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ABSTRACT  
 

Africa accounts for 54% of the world disease burden due to the lack of access to safe drinking water, 

with the majority of rural area populations or endemic zones getting access to water through 

potentially unsafe communal water taps. Unfortunately, the expensive laboratory processes and 

resources used in water processing centers to detect water-borne diseases like cholera cannot be 

massively deployed on all those taps to guarantee safe water for everyone, anywhere at any time. 

Thanks to the integration of Internet of Things (IoT) and Artificial Intelligence (AI), the prediction 

of water-bone cholera can be done by monitoring water's physicochemical patterns. However, 

related state of the art IoT/AI solutions rely on a cloud-centric architecture with edge water 

parameter sensors sending collected data to the cloud for inference.  Unfortunately, anytime wireless 

connectivity is not always guaranteed in rural areas, but also it is very consuming in terms of energy 

for a system expected to run several years without maintenance. Last but not least, low latency 

detection is mandatory to warn the tap user on time. This Master thesis research project focuses on 

prototyping design and development of an offline edge AI rapid water-bone cholera detector kit 

pluggable into existing taps to lower the cost of mass deployment. Our simulation results in an 

embedded context show a good accuracy of edge inference with respect to live cloud classification.  

Keywords:  Cholera, Smart Water, Physicochemical water parameters, IoT, Edge AI, 
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CHAPTER I: GENERAL INTRODUCTION 

1.1 INTRODUCTION  

 

The quality of drinking water in taps goes down when the water goes into the distribution 

system. Tap water is used by more than 50% of the people in urban settings [1] or at standpipes. 

Pipes in rural areas and informal settings are centrally placed in locations where people can access 

in large numbers during specific times of the day. Any contamination on the water can affect the 

whole community. Studies show that in some African settings, waste management systems are not 

implemented as humans defecate in open spaces. Humans who defecate in open spaces fall within 

a range of 4%-16% from the study done in Cameroon and as a result rain water comes into contact 

with the human wastes in open spaces and can find its way into sources of water which shows why 

cholera outbreaks occur during the rainy season [1] ⁠. In Uganda, investigations were done to show 

presence of fecal matter in water sources [2] ⁠. Results show that the further away you move from 

water sources, that is, further along the pipeline, the water becomes more contaminated. 

Furthermore, some water companies that do not sufficiently chlorinate water at the source and that 

is a cause for cholera in household settings ⁠⁠as depicted in India how when the water system has 

leaks there is a high possibility of the drinking water coming into contact with the sewerage system 

[3]⁠. The contamination can be linked to stagnation of sewage water around water pipes. 

 

 

1.2. BACKGROUND AND MOTIVATION  

Cholera is an acute abdominal infection characterized watery diarrhea and vomiting which, if 

left untreated, the disease can quickly lead to severe dehydration and death [4] ⁠. The World Health 

Organization (WHO) estimates yearly cholera infections at 1 million to 4 million people and up to 

143 000 deaths. In 2016 Africa accounted for 54% of the cases reported [5] ⁠. Death incidences 

decline with communities’ ability to access clean drinking water and food. Currently, cholera 

outbreaks mostly occur in rural areas and endemic zones of developing countries due to lack of safe 

drinking water and poor sanitation spread through local transmission  [2] [6]⁠. In those regions, 



 

shared communal tap waters are the main access point to water for most populations. The level of 

preparedness for health facilities in Africa show a lot of weakness presented in the sparse number 

of facilities in rural settlements [7]. This shows the limited capability in sub-Saharan Africa in the 

surveillance of cholera which is fully dependent on lab facilities provided by health facilities.  

 

1.3.   PROBLEM STATEMENT  

Tap water in households is shown to be a cause for contraction of waterborne diseases such 

as cholera. The existing water quality analysis methods using Internet of Things which involves the  

use of interconnection of devices, people or objects, focus on pollution with a provision of how it 

affects health in a general way as highlighted in [14] and therefore lack a way to link the quality of 

water to any specific disease. Improvements have been implemented on existing IoT based water 

quality infrastructure with the hybrid combination of IoT and ML. Despite that, the current IoT/ML 

solutions are centered on the cloud which reduces viability in rural areas which face limitations of 

wireless internet connectivity [8]. Furthermore, wireless communication is highly energy 

consuming for a system expected to run for several years without maintenance, either harvesting 

ambient energy or running on small-sized batteries⁠. State of the art techniques to detect cholera are 

made for laboratory-like settings involving expensive, complex and high latency processes and 

resources. Those solutions are not practical for a mass deployment on all communal water taps in 

Africa as a way to warn users in real-time about a potential waterborne disease such as cholera.  To 

give an example, one of the most used processes is based on a product called Alkaline Peptone 

Water (APW) which costs around $29/ml [9]. With 1% APW per 500ml samples, it takes up to 24-

48 hours depending on the enrichment process of samples in order  to increase cell count in samples 

that have low cells per volume ⁠[10],[11] ⁠. This process furthermore requires the presence of highly 

skilled laboratory staff to carefully drive the all process. This solution is certainly not scalable to the 

thousands of water taps already deployed in rural areas. 

