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Abstract

Training complex deep neural networks can result in overfitting when the networks are

trained from random weight initialization on small datasets. Data augmentation helps

to reduce the negative effects of overfitting. Data augmentation is the process by which

the amount of data for a given problem is increased in quantity via some augmentation

technique. The findings in computer vision and audio recognition research reveals that

the performance of machine learning classifiers is significantly improved when the data

is augmented.

In the context of ecology, researchers conduct field surveys whereby microphones are

placed in some location and audio data is recorded over a period of time. There is

however no guarantee that the particular species of interest in the field survey will

vocalize frequently near the microphone. Thus, the amount of data captured for the

species of interest might be limited. Training robust classifier models on such limited

data will most likely lead to overfitting.

The purpose of this research is to investigate several audio augmentation techniques

as a means to increase the amount of audio examples for certain species of interest

with the goal of creating robust audio vocalization classifier models. We investigate

noise injection and time and frequency masking data augmentation techniques. These

techniques are applied to two birds of interest, namely the pin-tailed whydah (Vidua

macroura) and the Cape robin-chat (Cossypha caffra). While these two species are not

endangered, they allow us to compare the various augmentation techniques. The audio

recordings were obtained from the Intaka Island Nature Reserve, South Africa.

To evaluate the performance of the augmentation techniques we conducted a com-

parison between experiments run with and without augmentation. We chose to use

convolutional neural networks as our classifier given that they are the state-of-the-art

in audio recognition tasks. Furthermore, convolutional neural networks have revealed

good performance in the field of bioacoustics.

We manually annotated 768 audio files (20 minutes each) totaling over 256 hours of
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Chapter 1 Introduction

1.1 Rationale

Research in acoustics deals with the science of sounds and, it is becoming the most trend

of science and engineering insights in bioacoustics in recent years (Bianco et al., 2019;

Teixeira, Maron, & van Rensburg, 2019). The term bioacoustics is defined as the study

of living animals, their sounds production, transmission, and reception.

Conservation and monitoring of species are the main tasks of ecologists in the field

of bioacoustics. This involves the animal vocalization, detection, identification, tracking

of species, and measuring the population density of species in the region (Mcloughlin,

Stewart, & McElligott, 2019). Conservation relates to the human activities of shipping

species or damaging effect versus living species in the environment (Mcloughlin et al.,

2019). Vocalization and species call are fundamental elements for monitoring and con-

servation of animals.

Vocalization measures emotional, physiological, and individual animal behavior (Mcloughlin

et al., 2019). Behaviors of domestic animals express their health condition and welfare.

The vocal sound of the goat is an example to explain negative and positive experi-

ence behavior (Mcloughlin et al., 2019). Alarm calls from eagles express the presence

of predator animals (Seyfarth & Cheney, 2003). Vocalization of animals such as the

growling of dogs and the roaring of lions indicate the rage of these animals, therefore,

they pretend to strike against their enemies or making them have a lot of fear (Seyfarth

& Cheney, 2003). Vocalization also is used to determine the population size for each

individual species, call detection and their classification.

Species detection deals with the identification of the presence of animal sound in the

audio recordings. Detection and classification of species find specific patterns in the call
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spectrogram (Nanni, Maguolo, & Paci, 2020; Tóth & Czeba, 2016; Çakir, Adavanne,

Parascandolo, Drossos, & Virtanen, 2017). A spectrogram is the visual representation

of the signal (e.g. sound) frequencies as it changes with time. The studies mentioned in

this paragraph have all provided the success of the audio classification using the spec-

trograms representations to the audio data. Sound analysis is achieved by using the

computer vision (image analysis and classification) approach in machine learning. In

the call detection segments of call/song are isolated for specific species in the entire

recordings.

Generally, the annotation is used to label training examples which are then used to

train the classifier to find the calls. In our case, the location of the call is determined

by labeling and putting a surrounding box on the call during the period of recordings.

Source localization is another task used in vocalization and it is tracking, assessing spec-

trograms of calls for particular species in the recordings.

The population of species takes into accounts the density, abundance, size, or number

of species in habitat space or surrounding environment. Call count is the basic approach

for species population estimation. This technique is complex and requires a lot of effort

and expertise in the field of bioacoustics. Finding the population of birds species is one

example of complex activity. When people walk around and make noises, this can cause

a bird to stop vocalising and fly away. Therefore results about their population may be

biased with a human being present in the space. It is good practice to be out of sight

to get more accurate data from bird species. The use of audio recorders helps to solve

the problem of the presence of human beings since these recorders are non-invasive and

passive acoustic monitoring techniques (Browning, Gibb, Glover-Kapfer, & Jones, 2017).

Hence findings from collected data of species will have unbiased results (Priyadarshani,

Marsland, & Castro, 2018).

Audio recorders provide automatic data acquisition of not only the birds but also

other species in an effective and convenient way. Calls and vocal sounds of the birds

are taken without extra human being efforts. People simply mount and leave recorders

in the trees for the predefined specific time periods for capturing data. Recorders are

also set to the maximum frequency of recording. This frequency allows the caption for

species calling at the most frequency specified at the recorder during the setup. The

2



time and frequency of the call to be captured will depend on the recorder’s settings.

Recorders are mainly used for collecting data without the intervention of humans at the

sight, they capture sounds of data for an extensive time period. The recorders are also

used to capture data from hard areas to access/complex environment space. Recorders

can be programmed to turn on or off at given times. Thus, this allows researchers to

capture audio recordings at early hours in the day, or even at night. This enables the

collection of diurnal and nocturnal sounds of species (Priyadarshani et al., 2018).

The recorders are installed in the trees for capturing birds calls and other sounds

within the range of frequency specified by the recorder. These recorders have the ca-

pability to record audio species for long periods of time (Bianco et al., 2019). If there

could be endangered species, their calls are also captured during the same time. The

process of audio analysis and classification starts with data collection. It proceeds with

data preparation and data pre-processing.

The process of data collection is not enough for analysis. It is followed by data pre-

processing, call detection, and segmentation. Convolutional neural networks (CNN) can

learn filters which can result in good audio classification performance. These tasks are

currently being performed manually. This is complex and time-consuming work. The

need is to automate current ecologist tasks and the process of analysis for call detection

and classification based on audio recordings. These automatic processes and tasks will

speed up operations and computations. In this thesis we explore the automation of

vocalization classification on two species (pin-tailed whydah and Cape robin-chat), how-

ever, one could also apply the same approach to other species. We know that birds play

an important role for an indication of any major change to the environment (Koskimies,

1989) then it is easy to detect changes in the environment by observing their composi-

tion, quantity, and biodiversity to reflect habitat suitability. This is the reason why the

study is based on the bird vocalisations.

1.2 Background of the research

Current researchers in the field of bioacoustics report deep learning as the most suc-

cessful for identification of bird species (Sankupellay & Konovalov, 2018; jian Xie, qing

Ding, Li, & Cai, 2018). The key for the success is the use of data augmentation which

reduces the classification error rates and issues related to overfitting seen on artificial
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neural networks (Bianco et al., 2019). Research of Nanni et al. (Nanni et al., 2020)

shows that the classification algorithm using traditional methods requires appropriate

inputs features from audio spectrograms and they can greatly improve the performance

accuracy of the classification model.

Traditional classifiers such as Gaussian mixture models (GMM), hidden Markov mod-

els (HMM), random forest (RF), k-nearest neighbor (KNN), decision tree, and support

vector machine use a separate task to find inputs features to the classifier (Potamitis,

2014). The term handcraft is used to refer to a manual process of finding optimized

inputs feature extraction used by traditional methods of classification and most of these

methods are based on time-frequency domain (Nanni et al., 2020; Mcloughlin et al.,

2019). However, converting audio traces into their visual representations enabled the

use of feature extraction techniques commonly used for image classification. GMM and

HMM are based on prototype pattern matching from sample labeled data in its classi-

fication (Potamitis, 2014).

The automatic method of data acquisition currently used; will generate a large amount

of data when the recorder is used for a long time. Hence further algorithms need to be

used to speed up processing, analysis, and classification over a big amount of data. Au-

dio signal spectrograms and Mel-frequency Cepstral Coefficients spectrograms are the

fundamental algorithms of these handcrafted features development. In the real sense

of what is happening in practice in certain cases; bioacoustics data are relatively small

in size and the training phase of deep neural networks requires a large amount of data

in the training phase (Nanni et al., 2020). Thus having a small sample size during the

training phase of deep neural networks can result in overfitting (jian Xie et al., 2018).

Deep learning methods do both; learning an appropriate number of features based on

the depth of the feature extractor automatically and they also perform model classifi-

cation on species in the moment of training phase (jian Xie et al., 2018). The research

of Michael et al. (Bianco et al., 2019) shows that the classification performs well with

self-learned features in recent years’ studies.

