 Numerical method for non-steady state.
We obtain the value of b1(t) from equation (4.2.10), as

b1(t) = −a1(t)

2π
+

Ras
2πRa

c1(t). (4.2.33)

We substituted the equation (4.2.33) in equations (4.2.11), (4.2.12),(4.2.13) and (4.2.14) to
have the following system of first order differential equations in time.

ȧ1(t) =
πRa

2M
a1(t)d1(t)− πRas

2M
c1(t)d1(t) +

(Ra− 4π2)

2M
a1(t)− Ras

2M
c1(t), (4.2.34)

ċ1(t) =
πRa

2φ
a1(t)e1(t)− πRas

2φ
c1(t)e1(t) +

Ra

2φ
a1(t)−

(
Ras
2φ

+ 2π2Le

)
c1(t), (4.2.35)

ḋ1(t) = −πRa
4

a2
1(t) +

πRas
4

a1(t)c1(t)− 4π2d1(t), (4.2.36)

and

ė1(t) = −πRa
4φ

a1(t)c1(t) +
πRas

4φ
c2

1(t)− 4Leπ2e1(t). (4.2.37)

After fixing the parameters M,φ and Le, we solved numerically the equations (4.2.34), (4.2.35),
(4.2.36) and (4.2.37). We used python where we have imported odeint and ode from the package
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scipy.integrate. We fixed the value of Ras to −5 or to 5 to be on the left hand part or right
hand part of Figure 4.2. We took several values of Ra,(recall that to shift from negative to
positive values implies moving from downward to upward of the same Figure 4.2), and we solved
the above system of equations and we replaced a1(t) and c1(t) in equation (4.2.33) to get the
stream function amplitude b1(t). The simulated values of b1(t) were plotted in each case.

The numerical experiments were performed by fixing the parameters. We changed the initial
conditions and we have performed simulations respectively. Then we have observed the behaviour
of the steady state solutions.

At Ras = −5 and Ra = −170, the base state is a global attractor because after changing slightly
but not infinitesimal the initial conditions, the solution converges to the zero steady state (see
Figures 4.11 and 4.12). This happens at the parameter Ra less than −160.521, the bifurcation
point D ( see Figure 4.9 for bifurcation information).

At Ras = −5 and Ra = −158, the base state is not a global attractor because after changing
slightly but not infinitesimal the initial conditions, the solution converges to one non-zero steady
state for Figure 4.13 and to another non-zero steady state (see Figure 4.14). Since the numerical
solutions are converging to these non-zero steady states, they are stable but not global attractors.
This happens at the parameter value Ra greater than −160.521, the bifurcation point D (see
Figure 4.9 for bifurcation information).

At Ras = 5 and Ra = 45, the base state is stable because after changing slightly but not
infinitesimal the initial conditions, the solution converges to the zero steady state (see Figures
4.15 and 4.16). We have oscillatory convergence to the base state, as predicted by linear stability
analysis.

At Ras = 5 and Ra = 53, the steady states are not globally attractive because after changing
slightly but not infinitesimal the initial conditions, the solution converges to one non-zero steady
state for Figure 4.17 and to another non-zero steady state for Figure 4.18. Since the numerical
solutions are converging to these non-zero steady states, they are stable but not global attractors
but they are symmetric: one positive; another negative.

At Ras = 5 and Ra = 250, the base state is not a global attractor because after changing slightly
but not infinitesimal the initial conditions, the solution converges to non-zero steady state for
Figure 4.19 and to another non-zero steady state for Figure 4.20). Since the numerical solutions
are converging to these non-zero steady states, they are stable but not global attractors.
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Figure 4.11: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = −5 and
Ra = −170 and initial conditions: a1(0) =
0.01, c1(0) = 0.01, d1(0) = 0 and e1(0) =
0.

Figure 4.12: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = −5 and
Ra = −170 and initial conditions: a1(0) =
0.1, c1(0) = 0.1, d1(0) = 0 and e1(0) = 0.

Figure 4.13: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = −5 and
Ra = −158 and initial conditions: a1(0) =
0.01, c1(0) = 0.01, d1(0) = 0 and e1(0) =
0.

Figure 4.14: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = −5 and
Ra = −158 and initial conditions: a1(0) =
0.001, c1(0) = 0.01, d1(0) = 0 and e1(0) =
0.
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Figure 4.15: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = 5 and
Ra = 45 and initial conditions: a1(0) =
0.1, c1(0) = 0.1, d1(0) = 0 and e1(0) = 0.

Figure 4.16: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = 5 and
Ra = 45 and initial conditions: a1(0) =
0.01, c1(0) = 0.1, d1(0) = 0 and e1(0) = 0.

Figure 4.17: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = 5 and
Ra = 53 and initial conditions: a1(0) =
0.01, c1(0) = 0.01, d1(0) = 0 and e1(0) =
0.

Figure 4.18: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = 5 and
Ra = 53 and initial conditions: a1(0) =
0.01, c1(0) = 0.001, d1(0) = 0 and e1(0) =
0.
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Figure 4.19: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = 5 and
Ra = 250 and initial conditions: a1(0) =
0.1, c1(0) = 0.1, d1(0) = 0 and e1(0) = 0.

Figure 4.20: Amplitude for stream-function
b1(t) as a function of time t, when M =
0.5, φ = 0.25, Le = 0.1 Ras = 5 and
Ra = 250 and initial conditions: a1(0) =
0.001, c1(0) = 0.1, d1(0) = 0 and e1(0) =
0.