 It is therefore necessary to detect water quality and waterborne diseases at the edge. This 

creates a need for a device that can perform water quality analysis for waterborne diseases at the 

edge using machine learning. Machine learning is important as it reduces the need for human 

expertise especially in regions where disease experts are scarce. Importantly, warning the water tap 

consumer that he/she is potentially taking a risk to use the tap should be fast/immediate, thus making 

low latency of inference a strong requirement as well. 



 

1.4. STUDY AIM AND OBJECTIVES  

 

1.4.1 AIM  
 

The aim of this research is to enable day to day cheap, laboratory-free water-borne disease diagnosis 

for the Rural African population in order to enable them to have access to clean and safe tap water. 

This aim will be achieved through prototyping a diagnostic kit for water borne disease detection 

relying on open source IoT and AI technologies. This is in line with the global development goals 

to provide clean water and sanitation. Chosen for this scope of this study is cholera. This study aims 

at a quick detection of cholera in water in effort to prevent an epidemiological crisis and improve 

on the reporting of the occurrence of cholera in water.  

1.4.2 OBJECTIVES  
 

There are several ways to make sure the aims are achieved. For this study, the aims, the objectives 

and milestones to be achieved are as follows: 

1. To understand how physico-chemical parameters affect existence of cholera cells in water 

2. To identify IoT and embedded technologies that are used in sensing and transmit physico-

chemical parameters of water. 

3. To identify open source AI and Non-AI technologies that can be used in the detection of 

waterborne diseases and identify possibilities for embedded operationalization. 

4. To design and simulate a smart embedded diagnostic kit for waterborne disease from 

parameters of water. 

1.5 HYPOTHESES  
 

The hypotheses of this research are as follows: 

1.  IoT Sensing technologies are able to efficiently collect physico-chemical water parameters 

of water. 



 

2.   ML can be leveraged to detect cholera from physico-chemical water parameters 

3.   There is available  technology that can be used to produce ML models adapted for 

embedded device 

1.6 SIGNIFICANCE OF THE STUDY  

Cholera reporting is very poor especially in African countries. Having an IoT device that 

can report cholera causes to cloud platforms will help health officials have a clear view of which 

areas are affected and necessary mitigation and treatment measures will be taken to ensure the 

disease is contained. The numbers provided in 2017 provide an incomplete assessment due to lack 

of reporting by many countries [12] ⁠. African countries showed a drop in the reporting of cholera 

cases in 2017. The disease could be more severe than speculated due to under reporting. Therefore, 

a solution that can report consistently will give a more accurate epidemiological view. 

Despite increased levels of chlorinated water at the source, cholera has the ability to emerge 

in scenarios where floods occur or shortage of water as shown in [13] ⁠. According to WHO, the 

death rate of cholera is about 1.8% and in 2016, 17 African countries reported cholera cases despite 

the low reporting trends in Africa [5]⁠. This project can help the overall African setting to be healthier 

and bring the death rate and number of cases further down through early detection techniques and 

monitoring the water the end user intakes. 

From WHO, online JMP data of 2017, 29% of the population in rural settings in Rwanda can 

access improved piped drinking water while a staggering 75% of the population in Rwanda’s 

urban settings can access improved piped drinking water. A total number of 1,567,038 in urban 

areas and 2,978,400 in rural areas will potentially benefit from having piped water analyzed at the 

tap. 

1.7 ORGANIZATION OF THE STUDY  

This work is organized into five chapters:   

● Chapter I: General Introduction, this chapter focuses on Objectives of the project, Problem 

statement, Hypothesis and the significance highlighting the potential impact.   

● Chapter II: Literature review, this offers theoretical concepts regarding the related work 

done by the other researchers.   



 

● Chapter III: Research Methodology;   

● Chapter IV: focuses on the results of the projects and discussions.  

● Chapter V: The last chapter is made up of the conclusion and recommendation for 

further improvements in the project.  

1.8 CONCLUSION  

In this chapter, a brief description of the project has been stated that introduces the setting of 

and background. Furthermore, the aim and objectives of the study are detailed. The problem 

statement highlights the scope of what is to be overcome and proposes techniques and 

technologies that will be used to prototype in accordance with the assumptions the project is 

planning to achieve at the end of design and implementation. The related works and literature 

review are detailed in the following chapter. 