The study of Taye (Taye, Hwang, & Lim, 2020) shows that support vector machine

(SVM) did not generalize well on certain datasets while performing poorly in the anal-
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ysis of bioacoustics data. Syllables of the birds are single notes of the call. Calls have

spectrograms images with syllables from various birds species overlapping each other.

These call notes do not follow separate linear classes.

Deep learning is able to make a classification with self-learning features and also

giving good accuracy compared to other traditional classification models (Taye et al.,

2020). This study shows that CNN achieves the highest performance metrics of sensi-

tivity, specificity, accuracy, and area under the curve when compared to KNN, SVM,

and ANN. CNN makes a good performance but, the training data required may be large

compared to the small available data. These available data may contain an unequal dis-

tribution in the target variable of classes. Unequal distribution (class imbalance) leads

to the overfitting of classification prediction analysis.

With a huge amount of training data, machine learning (including deep learning meth-

ods) can discover models describing acoustic phenomena which are complex (sounds of

animals, human speech, reverberation, birds calls) (Bianco et al., 2019). CNN model

achieves good performance with large and sufficient data in the training phase. In cer-

tain situations, available data are small or imbalanced in classes. Some techniques are

therefore needed to solve these issues.

The purpose of the study is to build a CNN model for the automatic detection of Cape

robin-chat (Cossypha caffra) and pin-tailed whydah (Vidua macroura) at a high level of

accuracy without overfitting. The research will investigate data augmentation techniques

that have been shown to perform well in computer vision and speech recognition to

solve overfitting problems for small training data. Having a classification model; the

experiments consist of selecting a random number of samples, apply data augmentation

technique, testing and evaluate the model on these samples. Results from the group of

samples together with applied augmentation methods are therefore compared.

1.2.1 Problem statement

Conservation, management, and monitoring of species is still hard work to achieve. These

activities of ecologists are processed manually (Sankupellay & Konovalov, 2018) and

biodiversity assessment is challenging from the data collection step to the interpretation
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of results of the analysis. During the collection of data, recorders capture animal’s

sounds or birds call. The complexity comes to the signal pre-processing and analysis of

data.

Although the CNNs model performs well on classification predictions, the data for model

training are limited (available data are not enough to train the model) in certain cases.

When talking about the limitation on data, this means a lack of data. Samples of

at least one class may not have enough representation during model training and this

produces an imbalanced dataset. Call from rare species is an example that can create

an imbalanced dataset because these species do not call often. Thus, there might be

few documented examples of their calls. For example, there are only three recordings

publicly available for the endangered Hainan Peacock-Pheasant 1.

1.2.2 Objectives

Main objective

The primary objective is to apply data augmentation techniques used in other areas

of machine learning research, for example speech recognition for limited data and per-

form an investigation of these techniques on classification prediction using performance

metrics such as accuracy. The specific objectives of this thesis are listed below:

Specific objectives

1. To analyze the characteristics of pin-tailed whydah Vidua macroura and Cape

robin-chat Cossypha caffra calls (audio data).

2. To apply appropriate pre-processing techniques on collected audio recordings. The

research is considering the techniques that were used for other types of audio data.

3. To construct a public bird song dataset having annotations and calls of pin-tailed

whydah and Cape robin-chat.

4. To apply 4 data augmentation techniques on 3 types of calls (pin-tailed whydah,

Cape robin-chat and noise). The classification results from these 4 data augmen-

tation techniques are compared with a baseline.

1Hainan Peacock-Pheasant https://www.xeno-canto.org/species/Polyplectron-katsumatae
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5. To train a convolutional neural network for classifying pin-tailed and Cape robin-

chat species.

6. To evaluate the trained classifiers on test data for each of the 4 augmentation

techniques.

1.3 Organization of the research

The entire work of the study is organized into 5 chapters. Chapter 1 provides a gen-

eral introduction to the problem, chapter 2 discusses relevant literature, the research

methodology is presented in chapter 3, the results are revealed in chapter 4, and finally,

chapter 5 concludes the thesis and provides recommendations.
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Chapter 2 Literature review

2.1 Introduction

Given the lack of literature on augmentation techniques being applied to the field of

bioacoustics (Dufourq et al., 2021), this chapter will review studies where augmentation

has been used in computer vision tasks. Limited data may be fixed with data aug-

mentation which is increasing the samples size by creating new synthetic data from a

small amount of existing samples (Dufourq et al., 2021; Taye et al., 2020; Miko lajczyk

& Grochowski, 2018) and there are a number of techniques of data augmentation using

traditional methods or based on computer vision. Augmentation techniques used in the

above studies were geometric transformation (rotation, cropping), generative adversarial

network (GAN), image finishing style (image on-blur), random erasing (on a small re-

gion of the image), noise addition, time-shifting, a mixture of images (blending) and the

use of the public repository. Results from data augmentation in prediction classification

models have been good in performance. Data augmentation is not new, it has been used

for computer vision (image and video classification) studies as well as other researches

related to machine learning and deep learning (Perez & Wang, 2017; Miko lajczyk &

Grochowski, 2018; J. Wei & Zou, 2019; Jiao, Tu, Berisha, & Liss, 2018).

This chapter provides a brief overview of the data augmentation term, its usage,

techniques involved, related work, and performance achieved in applying some of the

augmentation techniques. Performance is indicated by visualization plot, error rate, or

with other metrics values such as sensitivity, precision, recall, accuracy, and f1-score.

A good prediction model is achieved by creating additional artificial samples from orig-

inal existing data (creating many more new samples of data) (Dufourq et al., 2021). This

increases the size of training data and therefore it fixes overfitting issues while improv-

ing the accuracy of classification predictive model (Perez & Wang, 2017). Geometric
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transformation (cropping and zooming) and changing colors are common approaches of

data augmentation (Perez & Wang, 2017) for image classification.

The above examples of the literature clearly show that augmentation defines a set

of methods used to provide new data points from existing data. This approach has a

powerful application in machine learning, particularly in deep learning since the cost for

re-collecting data and, the effort of labeling them for classification are catted off. Aug-

mentation fixes issues related to the class imbalance of the classification, and limited

data while improving model performance and accuracy. Many examples relate to com-

puter vision and few of them relate to bioacoustics. The next paragraph explains why

all available augmentation techniques could not be feasible for the bioacoustics dataset.

Data augmentation methods like time shifting (Dufourq et al., 2021), Gaussian white

noise injection, random multiply, image blur, vertical and horizontal roll, random crop,

dropout, blackout approaches (Koh et al., 2019) have been used for augmentation with

a similar purpose to improve the classification performance of computer vision studies.

Not all of these techniques are appropriate for bioacoustics because of the temporal

nature of the special physical (spectrum) and the sounds of the signal (S. Wei, Zou,

Liao, et al., 2020). Augmentation using transformations of data by adding Gaussian

noise, time stretch, and pitch shift is commonly used for audio augmentation because

time-frequency domain constraints of the signal maintain the label of the original sample.

Audio augmentation relies on the simple concept of mixing up two samples of the same

class and other data augmentation methods for the reconstruction of the labels in image

processing. The class label of the original sample is preserved on the newly created

sample by using augmentation.

2.2 Related work

The study of Perez et al. (Perez & Wang, 2017) shows that three augmentation tech-

niques namely traditional transformations, GAN, and learning augmentation have been

used to classify dogs versus goldfish, dogs versus cat, and MNIST 0’s and 8’s. The tradi-

tional transformation was based on the geometric concept of the shifted image, zoomed

in/out the image, rotated image, flipped image, distorted image, or apply the shade with

a hue on the image.
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The study of Luis et al. (Perez & Wang, 2017) shows that Cezanne, enhance, Monet,

ukiyoe, van Gogh, winter are 6 styles of GAN augmentation to generate 6 new images.

“Learning the augmentation” is the term used in the above study to refer to the aug-

mentation technique which combines two different images of the same type into a single

image as output. “Neural networks with no loss” is a title given to an augmentation

neural network with a no loss approach and it had got 91.5% as the highest accuracy

in classifying dogs versus goldfish (accuracy of 85.5% was achieved with no augmenta-

tion). The same augmentation had got 77.5% as the highest accuracy in classifying dogs

versus cats (accuracy of 70.5% was achieved with no augmentation). The augmentation

best accuracy in all used datasets was given by MNIST in classifying 0s and 8s. This

accuracy was 97.2% without augmentation methods and it reached 97.5% with augmen-

tation. The change in the accuracy is 0.3 for MNIST, the change in accuracy is 6% for

dogs versus goldfish classification and 7% for dogs versus cat classification. The last

two predictions have a good improvement in accuracy but they are not the best score.

MNIST has less change in accuracy but overall accuracy is excellent compared to the

other two remaining datasets.

The study of Nanni et al. (Nanni et al., 2020) shows that four techniques have been

used and three of them improved the performance of the model classifier when com-

pared with no use of augmentation approaches. Accuracy on spectrogram augmentation

method using fusion-local on cat dataset has got the highest accuracy of 91.73% com-

pare to other used augmentation techniques for all neural network architecture (VGG16,

GoogleNet, VGG19 and etc). “Fusion - Local” is one type of neural network architecture

used for this study.