5. Conclusion and Recommendations

Thermal convection was analysed, where we have applied linear perturbation theory on governing
equations. From the dispersion relation, we obtained the critical value for the Rayleigh number.
The stability analysis was carried out and we found that the perturbations below this critical value
decay and those above this value grow. In the thermal convection the diffusion and buoyancy
were competing. Locally, at any point in the layer, if temperature is relatively high then there is
upward flow, and if temperature is relatively low then there is downward flow.

Both temperature and salinity gradients were taken into account for double-diffusive convection.
The linear stability analysis was used and shows that there are two stability boundaries. When
the system was crossing one boundary, the salinity gradient was negative and the perturbations
grew exponentially: this happens when hot salty water overlies cold fresh water. When the system
crossed the other boundary, the salinity gradient was positive. The perturbations were oscillatory:
this happens when cold fresh water overlies hot salty water. The oscillations decayed or grew
depending on whether the system was in the stable region or in unstable region respectively.

In double-diffusive convection, there was a competition between temperature and salt concen-
tration gradients in the sense that locally, at any point in the layer, a positive perturbation to
temperature tended to cause upflow, while a positive perturbation to salinity tend to cause down-
flow. Globally in the first quadrant, if the temperature gradient wins, then there will be motion
(both upward and downward in different places), while if the salinity gradient wins, then the mo-
tion will decay over time. In the third quadrant, if the temperature gradient wins the motion will
grow exponentially while if the salinity gradient wins, then the motion will decay exponentially.

The non-linear analysis was studied using Galerkin approximation method. We found that the
perturbations do not grow forever. They saturated at finite amplitudes. The performed numerical
experiments showed that when the initial conditions change in the stable region, the solutions
converge to the base steady state solution (which implies that they converge at zero amplitude)
and that the steady base state is a global attractor. But in the unstable region, when the
initial conditions change, the solutions converge to non-zero steady states, and when parameters
continue to change, the value of the non-zero amplitude also changes.

The possible further research directions include the study of the behaviour of the system at
higher Rayleigh numbers where weakly non-linear approach is no longer valid. Here the suggested
approach is to use the singular perturbation theory (see section 14.9 of Fowler (1997)). The
other one is to investigate the effect of reactions that involve the behaviour of the temperature,
salinity and the porosity (see Pritchard and Richardson (2007) and Corson (2012)).
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AppendixA. The figures completing the
cycle

We have presented in the main work some figures for half cycle (from 0 to π/4) and here we list
the other figures (from π/2 to π) and the figures for the next half cycle (from 5π/4 to 2π) their
interpretations are present in subsection 4.1.4.

Figure A.1: From first quadrant, the orange color at the top for low and pink at the bottom for
high temperature and velocity field for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = π/2, for x = 0, maximum scaled velocity ' −8.340 at z = 0.5.

Figure A.2: From first quadrant, the orange color at the top for low and pink at the bottom for
high concentration and velocity field, for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = π/2, for x = 0, maximum scaled velocity ' −8.340 at z = 0.5.
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Figure A.3: From first quadrant, the orange color at the top for low and pink at the bottom for
high temperature and velocity field for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 3π/4, for x = 0, maximum scaled velocity ' −6.440 at z = 0.5

Figure A.4: From first quadrant, the orange color at the top for low and pink at the bottom for
high concentration and velocity field, for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 3π/4, for x = 0, maximum scaled velocity ' −6.440 at z = 0.5.
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Figure A.5: From first quadrant, the orange color at the top for low and pink at the bottom for
high temperature and velocity field for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = π , for x = 0, maximum scaled velocity ' −0.767 at z = 0.5.

Figure A.6: From first quadrant, the orange color at the top for low and pink at the bottom for
high concentration and velocity field, for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = π , for x = 0, maximum scaled velocity ' −0.767 at z = 0.5.
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Figure A.7: From first quadrant, the orange color at the top for low and pink at the bottom for
high temperature and velocity field for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 5π/4 , for x = 0, maximum scaled velocity ' 5.355 at z = 0.5.

Figure A.8: From first quadrant, the orange color at the top for low and pink at the bottom for
high concentration and velocity field, for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 5π/4 , for x = 0, maximum scaled velocity ' 5.355 at z = 0.5.
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Figure A.9: From first quadrant, the orange color at the top for low and pink at the bottom for
high temperature and velocity field for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 3π/2 , for x = 0, maximum scaled velocity ' 8.340 at z = 0.5.

Figure A.10: From first quadrant, the orange color at the top for low and pink at the bottom for
high concentration and velocity field, for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 3π/2 , for x = 0, maximum scaled velocity ' 8.340 at z = 0.5.
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Figure A.11: From first quadrant, the orange color at the top for low and pink at the bottom for
high temperature and velocity field for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 7π/4 , for x = 0, maximum scaled velocity ' 6.440 at z = 0.5.

Figure A.12: From first quadrant, the orange color at the top for low and pink at the bottom for
high concentration and velocity field, for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 7π/4 , for x = 0, maximum scaled velocity ' 6.440 at z = 0.5.
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Figure A.13: From first quadrant, the orange color at the top for low and pink at the bottom for
high temperature and velocity field for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 2π , for x = 0, maximum scaled velocity ' 0.767 at z = 0.5.

Figure A.14: From first quadrant, the orange color at the top for low and pink at the bottom for
high concentration and velocity field, for ε = 0.025 , Ras = 5, Ra = 51.542, φ = 0.25, Le = 0.1
and M = 0.5; at nit

∗ = 2π , for x = 0, maximum scaled velocity ' 0.767 at z = 0.5.
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