  



 

CHAPTER II: LITERATURE REVIEW  
 

2.1 INTRODUCTION  
 

This chapter captures the relevant studies, research and state of the art technologies done by other 

researchers, individuals and stakeholders in the field and provides an overview of existing 

technologies that have been used to drive our approach to a solution towards offline Water-borne 

detection using edge AI.  

2.2 WATER POLLUTION   

      

In [14], we see how the move to urban areas has caused humans to over utilize land especially 

in revolutionizing industries that drive the urban setting leads to deteriorating quality of water. The 

paper analyses tap water, surface water which covers rivers and lakes and also sea water as water 

sources. The parameters measured are pH, conductivity, oxidation reduction levels, and 

temperature. This is an overall system that aims to ensure the water is not only safe for human 

consumption but water that aquatic water can thrive on considering diseases and death of aquatic 

life. Any deviation from the range of the set baseline is sent to an FTP server in the local network 

rather than a cloud platform. Communication technologies used are cellular with the use of a GSM 

shield. The analysis of the tap water required manual extraction and testing by inserting sensors in 

water that had been fetched. 

 With the help of IBM cloud Watson one can be able to predict the deteriorating quality of 

water using statistical methods by attaching parameter values to a timestamp [15] ⁠⁠. Parameters 

measured against their respective thresholds are turbidity, pH and temperature. The objective is to 

predict whether the quality of water is deemed to go low. No Machine learning methods are 

employed here. Furthermore, the system is not linking the quality of water to any specific disease. 

This helps to determine the trend of water quality and predict whether the water will be safe in a 

future setting as well as a real time monitoring of the water quality. 



 

 The paper [16] ⁠, urban areas of India lack proper waste management which causes 

depreciation of quality in soils and water of soil and water. To tackle this challenge, various sensors 

are distributed to measure parameters like pH, conductivity, and dissolved oxygen, turbidity, so as 

to monitor the water quality in water sources that is, an open well and a freshwater canal. Taps in 

the region are not studied as they are presented to be dry. The proposed IoT framework shows how 

soil and water pollution are interrelated. The parameters for the water resources are: Temperature, 

pH, Turbidity, electrical conductivity sensors, Chemical Oxygen Demand (COD), Total hardness 

(CaCO3), Total Dissolved Solids (TDS), Magnesium (Mg), and Chloride (Cl). Data is sent to a 

gateway via ZigBee communication and data is sent to the cloud via Wi-Fi. 

2.3 CONVENTIONAL TECHNIQUES FOR WATER-BORNE DISEASE DETECTION 
 

2.3.1 LAB TECHNIQUES 
 

Conventional cholera detection in many laboratory settings and cholera detection studies use 

enrichment steps with alkaline peptone water APW at a pH of 8.0. Stool samples are incubated for 

4–6 hours at 37 °C while water samples take up to 24 hours [4],[17],[3]⁠⁠⁠. Additional steps are needed 

for further characterization and confirmation of V. cholerae such as in TCBS agar characterized by 

a shiny yellow color due to sucrose fermentation [10] ⁠. Preparing the samples for testing requires a 

lot of preparation steps and skilled human intervention.  

Other techniques for detecting cholera require DNA sequencing before detection or expensive 

PCR equipment. As examples, (1): the loop-mediated isothermal amplification [10], [5] ⁠⁠⁠, (2) 

Multiplex polymerase chain reaction (PCR) as presented in [18] ⁠, [19] ⁠ and (3) The Molecular 

beacon-based real-time nucleic acid sequence-based [10] ⁠. Furthermore, Cholera Toxin Gene 

encoding in V. Cholerae as shown in [5] requires PCR methods to generate assays or DNA 

complementary base pairing knowledge. Vibrio cholerae can also be extracted from water samples 

but the method is inefficient due to the process requiring incubation at 35–37 °C for 18–24 h and a 

testing kit that costs $716.00/each as shown in [20]. 



 

2.3.2 LAB ON A CHIP TECHNIQUES 

A sensor node is developed to be used in the detection of waterborne pathogens in 

environmental water [21] ⁠. Researchers focus on E. coli bacteria. The color change of water is 

observed once water is mixed with reagents. For a real-time analysis, a live image captured by a 

webcam is sent to the web browser of the end user with a Wi-Fi connected sensor node. An Arduino 

and a connected motor control sampling rates of the pumps. The process of testing the water is 

repeated until the reagents are depleted. From the web browser, users can post to a python server to 

record for long term data storage. Human intervention is required to determine color change and 

send data manually to the python server. The server is internal and is running on the embedded 

system. 