Accuracy on “baseline” which is a no augmentation (NoAUG) method using “Fu-

sion Si+Sp+SSG” (a CNN) on BIRDZ (audio of bird species from xeno-canto website)

dataset. Xeno-canto1 is a public worldwide site for sharing bird sounds. The baseline has

got the highest accuracy of 96.85% compared to other used augmentation techniques.

Standard image augmentation works on basis of geometric transformation (reflection,

rotation) and computer vision. Standard signal augmentation results in 10 more copies

1xeno-canto https://www.xeno-canto.org/
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of original audio using built-in augmentation methods of MATLAB (speeding up audio,

time, and pitch shift, adding noise and volume increase). Spectrogram augmentation

also creates six versions of new copies of the spectrogram from the original one. The last

is signal augmentation which is working directly on raw audio. All these augmentation

techniques were used in the referenced study. This study also describes the CNNs archi-

tectures used. These are GoogleNet, VGG16, VGG19, GoogleNet – places365, VGG16

- batchSize, and GoogleGoogle365 (sum rule of GoogleNet and GoogleNet-places 365

trained with each of the data augmentation protocols) convolutional neural networks

architectures. GoogLeNet was developed by Google and it is a convolutional neural

network with 22 layers in deep. GoogleNet was trained with “ImageNet” dataset2 hav-

ing 1000 objects categories. GoogleNet-places 365 is similar to GoogLeNet except that

it classifies images into 365 different place categories (field, park, runway, and lobby).

These network architectures have been used with/without augmentation techniques for

birds and cats audio data. GoogleNet got 82.98% without augmentation, 76.44% using

“standard image augmentation” approach, 85.12% on “standard signal” augmentation

method, 85.25% on “signal augmentation” method and finally 88.68% by using “spec-

trogram” augmentation technique.

VGG16 got 84.07% without augmentation, 77.02% using standard image augmenter,

86.64% on standard signal, 88.20% on signal augmentation and finally 90.71% by us-

ing spectrogram augmentation. The performance using standard image augmentation is

lower comparing to other augmentation techniques. This performance is still less when

it is also compared to the use of the no augmentation approach. Spectrogram augmen-

tation outperforms well for all augmentation techniques used of this study. The three

remaining augmentation techniques have only improved accuracy.

The study of Mario (Lasseck, 2018) shows that a number of 1500 birds species (a large

collection of audio recordings provided by Xeno-Canto) were classified using data aug-

mentation. Birds call are converted to spectrogram images. These spectrograms were

again segmented into birds only, noise only, background atmosphere, and low quality or

highly compressed recordings data sets. The study has used a number of data augmen-

tations techniques but the full augmentation was the best compared to other methods.

Here are some augmentation methods used such as combining two different files from

2ImageNet data https://image-net.org/download.php
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different datasets, extracting parts from a random position in the file, adding two files

together, applying jitter duration and etc. Jitter duration is an augmentation method

to add random brightness, contrast, saturation, and hue to the existing image to form a

new copy of data.

The performance is measured using mean reciprocate rank in percentage (MRR) and

it achieved 65.538% without augmentation and 74.466% with full data augmentation

(i.e combination of augmentation techniques). MRR in full augmentation except with

NoiseOnly (training file having audio content without signal) and AtmosOnly (combin-

ing longer sequences of successive frames related to noise with an overall duration greater

than one second) had 67.893% which is presenting a slight change compared to the use

without data augmentation. Except noiseOnly and AtmosOnly, all other combinations

achieved the same results as the full augmentation method. The study experiment shows

that the use of noiseOnly and AtmosOnly has a major improvement to the performance.

MRR improves 10% in the classification by using full augmentation method, i.e a com-

plete augmentation got 74.4% while methods without data augmentation are having

65.538%.

The study of Xiaofeng et al. (X. Zhang, Wang, Liu, & Ling, 2019) shows that two data

augmentation approaches called traditional data augmentation (C-augmented) and deep

adversarial data (DADA) were used. As the number of samples increases the accuracy

of the classifier achieved on limited data known as C is the lowest; DADA only improves

in the accuracy compared to C and DADA applied on C-augmented. DADA-augmented

has the highest accuracy in the results. Again DADA-augmented had made 65.49%

from 59.9% and 62.7% using f1-score. Mean fold model (MF), long short-term memory

(LSTM), a digital database for screening mammography (DDSM), and DS specify the

impact of transformation function domain-specific. The last two of the above metrics

are the f1-score of MF and LSTM tasks to increase performance used for DDSM plus

DS. All these performances are found in (Ratner, Ehrenberg, Hussain, Dunnmon, & Ré,

2017) study.

The study of Alexander et al. (Ratner et al., 2017) shows that the basic, heuristic,

mean fold model (MF), and long short-term memory (LSTM) are the main data aug-

mentation used for this study. The datasets used for the experiments are CIFAR-10,
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MNIST, and ACE. The first two datasets are well known in the other studies of this

literature review chapter. MF and LSTM augmentation techniques are also well known

in this chapter. Unlike CIFAR-10 and MNIST datasets; ACE is a different dataset. Au-

tomatic content extraction (ACE) is a text dataset (corpus) and this technique is used

to extract relation in the text of the sentence. Performance is measured using accuracy

for the CIFAR-10 and MINST datasets, and f1-score is used for the ACE text dataset.

The test with 1% of MNST dataset got 96.7 f1-score using LSTM (90.2 without aug-

mentation) and 10% on MF with 99.2 f1-score (97.3 without augmentation). Test with

10% of CIFAR-10 dataset got 81.5 f1-score using LSTM (66.0 without augmentation)

and 100 percent on MF with 94.4 f1-score (87.8 without augmentation). ACE using

f1-score got 64.2 using LSTM (62.7 without augmentation). These are the best per-

formance measurements from augmentation compared to the use of no augmentation.

Basic and heuristic augmentation techniques have improved in performance but did not

produce the best overall score.

The study of Jia et al. (Shijie, Ping, Peiyi, & Siping, 2017) shows that GAN, Wasser-

stein GAN (WGAN), flipping, cropping, shifting, PCA and color jittering, noise, rota-

tion, and some of their combinations as data augmentation techniques. Results show

that there are improvements in performance for individual data augmentation except

for the addition of noise. Their combination shows a significant change of improvement

from the use without/with augmentation. The test was done using the original dataset

only, the original dataset with data augmentation, and finally initial data together with

a double of augmentation data. ImageNet and CIFAR10 datasets were used to test

WGAN, cropping, rotation, flipping data augmentation, and their combination pairs.

Results on the individual augmentation approach with the data size of triple (original

training set plus the double size of the generated samples) are highest. Pairs of aug-

mentation methods also achieved the highest results in a similar way to the individual

techniques of augmentation.

The study of Mingyang et al. (Geng, Xu, Ding, Wang, & Zhang, 2018) shows that

augmented random search (ARS-Aug) was used to improve the existing AutoAugment

approach. PyramidNet + ShakeDrop achieves a model small error rate of 1.26% on

testing CIFAR10. AutoAugment had 1.48%. On ImageNet test errors are 10.24% on

ARS-Aug whereas AutoAugment is 10.67%. Small errors mean the better the model is.
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Validation set Top-1 / Top-5 error rates are AutoAugmenter: 16.46/3.52 and ARS-Aug:

16.12/3.28 using AmoebaNet-C (6,228) model. Errors are reducing which gives a clear

indication of the improvement.

The study of Philip et al. (Jackson, Atapour-Abarghouei, Bonner, Breckon, & Obara,

2019) shows that Color jitter and style Augmentation (uses a random texture, contrast,

and color, while keeping shape and semantic content) techniques were used as data

augmentations. InceptionV3 achieved the best prediction accuracy of 0.765, 0.893, and

0.215 on three office datasets using style augmentation.

Spectrograms and images are two dimensions visual objects, therefore the image can

be treated like spectrograms and vice versa. There is a possibility to perform similar

operations on both of them. Spectrograms represent the strength of the signal using the

time-frequency domain while images represent pixels using width-height axes. Width

turn to the time axis, height becomes frequency and signal strength turns to the pixels.

So the analysis of images in terms of computer vision is applied completely to audio

signal processing with spectrograms.

The study of Wong et al. (Wong, Gatt, Stamatescu, & McDonnell, 2016) shows that

two types of data augmentation (data space and feature space) were used. Data space;

image data creates new copies by transforming existing samples. New samples preserves

label information with validation of label integrity being performed by a human ob-

server. Feature space; image creates new copies of data by an arbitrary transformation

of an existing sample by also preserving label information. The result takes baseline

performance (CNN, CSVM, and CELM) on MNIST data. Each of the techniques used

in the baseline are tested with real data, Synthetic Minority Over-Sampling Technique

(SMOTE), elastic distortions to images of existing samples and Density-Based Synthetic

Minority Over-Sampling Technique (DBSMOTE). Overfitting is indicated by the graph

of the results, i.e when the graph shows the gap space between training errors and testing

errors is big.