Other methods shown in [22]⁠,[23]⁠are effective but require the assembly of materials such as 

microfluidic chip that is expensive to develop and the use of cholera detection methods using PCR 

and LAMP methods that require the purchasing and refilling of expensive fluids such as 

Streptavidin, fluorescent nanoparticles, LAMP master mix and a biotinylated LF primer [24], [25]⁠⁠. 

The process of assembling such materials requires experts and is complicated. 

2.4 AI WATER QUALITY MEASUREMENT 
 

An intelligent water quality system is presented in [26] ⁠. A comparison of Machine learning 

algorithms is done. The algorithms are random forest and K-Nearest Neighbor (KNN) and KNN in 

the results is more accurate. Data is collected from sensors and sent to a Django server where data 

preprocessing occurs and prediction is carried out. The implementation is done using a NodeMCU 

with attached sensors. The model makes informed decisions on how the water can be used based on 

drinking, industrial usage, agricultural use, home usage or if it is dirty water (unusable). There is no 

clear impact on water quality metrics associated with diseases. ⁠ 



 

 Emerging technologies such as IoT, machine learning and cloud technologies are 

implemented to monitor the quality of water in rural areas [27] ⁠. A pH sensor, turbidity sensor and 

temperature sensor are attached to a NodeMCU which sends data to Azure hub. Azure hub storage 

stores structured data. The machine learning model is used to predict the weather and adjust the 

cooler and heater accordingly. When the turbidity threshold is surpassed, relevant authorities are 

alerted to take necessary action. This paper does not focus on implementing machine learning 

models on parameters such as pH and turbidity to predict the water quality. 

 In Tanzania a machine learning model known as XGBoost is deployed to monitor weather 

patterns in order to predict the occurrence of cholera [28] ⁠. The dataset used is irregular, meaning 

there is no consistency in the data. The goal is to be able to predict the occurrence of cholera based 

on the season as influenced by weather patterns. The project does not look into water as a cause of 

cholera therefore not associated with water quality measurement but rather cholera predictability 

based on climate. 

An IoT technology is used to assess how human activities have caused water pollution in tap 

water [29] ⁠. The proprietary solution is able to recognize six pollutants namely Sulphur Acid, 

Phosphoric Acid, Acetic Acid, Formic Acid, Hydrogen Peroxide, Ammonia. Machine learning 

technologies are deployed where K-Nearest Neighbor (KNN) proves to be a more accurate classifier 

for implementation. The aim is to deploy a proprietary sensor node and an embedded processor 

using machine learning to be able to identify and classify the six contaminants. Furthermore, the 

performance of different classifiers is analyzed in order to make necessary trade because the 

machine learning classifiers take up a lot of computing resources. Tap water is fetched in a beaker 

for analysis using IoT, aspects of running water are not highlighted. 

 



 

 

2.5 THE SUMMARY AND IDENTIFIED GAP  
 

State of the art techniques to detect cholera are made for laboratory-like settings involving 

expensive, complex, high latency processes and resources and highly skilled laboratory staff to 

carefully drive the all process. Those solutions are not practical for a mass deployment on all 

communal water taps in Africa as a way to warn users in real-time about a potential waterborne 

disease such as cholera. Using the Internet of Things (IoT) sensors, has been proven that one 

can monitor water's physicochemical properties like potential hydrogen (pH), oxidation and 

reduction potential (ORP), conductivity, temperature, turbidity and so on. The sensed water 

data is transmitted to the cloud where trained machine learning (ML) models perform water 

quality analysis (inference) to predict water safety, either in general or specifically against a 

given water-borne disease like cholera. Solutions centered on the cloud for inference are not 

viable in rural areas which face limitations of wireless internet connectivity. 

Our study’s approach is to design and develop a prototype of an offline edge AI rapid water-

bone cholera detector kit, pluggable on existing taps to instantaneously infer water safety from 

physicochemical patterns of water 

2.6 CONCLUSION  

A clear gap on how Cloud centric solutions are not suitable for a rural based community 

mass deployment has been highlighted. Existing solutions still require laboratory-like settings, 

labor and resources that cannot be feasible in resource constrained countries especially in sub-

Saharan Africa. Therefore, this study proposes using IoT technologies to capture physico-

chemical parameters of water geared towards inference of water borne diseases using Edge AI.   

 



 

 

 

 

 

  



 

CHAPTER III: RESEARCH METHODOLOGY  

3.1 INTRODUCTION  

This chapter describes how the research will be conducted in order to achieve the stated 

objectives.  It demonstrates the research design and procedures, sample selection, data 

collection techniques and instruments. The scientific methods for conducting research have 

been stated in this section as well as the experimental research approach.  

 3.1.1 RESEARCH APPROACH AND DESIGN OF THE SYSTEM  

The study approach will be in two phases: 

● HW/SW embedded simulation 

In our first step, we simulate the edge AI inference in a virtual embedded platform simulator 

before testing on a real development board. In the simulation context, the performance of edge AI 

inferencing is validated by reading test data from a file and comparing the inference results with the 

ideal results calculated by the cloud platform used during the training. 

● Embedded Hardware implementation 

This step involves the process of combining different physical embedded components in effort to 

achieve specific objectives against the study hypothesis, data collection and evaluation of the 

hardware system. 

 

FIGURE 1: RESEARCH METHODOLOGY FLOW PROCESS 
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3.2 HARDWARE/SOFTWARE CO-DESIGN 

 

 

FIGURE 2: HARDWARE/ SOFTWARE CO-DESIGN 

 

 

 

 

 

 

3.3 EDGE AI PROTOTYPING TOOL STACK 
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FIGURE 3: PROTOTYPING TOOL STACK 

3.4 SOFTWARE REQUIREMENTS  

3.4.1 SOFTWARE TOOL STACK 
The software tools used as per figure 3 are as follows:  

1. MOSTLY GENERATE-Mostly GENERATE is a free synthetic data generator platform 

which allows the simulation of realistic & representative synthetic data. By automatically 

learning patterns, structure and variation from existing original real-world dataset. It 

leverages generative deep neural networks. This way a dataset that is realistic, can be 

acquired from the already existing dataset, freely processed and analyzed. Generally, the 

data does not replicate already existing values in the file. Performance during training shows 

that the data generated performs exceptionally well when tested on real world data. This in 

effect validates the use of synthetic data. 

2. Edge Impulse is a platform that enables IoT developers to embed ML and deep learning 

techniques onto resource constrained embedded devices. Edge Impulse as a development 

platform for embedded machine learning, enables development for machine learning on 

embedded devices for sensors, audio, and computer vision, at scale in order to solve real 

problems using machine learning in embedded solutions, speeding up development time 

from years to weeks. 

3. STM32 Cube IDE. The STM32CubeIDE is chosen to integrate STM32 configuration and 

project creation functionalities from STM32CubeMX to offer all-in-one tool experience for 

simulation purposes. The IDE is an all-in-one multi-Operating System development tool, 

which is part of the STM32Cube software ecosystem. STM32CubeIDE is an advanced 

C/C++ development platform with peripheral configuration, code generation, code 

compilation, and debug features for STM32 microcontrollers and microprocessors. Arduino 

IDE 

4. Proteus: For embedded engineers, Proteus VSM bridges the gap in the design life cycle 

between schematic capture and PCB layout. It enables you to write and apply your firmware 



 

to a supported microcontroller on the schematic and then co-simulate the program Proteus 

allows you to interact with the design using on screen indicators such as LED and LCD 

displays. 

3.5 DATA ACQUISITION: DATA ACQUISITION AND SYNTHETIC DATA GENERATION 

3.5.1 THE ORIGINAL REAL-WORLD DATASET 

The dataset used for this study is acquired from a study of observed cholera cases in the Katana 

health zone shown in figure 4. Physico-chemical characteristics of Lake Kivu, temperature and 

salinity, were collected against the concentration of V. cholera found in lake water and inside the 

gills and abdomen of fish [30]. The dataset was collected twice a month over a period of 48 sampled 

weeks over the 2016–2017. The dataset consists of 289 observations. As the first step to understand 

the data and make sense of it, feature engineering is performed to help understand the relationship 

between the features and the labels. Despite having the two features being correlated, it is established 

that temperature and salinity are important in the occurrence of vibrio cholerae in water. 

Furthermore, you cannot derive temperature directly from salinity which supports the argument of 

having the two features to be used in the ML process. The resulting dataset is small due to the use 

of conventional methods to detect cholera count in water used to acquire the dataset. This challenge 

can be addressed by using appropriate ML algorithms for low datasets and exploration of generation 

of synthetic datasets. As shown in Fig. 5, there is a clear separation of features for each class. This 

shows that the acquired model should be able to perform very well upon completion of training. 

https://www.labcenter.com/buy-vsm/


 

 

FIGURE 4: MAP OF THE KATANA HEALTH ZONE 
 

3.5.2 SYNTHETIC DATA GENERATION.  
 
 

The volume of data is important when you are performing ML. The more data you have, the 

higher the chances that you will be able to acquire a model that has high accuracy when tested on 

real world data. Synthetic data is chosen to address the question of volume, cost and time efficiency. 