On the baseline, the CNN reduces the overfitting as the number of samples increases.

On CSVM, the DBSMOTE increases overfitting to its highest value. It produces poor

performance. On CELM, increasing real samples data shows that the overfitting gets

reduced.
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The study of Terrance and Graham (Devries & Taylor, 2017) shows that the used aug-

mentation method is similar to the above study of Wong et al. Results show that the

testing errors in percentage keep on reducing while samples increases. Performance is

good when testing errors are reducing. The study by Agnieszka and Micha l (Miko lajczyk

& Grochowski, 2018) shows that the traditional image transformation geometric and

color, GAN, style transfer, finishing, and their combination with GAN. Results show

that the combination of augmentation techniques provides a significant improvement on

accuracy.

The study of Zhun et al. (Zhong, Zheng, Kang, Li, & Yang, 2020) shows that ResNet-

101 model’s errors reduced to 5.30 from 5.73 (baseline) on top-5 and 20.43 from 20.98

(baseline) on top-1 on ImageNet. Comparing dropout, random erasing, and baseline;

random erasing achieved a small test error rate of 4.31 while it was around 5 error rate

for others. Comparing random flipping, random cropping, and random erasing with

baseline; again random erasing has a smaller error rate i.e model improves. Results from

this study show a small error rate compared to baseline errors.

In summary, the literature reveals that data augmentation improves the performance

of machine learning classifiers. The use of individual augmentation techniques results

in minor performance improvements, whereas combinations of techniques result in sig-

nificant improvements. Furthermore, the literature reveals that convolutional neural

networks are currently state-of-the-art for creating acoustic classifiers. Based on these

findings we explore data augmentation techniques for bioacoustics classification in the

context of small datasets which is relevant when monitoring endangered species. To

achieve this we will apply data augmentation techniques to the dataset which we have

manually annotated. The description of these details is found in the next chapter.
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Chapter 3 Methodology

In this chapter, we first discuss how the data was collected, annotated, and provide a

description of data pre-processing. Finally, we present our proposed methodology and

related terms used for the implementation of the research and data augmentation to be

used for the research.

3.1 Data Collection

The data for this research consists of audio recordings taken from Intaka Island Nature

Reserve, Cape Town, South Africa (Figure 0.1). The recorders were set to record over a

period of two weeks from 3:00 am to 7:00 pm. The audio recordings of birds are divided

into training and testing sets. One week of data was used as training data and the other

week was used as testing data.

Figure 0.1: Intaka Island Nature Reserve, Cape Town, South Africa.
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All recordings were obtained using an Audiomoth (Hill, Prince, Snaddon, Doncaster,

& Rogers, 2019). The calibration of the sampling rate is set to 48,000Hz. An audio

file is stored on the computer in the form of a digital signal. The digital signal uses

the numbers to represent amplitudes within the sound signal. When a computer is

reading the file, it needs to know the number of amplitudes to execute in one unit of

time (i.e number of amplitudes per one second). This number of amplitudes is known

as sampling rate and it is measured in hertz (e.g. 48,000Hz). For instance, a sampling

rate of 48,000Hz indicates that the computer is reading an audio file by executing 48,000

amplitudes at once (48,000 amplitudes values in one second). The sampling rate is the

number of audio amplitudes/points that the recording device can record in one second

(e.g. 16,000 data points per second).

The sampling rate may be set using different calibrations (8000Hz, 16000Hz, 32000Hz,

48000Hz and etc). By selecting a high-frequency value on the recorder, results in a high

range of frequencies that can be recorded hence more species are captured. With this

fact in mind, the sampling rate of 48000Hz will capture more species from the island to

help further/ future research. Birds species of interest in the research is the pin-tailed

whydah (Vidua macroura) in figure 0.2 and Cape robin-chat (Cossypha caffra) in figure

0.3. These birds are common species in South Africa and it is easy to collect their call.
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Figure 0.2: Adult male pin-tailed whydah, extracted from eBird (Pin-tailed Whydah -
eBird , n.d.).

Figure 0.3: Cape robin-chat, extracted from eBird (Cape Robin-Chat - eBird , n.d.).

An AudioMoth (Figure 0.4) is a low-cost, open-source acoustic monitoring device

used for monitoring wildlife. It is not only sensitive to audible sounds but well into the

ultrasonic frequency range (Hill et al., 2019). It records uncompressed audio from 8000

up to 384,000 samples per second. AudioMoth has lower cost, lower power utilization,

small size and it is easy to use when compared to existing recorders such as SongMeter

series.
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Figure 0.4: An attachment of AudioMoth recorder to the tree.

Analysis of the calls in frequencies founds that the pin-tailed whydah call has a max-

imum frequency of 7-8KHz while the call for Cape robin-chat has a frequency of around

3KHz. Nyquist theorem (Shannon, 1949) states that the signal is regenerated without

loss of information if the sampling frequency is set at least double of the maximum

frequency in digital signal processing. If considering 3KHz frequency, the Nyquist fre-

quency will be 6KHz which is enough to generate a digital signal of Cape robin-chat.

By doing so the pin-tailed whydah will however result in a big loss of information in

its digital signal. Taking the 8KHz frequency of the pin-tailed whydah will satisfy the

generation of a digital signal on both species by the Nyquist theorem (i.e 16KHz). The

frequency of 16KHz will create an excellent digital signal for Cape robin-chat and pin-

tailed whydah as well. So the maximum frequency for both species is 8KHz, and it is

good practice to set the frequency at 16KHz or higher for capturing the species being

surveyed.

3.1.1 Pre-processing

Image classifier CNNs models usually require fixed sizes as inputs. One can apply a 1D

CNN to raw amplitudes but the study did not use this approach since the literature (jian

Xie et al., 2018; Mesaros et al., 2017) shows that better performance can be achieved

when converting the amplitudes to spectrograms. Audio data are converted to spectro-
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grams images that can be input using 2D CNNs architecture. SonicVisualiser1 is free

and open-source software designed generally for visualizing, analysis, and annotation of

audio recordings. It reads audio in form of waveform (Figure 0.6).

The fact of setting up the recorder at 48KHz makes it capture many species including

pin-tailed whydah and Cape robin-chat calls. This digital signal has additional calls

apart from the two main calls of the study (pin-tailed whydah and Cape robin-chat).

This is an advantage for further research to use the same data but it is a challenge

in dealing with the pin-tailed whydah and Cape robin-chat calls. The use of a filter

solves this issue by only selecting signal samples/amplitudes with frequencies involving

the main call of the study. The filter removes signals from above 16KHz to 48KHz.

Choosing 16KHz is due to the pin-tailed whydah call frequency of about 8KHz for the

analog signal which is 16KHz by Nyquist theorem in the digital signal processing. The

filtered signal may introduce artifacts which are therefore fixed by the down-sampling

stage.

Down-sampling is a technique used to reduce the signal sample rate. Sample rate

in digital signal processing defines the number of samples taken from the signal in one

second. The first pre-processing step is to filter to a certain frequency to avoid artifacts

that can be caused by down-sampling. The filter isolates a certain range of frequencies

from a spectrum of frequencies. Filters select a part/band of frequencies from the spec-

trum depending on the needs. A low pass filter, high pass filter, or band-pass are types

of filters. The signal is filtered in the range 2500Hz to 7000Hz because the frequency

band of the species being surveyed falls into that range and the practical frequency on

both species is 16KHz by Nyquist theorem. Down-sample stage is the next stage as

explained in the previous paragraph.

The spectrogram (example Figure 0.5) visual representations are annotated by anno-

tating the start and end time of an event of interest (call or noise). The start and the

end of these events are indicated by boxes depending on what is being annotated. Short

vocalization events will have shorter annotation boxes compared to longer vocalization

events. The CNNs require fixed input images. To achieve this, one can extract fixed

1SonicVisualiser https://www.sonicvisualiser.org/
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audio segments of some pre-defined duration. Then the extracted audio is converted into

a spectrogram. Using this manner, one could create a dataset of spectrograms for which

each is of the same size. The pin-tailed whydah calls are much longer than 3 seconds.

Choosing a large segment would contain a lot of information and sometimes the Cape

robin-chat calls were short (e.g. 1 to 2 seconds). Thus 3 seconds is a window size that

ensures that at least the Cape robin-chat call is captured. If having a longer annotation

box (e.g. 20 seconds annotation), the extraction of multiple 3 seconds segments will be

18 segments (18 = 20 − 3 + 1) of 3 seconds each. These segments are taken by jumping

1 second from the starting point. If the annotation time in seconds is less than 3, only

one segment is extracted. Here there is a general formula to compute the number of

segments to extract.

n = t− 3 + 1 (0.1)

Where,

n denotes the number of segments,

t denotes the time duration in seconds of annotation (t >= 3sec).