For us to be able to perform machine learning, we require data that has been acquired through the 

traditional cholera testing techniques which have been proven to be time consuming and costly. As 

an alternative to conventional cholera detection data collection techniques, we leverage technologies 

at our disposal and perform synthetic data generation from already existing datasets. 

 



 

 
FIGURE 5: VISUALIZATION OF DATA FROM DSP BLOCK 

3.6 DIGITAL SIGNAL PROCESSING 

We observed the collected data on a digital signal processing block to enable us to have a clear 

view of the features that we want to feed into the neural network. The flattened modules that looked 

at averages, standard deviation, minimum, maximum, skewness and kurtosis are suitable to the kind 

of data that is being used. Upon review, feeding raw data of the available dataset without further 

processing showed a clear separation of features for both classes as shown in figure 5. 

3.7 ML TRAINING  
 

The next step is to perform training with the extracted features from the dataset with an 

embedded-aware ML framework. Edge impulse provides a native design of a classification neural 

network shown in figure 6. Raw features are extracted from the digital signal processing block of 

edge impulse before they are fed as input for the ML classifier algorithm. Due to the volume of the 

acquired dataset, it is recommended to have a simple neural network that can be used for low 

datasets. The default layered structure of edge impulse fits the requirements. The neural network 

consists of an input layer, two dense fully connected hidden layers, one having 20 neurons and 



 

another 10 neurons and an output layer for optimal performance of the derived model as shown in 

Fig.  4. A predictive model is generated with varying accuracies that are hinged on the number of 

training cycles applied for the training process. To achieve accuracies of up to 80%, a number of up 

to 500 training cycles is used. When inference is done on test data, the accuracies achieved are 60% 

which shows a discrepancy when compared to the validation accuracies. This discrepancy therefore 

leads to the conclusion that the model is overfitting. We are therefore able to show that the 

experimental use of Deep Neural Networks using the tool stack is not ideal for low datasets. To 

tackle this, we explore the use of techniques suitable for low datasets. 

In the implementation of ML algorithms suitable for low datasets, Support Vector Machine 

(Quasi-SVM in Keras) is explored for classification methods. SVM has several unique benefits in 

solving small samples, and nonlinear and high-dimensional pattern recognition which can be 

extended to function in the simulation of other machine learning problems. It uses the hyperplane 

to separate the points of the input vectors and finds the needed coefficients. After training the SVM 

model using Edge impulse, the estimated real-time resources on an ARM-cortex microcontroller 

are: 1.5K of RAM memory for processed data, a latency of 1ms and 14.9K ROM memory to save 

the tinyML model.  The model evaluation in cloud settings achieves an accuracy of 94% for the 

targeted model optimizer EON compiler using the SVM ML algorithm. 

 



 

 
 
FIGURE 6: NATIVE NEURAL NETWORK ARCHITECTURE 

3.8 GENERATION OF A COMPILED TINYML SW LIBRARY 
 

The resulting AI model packaged as a software library is then compiled to the targeted processor 

architecture using an integrated development environment (IDE). 

3.9 HW/SW EMBEDDED SIMULATION 
 

In our first step, we simulate the edge AI inference in a virtual embedded platform simulator 

before testing on a real development board. In the simulation context, the performance of edge AI 

inferencing is validated by reading test data from a file and comparing the inference results with the 

ideal results calculated by the cloud platform used during the training. 

We use Proteus as our embedded modelling and simulation tool.  Figure 7 shows the layout of 

our design in Proteus. 

 

Input Layer (2 features) 

Dense layer (20 neurons) 

Output layer (2 features) 

Dense layer (10 neurons) 



 

 
FIGURE 7: PROTEUS LAYOUT 

 

3.5 HARDWARE REQUIREMENTS AND SPECIFICATIONS  
 

3.5.1 SYSTEM LEVEL DESIGN 
 



 

 

 

FIGURE 8: HW SYSTEM-LEVEL DESIGN MODELLING 
 

Figure 8 presents the HW system-level design modelling of the proposed edge AI kit which is 

made up of 

● Sensors: 2 vital water physicochemical sensors, temperature and conductivity, that are 

essential and impacts life for both flora and/or fauna within the aquatic systems as per [24] 

● A microprocessor:  Based on ARM Cortex M4 instruction set architecture (ISA) 

● Actuators: A set of two LEDs, with green indicating cholera-free water and red warning the 

cholera infected water.  

● We consider outdoor communal taps to be powered either by harvesting ambient solar 

energy or by non-rechargeable small-sized batteries for several years of operations without 

maintenance. 

● Communication module: A wireless GPRS/GSM interface enables water notifications via 

SMS. 



 

3.5.2 SENSORS CONCEPT 
 

Sensors are relevant as they take a form of physical stimuli and convert them into a digital signal 

that can be processed. 

The following are sensor specifications for the prediction of waterborne disease using Edge AI: 

TEMPERATURE SENSOR 

 
FIGURE 9: GRAVITY WATERPROOF DS18B20 SENSOR KIT. 
 

The selected component for this scope is the Gravity Waterproof DS18B20 Sensor Kit shown in 

figure 9. The sensing module is capable of taking readings of temperatures ranging from -

55~125OC. Given the acquired dataset temperature values, the sensing module fits the range of 

temperatures and given the application, a waterproof sensor kit is best suited. 

 

SALINITY SENSOR 
 

Salinity can be described as TDS (Total Dissolved Solids). A TDS sensor as shown in figure 

10 indicates how many milligrams of soluble solids dissolved in one liter of water using a probe 



 

that measures the conductance of the ions in the water between the probe tips. In general, the 

higher the TDS value, the more soluble solids dissolved in water, and the less clean the water 

is.  

The TDS Measurement Range is: 0~1000ppm with a measurement Accuracy: ± 10%. 

 

FIGURE 10: GRAVITY: ANALOG TDS SENSOR/METER FOR ARDUINO 

3.6 HARDWARE SET-UP 

 

The Hardware experiment is composed of a breadboard, an Arduino Nano BLE Sense 33, and 

an LCD connected through jumper wires. The aim of this set up is to show that we can on-

board a tinyML on a constrained microcontroller and inference the same results as acquired 

from the cloud platform.  



 

 
FIGURE 18: HARDWARE SET-UP 

3.7 COMMUNICATION TECHNOLOGY REQUIREMENTS  

 
 
FIGURE 11: SIM 800 GSM MODULE 
 



 

Considering the background on this study, the chosen means of transmission will be SMS 

messages to health officials. A suitable module selected to achieve this is a Mini GSM / GPRS 

breakout board that is based on SIM800L module, which supports quad-band GSM/GPRS 

network, available for GPRS and SMS message data remote transmission shown in figure 11. The 

board’s fitting features compact size and low current consumption with power saving technique, 

the current consumption is as low as 1mA in sleep mode. It communicates with the 

microcontroller via UART port. The working Voltage: 3.5~4.2V. Ultimately considering the 

connectivity issues in African rural areas, it is necessary to have a module that can connect onto 

any global GSM network with any 2G SIM 

MICROCONTROLLER REQUIREMENTS AND SPECIFICATIONS  

Selected for this study is the Arduino Nano 33 BLE Sense which features a powerful processor, 

the nRF52840 from Nordic Semiconductors, a 32-bit ARM® Cortex™-M4 CPU running at 64 

MHz This allows support for its main feature which is running Edge Computing applications 

(AI) on it using TinyML. It allows one to create machine learning models using TensorFlow™ 

Lite and upload them to the board using the Arduino IDE. The main processor includes other 

features like ultra-low power consumption modes shown in figure 12. 

https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers


 

 
FIGURE 12: ARDUINO NANO 33 BLE SENSE WITH HEADERS 

3.8 CONCLUSION  

This chapter of methodology highlights how the research will be handled. The research is 

divided into two major phases that consist of simulation and hardware development. Relevant 

Edge AI tool stack is pointed out with description and relevance to each segment of the research 

procedure. Hardware components are also showcased with descriptions and an overall circuitry 

of the final system is portrayed. 

  

 



 

 

CHAPTER IV: INFERENCE ACCURACY AND VALIDATION OF EDGE 
AI FOR PREDICTING CHOLERA 

 

4.1 INTRODUCTION  
 

The previous section presented our workflow and setup for co-designing the HW and SW parts 

of our edge AI water tap device. This section presents the validation results of edge AI inference 

accuracy using a real-world dataset of physico-chemical characteristics of Lake Kivu. The small 

size of this dataset has driven the exploration of different ML configurations presented below in the 

context of strict real-time embedded resources.  

4.2 TRAINING RESULTS  
 
Edge impulse metrics of how the model will perform on the actual hardware are as follows: 1.6K 

RAM usage, a latency of 1ms, and 15.1K ROM usage for an accuracy of 94.03% for the targeted 

model optimizer EON compiler using the SVM ML algorithm. Table 3 shows comparisons.  