These fixed inputs segments of 3 seconds are applied to the CNNs model. Short-time

Fourier transform and digital signal processing concepts are applied in the pre-processing

phase.

Figure 0.5: An illustration of a spectrogram image.

An example of spectrogram of the audio signal (Figure 0.5).

21



Figure 0.6: An illustration of a waveform image.

Above figure 0.6 has a waveform showing changes of signal amplitudes over time while

spectrograms display changes of frequencies over time.

Figures 0.7 and 0.8 show examples of spectrograms for the call of the Cape robin-chat.

The annotation CRC denotes the labeling that was used in this study for the call of

a Cape robin-chat. The value of 10 denotes the annotators’ confidence. A value of 10

meant the annotator was confident, a value of 1 annotated that the annotator was not

confident. This allowed for the creation of a dataset whereby varying levels of confidence

were assigned and could then be verified by an expert. The 768 audio files from two

weeks of data collection (one week for testing and one week for training) resulted in 256

hours. The 256 hours of recordings were manually verified in this manner and bounding

boxes were created. The start and end time of each box can be obtained and thus enables

the creating of a dataset.

Figure 0.7: Sonic visualizer annotation images.

Annotation of Cape robin-chat call indicated by rectangle boxes of varying length

(Figure 0.7).
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Figure 0.8: Another call of Cape robin-chat call image

Figure 0.8 shows that the call of Cape robin-chat is ranging from 2300Hz to 3000Hz

on frequency axes.

Figure 0.9: Example of pin-tailed whydah call images.

Figure 0.9 shows that the pin-tailed whydah is ranging from 3000Hz to 7000Hz on

frequency axes.

Figure 0.10: Typical input image of pin-tailed whydah call to CNNs model
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Figure 0.10 shows original call of pin-tailed whydah that can be an input to CNNs

model. This spectrogram has a height of 126 and a width of 214. This shape (126,214)

is 3 seconds fixed in time. This shape was initially varying in length.

Figure 0.11: Typical input image of Cape robin-chat call to CNNs model

The following tasks are conducted in pre-processing stage:

1. Sonic Visualiser, an open-source software, was used to to annotate individual

species of our interest by listening to sound and drawing a box to the call of

species being surveyed. There are several applications and tools to analyze audio

music files but Sonic visualizer is used since it is free and open-source software and,

EdgeAcoustic organization has provided training of using this tool for bioacoustic

data analysis and making call annotations.

2. From audio and annotations; SVL (Scramdisk volume file) contains metadata

(start and end of the call annotated) is created from sound and annotations and

it has the form of the data frame.

3. Extracting individual sounds of the pin-tailed whydah, Cape robin-chat and noise

(calls of other species or background sound) from recordings based on metadata

file. Metadata contains basic information about data and this information is used

to access or manipulate the data.

4. Apply low pass filter and down-sampling. A default sampling rate is 22050Hz and

based on species being surveyed which has a maximum frequency of around 8Khz,
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this makes down-sampling to be at 16Khz (a sample rate of 16000 samples/second)

of the audio signal according to Nyquist theorem.

5. Convert these audio waves to the spectrogram using a short Fourier transform.

6. Extract segments of fixed length using spectrograms and annotations.

3.1.2 Data after the pre-processing phase

The 768 audio files have been pre-processed where each audio file has 20 minutes. There-

fore, the 768 audio files resulted in 256 hours. These audio files are the (.wav) audio file

extension. The annotations were made for all the 768 audio files, 15 hours of recordings

were made publicly available along with their corresponding annotations. The anno-

tations are in the (.svl) files and both files (.wav and .svl) can be opened using Sonic

Visualizer. The public dataset2 is accessible from the zenodo website.

3.2 Machine Learning

Analysis of bioacoustics data requires a human being to spend time and a lot of ef-

fort listening to audio calls and predict the labels of species being involved. Automatic

operations are therefore introduced for analysis with the help of a computer machine.

It is important to analyze, detection and classify bird species with automatic operations.

Machine learning is a data-driven technique and it represents methods/algorithms of

automating data processing and pattern recognition (Bianco et al., 2019). These algo-

rithms are built based on statistics (Jiao & Du, 2016). Statistics is used to support

machine learning algorithms due to uncertainties within data. Machine learning takes

available data and divides them into three datasets, one for training model, validation

to evaluate the model, and testing to test the final model with unseen data (Jiao & Du,

2016).

Machine learning is divided into two main categories, supervised learning (input and

output labels are given in advance) and unsupervised learning where labels are not

2Pin-tailed whydah and Cape robin-chat calls for passive acoustic monitoring https://zenodo.org/

record/5141676#.YQvPtugzbIV
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given (Bianco et al., 2019). Supervised learning is further divided into two classes

namely regression (numerical continuous output variable) and classification for categor-

ical output variable with two or more labels in the target variable (Bianco et al., 2019;

Bermant, Bronstein, Wood, Gero, & Gruber, 2019).

Analysis of prediction classification of bioacoustics data with traditional methods mod-

els requires extracting input features by handcraft methods (Nanni et al., 2020). After

the computation of these features, a classification algorithm is applied to predict the

label. High dimensional input features are also an issue for the general machine learning

algorithm, therefore, a feature reduction algorithm is used to fix this problem. Deep

learning is more flexible since it can learn filters that produce feature maps automati-

cally.

3.3 Deep learning

Deep learning networks are computational models with multiple layers of processing

units for learning representations of data at many levels of abstraction (LeCun, Bengio,

& Hinton, 2015). Methods in deep learning have made a significant improvement in

computer vision (Shijie et al., 2017), speech recognition (Dufourq et al., 2021), object

detection (Perez & Wang, 2017), and many other systems (LeCun et al., 2015).

Deep learning is a subset of machine learning techniques that can learn filters to produce

automatically feature maps from actual input data during the training phase of the

predictive model (jian Xie et al., 2018; Bermant et al., 2019). The term deep learning is

derived from the use of many layers and functions from the input side of the model to

its output (Bermant et al., 2019). Deep learning refers to multi-layer neural networks

such as recurrent neural networks (RNN), CNNs, and many more derived from these

architectures (Shrestha & Mahmood, 2019).

3.3.1 Artificial Neural Networks

An artificial neural network (ANN) (Bre, Gimenez, & Fachinotti, 2018) is a non-linear

statistical modeling method, which is biological in nature. Figure 0.12 illustrates an

example of an ANN with 4 input nodes (in the input layer), 2 hidden layers, and

1 output nodes (in the output layer). Each node is fully connected which means that

26



every node of the previous layer has a direct link to the node of the next layer. Statistical

models are parametric, they rely on some assumptions on data. Unlike statistical models,

ANN is non-parametric models (Abiodun et al., 2019). ANN forms a neural network from

the input layer to the output layer (Cormack, 1971; Abiodun et al., 2019). Inputs layer

has nodes (neurons) that receive input features and they do not include any processing

ability. The output layer is associated with the target variable. One or more hidden

layers are placed between the input and output layer and links or connections between

nodes define weights values.

I1

I2

I3

I4

H01

H02

H03

H11

H12

O

Input layer Hidden layers Output layer

Figure 0.12: ANN with one input layer, two hidden layers and one output layer.

Nodes with processing abilities perform two main operations inside (summation and

activation). The summation operation takes inputs together with their weights by sum-

ming up them. These inputs may be the output from the previous layer. Depending

on the nature of the problem ANN may solve regression problems as well as classifica-

tion. The most and successful application of ANN is pattern recognition (Abiodun et

al., 2019).

Bias is an offset, it helps in shifting the activation function by adding a constant

value and it will help the model to produce a good fit to the data. Initial weights

are randomly created and the total loss between real and predicted values on target are

computed during training. The training backpropagation process updates initial weights
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until errors are minimized.

Gradient descent is an iterative process and, an optimization method used to improve

deep learning neural networks performance metrics by minimizing the cost function

(errors are minimized during the back-propagation of ANN) (Abiodun et al., 2019).

Gradient descent finds the minima of the function. The gradient descent technique

provides parameters (learned weights) that are optimal if the function is at the global

minima. So this method does not guarantee to find the global minima since it may

stop at the local minima without reaching the global minima point. Feedforward neural

network or multi-layer perceptron (MLP) is composed of one input layer, one output

layer, and at least one hidden layer and it is the most applied ANN architecture.

3.3.2 Activation and loss functions

An activation function is a function that applies some mathematical function on whether

a neuron should be activated or not by computing a weighted sum, and bias is added

in addition to the weighted sum. Without a non-linear activation function, a neural

network is a linear model. So the non-linear activation is added to introduce a non-

linear (Feng & Lu, 2019) transformation on input making it to be able to perform and

learn tasks that are more complex. There are two main categories of activation namely

linear and nonlinear function (e.g.Sigmoid).

Linear function

This function (Equation 0.2) forms an algebraic equation whose graph is a straight line

and its output changes are proportional to the inputs.

f(x) = k ∗X (0.2)

x is an input variable to a linear function. f(x) is the corresponding output. k is a

constant. The derivative (Equation 0.3) gives:

f ′(x) = k (0.3)

which is showing that the error cannot be decreased further by the gradient. The gradient

is fixed to a constant.
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Sigmoid Function

The graph of this function (Equation 0.4) forms an S-Shape, the range of its output is

[0,1] and it is nonlinear by nature. This activation is popular for classification problems

where the computed probability is at least 0.5 the output changes to 1 and 0 otherwise.

It has the form of :

f(x) =
1

1 + e−x
(0.4)

and its derivative (Equation 0.5) is:

f ′(x) =
e−x

(1 + ex)2
(0.5)

One needs to pay attention to initializing the weights of sigmoid due to the vanishing

problem. This problem occurs when the gradient is too small almost closer to zero which

results in no change for the new weight from the old weight. It provides a slight decrease

and prevents the training to learn optimized parameter values.

Softmax Function

Softmax (Equation 0.6) is for problems with multivariate classification where models

working on multi-class; return probabilities of each class and the target class will have

the highest probability among others (Nwankpa, Ijomah, Gachagan, & Marshall, 2018).

The sum of probabilities associated with classes in prediction must be equivalent to 1.

This function is mostly used in almost all the final layers of the deep learning neuron

networks once they used. The experiment will use this type of function as it is a non

linear function, it is mostly used for final layer of the classification and a 3 label classifi-

cation of the research is part of multi-class task. The softmax is given by the following

mathematical relationship:

f(xi) =

 exi∑
j
exj

 j = 1, ..., n (0.6)
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Hyperbolic tangent Function

Hyperbolic tangent (Tanh) activation function (Equation 0.7) or Tangent Hyperbolic

Function is derived from sigmoid as follows:

tanh(x) =
2

1 + e−2x
− 1 = 2 ∗ sigmoid(2x) − 1 (0.7)

Its derivative (Equation 0.8) is

tanh′(x) =
4e−2x

(1 + e−2x)2
(0.8)

This activation function does not suffer from vanishing problems and it is a non-linear

function. Its bound changes between [-1,1] with zero at the center on output.

ReLU

This function (Equation 0.9) is popular for ANN hidden layers, deep learning networks

for the last few years.

f(x) = max(0, x) (0.9)

It is a non-linear function since the output is always zero for negative numbers and it

uses less computation which is making it to be faster than tanh and sigmoid activation

functions that were popular activation functions for deep neural network (Szanda la,

2021). The gradient is zero for no positive inputs, weights will not be adjusted and

not responding to inputs variation. This inactive state is making it to be called “dying

ReLU”.

Leaky ReLU

Leaky ReLU (Equation 0.10) is a similar function to ReLU except that it has a small

slope for negative values instead of a flat slope (Feng & Lu, 2019).

f(x) =

 αx for x < 0

x for x ≥ 0
(0.10)

30



Its derivative (Equation 0.11):

f ′(x) =

 α for x < 0

1 for x ≥ 0
(0.11)

Coefficient α represents ith channel of no negative input and it is usually small around

0.01. It improves the ReLU activation function for the problem of “Dying ReLU”.

PReLU

This activation function (Equation 0.12) is similar to ReLU except that the parameter α

of different channels is learned by networks during back-propagation (Feng & Lu, 2019).

For α = 0 PReLU becomes ReLU and changes to Leaky ReLU in case of α small and

fixed.

f(x) =

 αx for x < 0

x for x ≥ 0
(0.12)

Derivative is given by (Equation 0.13):

f ′(x) =

 α for x < 0

1 for x ≥ 0
(0.13)

RReLU

This activation function (Equation 0.14) also improves the coefficients over negatives

inputs like Leaky ReLU, PReLU, and RReLU (Feng & Lu, 2019). The random negative

slope is introduced for overfitting purposes.

f(xji) =

 αjixji for xji < 0

xji for xji ≥ 0
(0.14)

where

αji ∼ U(l, u)

l < u; l, uε[0, 1)

αji is a random number from a uniform distribution bounded by l and u. Integer i

refers to the channel whereas j refers to the example.
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ELU

Exponential Linear Unit (ELU on equation 0.15) works on the basis of ReLU activation

function by speeding up the learning and fixing the vanishing gradient problem (Feng &

Lu, 2019).

f(xi) =

 αi(e
xi − 1) for xi ≤ 0

xi for xi > 0
(0.15)

Derivative function (Equation 0.16) is

f ′(xi) =

 f(xi) + αi for xi ≤ 0

1 for xi > 0
(0.16)

Loss functions

Loss function defines the deviation between the predicted value and target value. Squared-

error loss is a very common loss function used for linear regression, calculation of unbi-

ased statistics, and many fields of machine learning (Pilon, 2015). It is used to evaluate

the algorithm used for modeling data. Predictive models behave well if the loss function

has few errors. If the loss function has more errors the model becomes unusable and

will have a poor accuracy. The loss function is a good indicator to guide a potential

improvement to be done from the existing model. The loss function also called error or

cost function measures how bad or good the model is in terms of performance. Here

the goal is to find a mechanism to minimize errors for regression and classification tasks

as much as possible. We discuss commonly used loss functions for classification and

regression.

Mean squared error

Other algorithms like mean absolute error (MAE) and mean bias error (MBE) have

been used but they were not so popular as MSE for the task of the regression problem.

MSE (Equation 0.17) measures the average squared difference between estimates and

actual data. The average magnitude of error is calculated irrespective of their direc-

tions. Squaring the term penalizes estimates that are smaller (low) with predictions

deviating much more in comparison to real values. This method again is commonly

used (Yamashita, Nishio, Do, & Togashi, 2018) because they have a gradient descent
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algorithm that is used to minimize loss and provide optimal parameters indeed.

mse =
1

n

n∑
i=1

(yi − xi)
2 (0.17)

where,

n denotes the number of samples,

yi denotes the prediction value of output,

xi denotes the correct value of output

Cross entropy loss

Also known as log loss. It measures the performance of a classification model whose

output prediction probability value changes between 0 and 1. This is a common loss

function method used for multiclass classification (Yamashita et al., 2018). Log loss

(Equation 0.18) is another version of the likelihood function with logarithms.

L = −(y ∗ log(p) + (1 − y) ∗ log(1 − p)) (0.18)

where,

y denotes the prediction value of output,

p denotes the probability of assigning an instance to the correct output.

It penalizes heavily the predictions that are confident but wrong. Softmax with one

hot encoder applies the logistic classification concept for the loss to predict multi classes

classification target labels. Given an appropriate learning rate, a stochastic gradient

descent optimizer minimizes total losses during training by running a sufficient number

of iterations known as epochs.

3.3.3 Convolutional Neural Networks

This is another kind of neural network which is more applied for image classification

when compared to ANN feedforward network (MLP). CNN has the flexibility of provid-

ing self-learned features. ANN has difficulties in finding proper weights and activation

functions if the number of features in the data is large. This huge input feature may lead

to overfitting. Therefore CNNs apply feature dimensionality reduction algorithms to ex-
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tract features by adding more convolution layers and pooling layers which will reduce

the number of parameters (learned weights). ANN classifier is then applied to make

predictions over a large amount of data (e.g visual object and image) (Cormack, 1971;

Abiodun et al., 2019). ANN model overfits for high dimensional features (e.g image).

CNN is a deep learning technique to take an image as input, assign importance (learnable

weights and biases) to various objects in the image, and can distinguish these objects

from each other. Studies by (Dufourq et al., 2021; jian Xie et al., 2018; Sankupellay &

Konovalov, 2018; Abiodun et al., 2019; Incze, Jancsó, Szilágyi, Farkas, & Sulyok, 2018);

have all shown the success of CNN’s models in the classification prediction with a good

performance by applying data augmentation.

Before using the CNNs model; the task of labeling data is required and it is time-

consuming. On the other hand data collection is costly. So time taken in labeling data

and cost associated with data collection are the two main challenges. CNNs are made

with three types of layers or main building blocks of convolution layers, pooling layers,

and fully connected layers (Yamashita et al., 2018). Features are extracted with convo-

lution and pooling layers. The fully connected layer does the classification prediction by

mapping the input feature extracted to the desired output.

3.3.4 Convolutional layers

This is the first component of CNN responsible of feature extraction (Rawat & Wang,

2017) using mathematical operations. This process is known as discrete convolution

and it produces feature maps by applying different kernel sizes (2x2, 3x3, 4x4, etc).

The kernel must be nxn type where n is a positive integer more than one. Kernel

(Figure 0.13) divides inputs images into small slices (receptive fields) to help the feature

extraction task (Khan, Sohail, Zahoora, & Qureshi, 2020).

Figure 0.13: Kernel example with stride of 1 (Input, kernel and output).
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Figure in 0.13 shows the kernel filter 3.