  



 

 

TABLE 1: SYNTHETIC DATA VS PRE SYNTHESIZED DATA 

Synthetic Data 

ML Algorithm Loss Testing accuracy 

Neural Network 0.09 90% 

SVM 0.02 94% 

Pre Synthesized data 

ML Algorithm Loss Testing accuracy 

SVM 0.49 80% 

Neural Network 0.52 85 

 

 

 

FIGURE 13: GRAPHICAL COMPARISON OF SVM AND NATIVE NN (SYNTHETIC DATASET) 

 



 

4.3 SIMULATED RESULTS 
Simulation results differ slightly in performance with 2ms inference time, using 57% of the 

CPU, 3.05Kb RAM and 54.96Kb flash on Proteus. 

When simulation results are compared to the ones achieved during live classification we see 

some similarity. Model optimizations involve making sure the model takes up least memory and is 

efficient. During deployment model optimization aims to have optimal on-device performance but 

may reduce accuracy. In this case embedded device accuracies reflect the same accuracies achieved 

from Edge impulse platform as shown in figure 14 and 15. A real hardware device would perform 

and give us an insight on the feasibility of deploying the actual hardware device.  

Upon conclusion of training, accuracies of up to 94.03% were achieved using the Quasi-SVM 

in Keras while with the native Neural network had accuracies of up to 90% with a higher loss value 

as shown in figure 13. 

 

FIGURE 14: PROTEUS OUTPUT 
 



 

 
 
FIGURE 15: LIVE CLOUD CLASSIFICATION 

4.4 IMPACT OF SYNTHETIC DATA 
 
Learning rate schedules can help to converge the optimization process. 

A learning rate that is too large can cause the model to converge too quickly to a suboptimal 

solution, whereas a learning rate that is too small can cause the process to get stuck. The graph 

shows that with a larger dataset we are able to increase the learning rate. This is not the same case 

as when we have a smaller dataset. This information is useful for tweaking the Machine learning 

parameters in order to achieve optimum accuracies. We are able to pinpoint learning rates for 

various amounts of data fed into the Machine learning algorithm as shown in figure 16. 

The larger the dataset the less the risk of a suboptimal Model. 



 

 

FIGURE 16: IMPACT OF SYNTHETIC DATA 
 

 

4.7 EVALUATION ON DEVELOPMENT BOARD  
 
 



 

 
FIGURE 17: ARDUINO NANO 33 BLE SENSE OUTPUT 
 

 
FIGURE 18: INFERENCE FROM EXPERIMENTAL SET-UP 



 

 
 
FIGURE 19: LCD PRINT OUTPUT 
 
Figure 17 shows performance on the Arduino Nano BLE sense’s MCU nRF52840-QIAA which 

shows a 94% accuracy on the class no cholera for the selected features which match for 

temperature and salinity respectively. Cloud inference for the same features match the results 

output from our development board.  

Further assessment was done with selected features from live classification and the results of the 

output compared with the LCD output of figure 18 and 19. 

  



 

 

CHAPTER V: CONCLUSION AND RECOMMENDATION  

5.1 CONCLUSION  
 

Predicting waterborne diseases such as cholera on communal water taps will contribute in 

decreasing the high burden rate especially in rural areas and endemic zones. This Master Thesis 

work leverages on the one hand IoT technology to sense physicochemical parameters of tap water 

and on the other hand ML to learn waterborne disease patterns from those parameters. From this 

state of the art basis, we exploit the emerging edge AI technology to generate tiny ML models 

capable of running on resources-constrained embedded devices, thus in order to infer the risk of 

water to be contaminated directly on the water tap, removing the dependency to the cloud during 

real-time tap usage. To validate the inference accuracy in an embedded context, we have set up a 

prototype tool stack integrating Edge Impulse, STM32Cube and Proteus. The results confirm that 

inference accuracy on the used virtual embedded platform is similar to the one obtained when 

validating in the cloud. Furthermore, given the small size of the dataset in our disposal, we 

experimented tiny ML training on the one hand using a shallow ML learning suitable for small 

dataset namely SVM and on the other hand synthetic data generation to artificially increase the 

original dataset size. As a result, the accuracy has been 94% by SVM and 90% by Neural Network. 

5.2 RECOMMENDATIONS AND FUTURE WORKS  

As of today, acquisition of rich open datasets is a big challenge in Africa. More data based 

on physicochemical parameters of water could be collected using an embedded device such as 

the one designed in this Master Thesis and measured against cholera cell count. This project 

could be extended by incorporating ML algorithms for more physicochemical parameters of 

water.  Moreover, the extended system could be more informative especially with the ability to 

capture turbidity of water. Furthermore, the device could be implemented to more sub-Saharan 



 

African rural regions.  
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