Kernels (filters) contain a small array of weights (2D) of numbers that are mixed

with inputs images matrix to produce feature maps (multiplication of kernel and input

elements and sum up them). When using a small kernel, the computation becomes

simple without further decomposition operation and the flow of data is simplified. The

stride defines the distance between two successive kernel positions and it is usually 1.

Feature map loses a small amount of information compared to the original input therefore

padding operation is applied to avoid loss of such information. Padding increases the

height and width of the input image such that the output stays the same as the original

image. Feature maps also depend on the size of the kernel applied. These outputs

(feature maps) need to pass to nonlinear functions like ReLU. A repeated convolution

and pooling layers may be applied several times to compute different feature map (Rawat

& Wang, 2017).

3.3.5 Max pooling

Pooling provides down-sampling and reduces the dimensionality of the feature maps. It is

therefore translation invariance (LeCun et al., 2015). It is not affected by a small change

in shift, distortions, and a decrease in the number of subsequent learnable parameters

which are the weights that are learned during the training phase. Max pooling layer

is the type of layer to do the pooling operation. It selects the biggest value in the

reconstruction of an image. For instance, at the max-pooling layer of below figure 0.14,

each filter which is the box with its own color will take the maximum number in each

box. Then the maximum value is added into a new output box with a size of 2x2 pixels.

3Kernel example https://www.researchgate.net/figure/A-toy-example-of-convolution

-operation-in-CNN-with-stride-size-as-1-in-which-the-left fig1 333180752
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Figure 0.14: Example of max pooling layer

The left part of figure 0.14 represents a single input image matrix of the shape (4,4). It

is therefore downsampled by applying a max-pooling layer to produce an output image

(figure 0.14 on the right) of the shape of (2,2). The corresponding colors indicate the

input region together with the output from that region. Extracted patches from the

input feature maps are considered by pooling operation and it chooses the maximum

value in each patch while discarding the rest.

3.3.6 Fully connected layer

The feature map from the feature extractor is flattened and sent to a fully connected

layer. Extracted features maps at the output at this stage carrying out the task of

global operation of classification and here nonlinear combination/operations of inputs

features are applied. The activation function changes depending on the target variable

(regression or classification).

3.3.7 Evaluating model performance

CNN model for classification is trained, tested, and evaluated. Evaluation of model

involves a number of performance metrics that some are explained in the next paragraphs

of this section.

Measurement of performance is made due to the fact that there is no guaranty of

learning models to have exact predictions with actual values, difficulties in comparing

analytical methods between the two values (predicted versus actual). The methods are

quite different even though the learned methods perform better on many samples (Jiao

& Du, 2016). Algorithm performance measure uses statistical measures to show the

progress results from used predictors or learning models (probability of exact predic-
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tion) (Jiao & Du, 2016). The data is partitioned into three separate and independent

portions (training set, validation set, and testing set).

Training sets are used to create/fit the model and normally it takes 75% of train-

ing data. The validation set takes the remaining 25% of training data to evaluate the

model performance. Another example of the splitting of data is to take 80% for train-

ing, 10% for validation, and 10% for testing. The testing data should come from unseen

(new) testing data to test the final model for deployment and use. Samples are chosen

randomly to avoid an overfitting scenario. The validation set is used to find optimal

parameters of the best model of the classification.

The test set is taken in such that there is a high variation on estimated performance at

several times of testing the learned model. The fact that the weights in a neural network

are randomly initialized when training from scratch. Thus multiple runs allow one to

average the results. The multiple times of runs provide better performance on average.

Running the test more than 30 times provides normal and reliable results (Krithikadatta,

2014).

Researchers on the classification prediction model must report on the performance mea-

sure of used classifiers algorithms. The need is to understand the mechanism and condi-

tions used to measure the performance in the first place. The classifier may be a “binary

classifier” where it assigns one label of the two available classes. “Multi-class classifiers”

have more than two labels in their target variable. Binary classification predicts one

of the two classes of the target variable. This concept from the binary classification is

borrowed and used to model multi-label classification by considering one label versus

all remaining labels. Algorithms metrics are measured on basis of counts of observed

data (actual and predicted). A confusion matrix is an n x n contingency table and n

represents the number of classes available for the output variable. Below is an example

of 2x2 contingency table 0.1:
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Predicted

P N
Actual

P TP FN sensitivity

N FP TN specificity

Precision NPV Accuracy

Table 0.1: Confusion matrix

Some researchers may show the performance metrics of the prediction model using

errors or a visual representation graph of the area under the curve (AUC or ROC).

Only the accuracy, recall, precision, and f-measure are the performance measurements

used to evaluate the model classification of this experiment. Accuracy is a common

metric measure of classification problems but it is not the only best measurement to

evaluate the model with an especially imbalanced dataset. The majority classes have

more power or influence on accuracy compared to minority classes. Therefore additional

performance metrics such as precision, recall, and f-measure (f1 score) are alternatively

used to support accuracy obtained.

• Precision counts the number of positive class predictions that belong to the actual

positive class.

• Recall counts the number of positive class predictions done out of all positive

samples in the dataset.

• F-Measure is a single score that balances both the concerns of recall and precision

in one performance metric number.

Four methods will provide enough and necessary information to evaluate CNNs clas-

sifier with and without data augmentation techniques.

• TP (True Positive) defines the number of correctly labeled positive samples.

• FP (False Negative) defines the number of negative samples incorrectly labeled as

positive.

• TN (True Negative) defines the number of correctly labeled negative samples.
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• FN (False negative) defines the number of positive samples incorrectly labeled as

negative.

Function to compute respective metrics for accuracy (Equation 0.19), precision (Equa-

tion 0.20), recall (Equation 0.21) and f1-score (Equation 0.22).

Accuracy = (TP + FN)/(TP + FP + FN + TN) (0.19)

Precision = TP/(TP + FP ) (0.20)

Recall = TP/(TP + TN) (0.21)

F1 = 2 ∗ Precision ∗Recall/(Precision+Recall) (0.22)

3.4 Data augmentation

A number of approaches for data augmentation were discussed in the literature review in

chapter 2. This study focuses on the 4 data augmentations method and we also present a

baseline method so that the 4 augmentation techniques can be compared to this. These

4 augmentation techniques are based on masking and noise addition.

The baseline performs the duplication of samples to make new copies of samples,

masking technique puts the lines (horizontal, vertical) on the original spectrograms, and

the noise (random, Gaussian) addition makes a mixture of two images spectrograms

(noise, and segment of the pin-tailed or cape robin-chat call). The next sections and

subsections provide the description of the baseline method, the two masking augmenta-

tion techniques, and the two noise addition augmentation techniques. The description

will also make the difference between masking techniques (i.e frequency and time), and

noise addition techniques (i.e random noise and Gaussian noise). The purpose of the

augmentation techniques is to increase the number of spectrograms from an initial num-

ber of examples to a larger number of examples.

The collected and pre-processed dataset is imbalanced. The training set (82 audio

files) has 952 samples of Cape robin-chat calls, 1881 samples of pin-tailed Whydah calls

and 4557 samples of noises. The augmentation techniques are applied to address this

class imbalance. The baseline method is simply a duplication of randomly selected
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examples. In this thesis, after applying the baseline method the resulting augmented

dataset contains 2,000 examples. These 2000 examples are from the 500 examples of

Cape robin-chat and 1500 newly created copies of Cape robin-chat spectrograms with

augmentation, or 500 of pin-tailed Whydah and 1500 newly created copies of these pin-

tailed Whydah spectrograms with augmentation, or 500 of noises and 1500 newly created

copies of these noises spectrograms with augmentation. The noise addition augmentation

techniques generates new copies of audio segments by randomly adding Gaussian noise

to a given segment of audio. Thus, segments of audio from any of the three classes can

be augmented. Time masking selects a random range of time periods to be masked from

the original image. Frequency masking hides a random range of frequencies from the

original image.

A free account on Google Colaboratory was used to train the neural network. This

type of account is limited in terms of the resources (GPU run time available per day).

The proposed experiment was conducted as follows. For each augmentation technique

a random number of samples from each class was selected (1881 of the pin-tailed why-

dah, 952 of the cape robin-chat and 4557 of the noise class). Then, the segments from

the pin-tailed whydah and noise class were downsampled to 952 classes to create a bal-

anced dataset. The augmentation techniques were then applied to this balanced dataset.

Let say that we want 2000 samples in each category after one augmentation technique,

therefore, we can draw 500 samples in each category and augment those 500 samples

to 2,000 samples. This will result in 500 original samples and 1500 augmented sam-

ples. The total samples will be 6000 after augmentation in all categories (2000 samples

of pin-tailed whydah call, 2000 samples Cape robin-chat call, and 2000 samples of noise).

All these 6000 samples are used to train and validate the model performance on that

particular augmentation technique selected. The training set with 75% of 6000 samples

will be 4500 samples in size and 25% remaining of samples are taken for validation data

(i.e 1500 remaining samples). The testing set is from the testing audio files of unseen

data. The size of samples taken for the testing set is 4500 samples from testing audio

files. The testing set is not augmented.

A total of 2000 samples of each category was chosen because the amount of RAM

provided on the free account on Google Colaboratory could not process samples beyond

2000 samples for each category. The 500 samples are referred to as the initial/original

samples. The study encourages us to select a small number of initial samples. A 500
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samples was taken in the study as one example but the study has experimented the 250

samples and the 100 samples. Based on the previous explanation, the experiment uses

the same original samples and they are augmented using different techniques. Thus, in

each case, the experiment starts from the same original samples, however, the experiment

applies different augmentation techniques as a means of comparing the techniques. This

is done to avoid adding new random samples into the original samples to allow for

fair comparisons to be made and we have a better comparison of results from different

augmentation techniques. This can be repeated for any starting value and not necessarily

500.

3.4.1 Baseline method

The evaluation of the model will be with and without the data augmentation techniques.

The baseline method produces results for the model evaluation without augmentation.

RAM size limitation forces us to use a total of 2000 samples in each group.

It starts with a fixed number of samples for all species. The baseline method creates

copies without the modification on the initial samples but the 4 remaining techniques

of data augmentation do the changes over original data. For example, we draw 500

samples from each group (952 pin-tailed whydah, 1881 Cape robin-chat, 4557 noises); in

the baseline method, the drawn 500 samples are duplicated 4 times to make 2000 samples

in each group. If we draw 250 samples the duplication will be 8 times and 20 times for

100 drawn samples. Each approach is discussed in detail in the next paragraphs.

3.4.2 Noise addition

Adding random noises

Having calls of 1881 pin-tailed whydah, 952 Cape robin-chart, and 4557 noises; we

draw in each group let say 500 initial samples. The injection of noise technique will be

selecting a segment of audio from the noise call (one of the 500 samples of noises is chosen

randomly) and then adding it to a segment of audio that contains a call(one of those 500

initial samples of pin-tailed whydah or Cape robin-chat). The 2000 samples are total

samples of each group after the augmentation process. The 500 initial samples and 1500

were newly created by the random noise augmentation technique. Mixing up the noise
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and initial data is done by summing up the two vectors which contain amplitude values

from both and making an addition of them to create new copies of samples.

Figure 0.15 illustrates a spectrogram that contains calls from the pin-tailed whydah.

We will illustrate the various augmentation techniques after they have been applied to

this spectrogram. Figure 0.16 illustrates the result when random noise was added to the

spectrogram from figure 0.15.

Figure 0.15: original image of pin-tailed whydah before augmentation

Figure 0.16: Random noise addition applied to pin-tailed whydah
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Gaussian noise addition

In this technique, we create a random normal vector which contain amplitude values

with three parameters; mean of 0.0 (loc=0.0), the standard deviation of 1.0 (scale=1.0),

and size which is the shape of the original signal. The signal created is called noise and

it may be multiplied with a scalar to control the level of associated noise. The scalar we

used is 0.17 in our case for not producing a new copy with a lot of noise. One could not

see the call if there are too much noise created. Having noise and original signals vector

we add them to create a noisy signal. Figure 0.15 illustrates a spectrogram of the call

from the pin-tailed whydah before augmentation, and the figure 0.17 is an illustration

spectrogram after applying Gaussian noise addition augmentation.

Figure 0.17: Gaussian noise addition applied to pin-tailed whydah

The difference between random and Gaussian noise addition

Gaussian noise and random noise addition are both noise addition techniques. The

difference is that the random noise addition picks a random noise sample from 4557

noises samples and add it to the call from either 1881 pin-tailed whydah or Cape robin-

chat, while the Gaussian noise addition will create a new random noise from the normal

distribution and it is added to the call from either 1881 pin-tailed whydah or Cape

robin-chat.

43



Spectrogram images are a 2D matrix of pixels values. The Gaussian noise creates

a random array of values which are normally distributed with the mean of 0.0 and

variance of 1.0. This array of values is Gaussian because of the use of the mean of 0.0

and the variance of 1.0 to create the specified array of values. This array of values is

transformed to 2D matrix values of similar shape (format) to the segment of the call of

pin-tailed or Cape robin-chat. The use of the same shape/format of the image helps in

summing up the noise matrix values and the matrix of the segment of pin-tailed or Cape

robin-chat call. The sum of two matrices may result in an image spectrogram with high

noise compared to the segment of the call. These Gaussian generated noises are further

controlled by multiplying the sum of two matrices by a scalar to reduce the noise from

the call of pin-tailed whydah or Cape robin-chat. The scalar of 0.17 was used to serve

this purpose.

3.4.3 Masking

Masking is the process of hiding a small region of a spectrogram image. Frequency and

time are the two known maskings used in this research.

Time masking

This augmentation technique generates new examples by randomly placing one vertical

line on the spectrogram. A random range of a small period of time on the spectrogram

image of the original image is selected to be hidden (Park et al., 2019). Time masking

uses one vertical line in the experiment because of the size of the spectrogram image

and the maximum call duration. The size of the input spectrogram image to CNN

is fixed to the height of 126 and the width of 214. The maximum call duration is

3 seconds. With this maximum call duration and fixed size of the spectrogram, the

masking must be controlled in such a way the augmented image will not lose much

information. Masking must not make the call invisible, and it cannot go beyond the

spectrogram image. The experiment proposes to put one line to avoid producing a noisy

spectrogram which may produce poor performance. So the experiment suggests one line

as seen in figure(Figure 0.18) to have good performance in the prediction classification.

See the (Figure 0.18) below for more details:
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Figure 0.18: Time masking applied to pin-tailed whydah

Frequency Masking

This augmentation technique generates new examples by randomly placing one horizon-

tal line on the spectrogram. A random range of frequencies on the original spectrogram

image is chosen to be hidden (Park et al., 2019). The next image (Figure 0.19) shows

details:

Figure 0.19: Frequency masking applied to pin-tailed whydah
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Chapter 4 Results and discussion

4.1 Introduction

This chapter presents and discusses the results of the study regarding the aim of the re-

search, which is to explore data augmentation techniques for small bioacoustics datasets

and control the effect of applied methods on different sizes of samples in classification

prediction performance metrics.

Duplication of samples, masking (time and frequency), and injection of noise (Gaus-

sian, random) were the main four methods of data augmentation used for this research

to balance and increase the dataset. Each of these techniques has been tested with 100,

250, and 500 original samples. Augmentation is made up of 2000 samples from each

group of original samples to see the behavior of the applied augmentation technique in

the model classification performance. Results from 4 augmentation techniques and the

baseline for each group of initial samples (100, 250, 500) are compared. For example,

if the experiment takes 250 samples i.e it is taking 250 original samples of pin-tailed

whydah augmented to 2000 samples. Same to Cape robin-chat and noises. Performance

metrics are reported in a summary table with only prediction accuracy and, f1-score

since it is made from precision and recall. There are two main sections in this chapter.

The first one discusses the model training and hyper-parameter tuning and, the second

part is about the results of the findings and their comparison.

4.2 Model training and hyper-parameter tuning

The audio files were pre-processed on a local computer while the remainder of the steps

were carried out on Google Colab which provides a GPU. The rest of the work such

as CNN model training and classification has been done using the Google Colab plat-
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form with Colab free account. Colab runs TensorFlow operations using (GPU) which is

speeding up the computation process. It also provides 12 GB of RAM. The limited size

of RAM has changed the plan initially made on the data to be executed in building the

CNN model. The 2000 samples for each species mentioned above were due to limitations

in RAM, only 6000 samples in total could be loaded and not more than that.

Taking 82 audio recordings for training and again 82 audio for testing was a prelim-

inary requirement to run the model. The selection of these audio files was done by

using a chronological order so that no same day was used for training and testing sets.

These 82 recordings on training gave 952 Cape robin-chat, 1881 pin-tailed whydah, and

4557 noises. In each of these numbers, the experiment picks randomly initial pre-defined

samples to be used for augmentation of up to 2000 samples. Training results with 6000

samples and the data are split into 4500 samples for CNN model training and 1500 sam-

ples for the validation data. In the same way, the experiment took again 4500 samples

for the testing data from the testing audio files of unseen data.

The experiment conducted a hyper-parameter search to find suitable hyper-parameters

of the training model. These parameters were selected by conducting a random search

over a number of different values. The hype-parameter optimizer used was Adam.

Adam (Adaptive Moment Estimation) optimizer is an adaptive variant of SGD (Stochas-

tic Gradient Descent) that outperform well for the certain complex task of deep learning

compared to SDG (J. Zhang et al., 2020). An SDG is a method used to train neu-

ron networks to find optimal parameters of the model. These parameters are updated

iteratively during the model training by comparing each set of parameters with the as-

sociated loss. At the end of the predefined iteration parameters with minimum loss will

be considered optimal parameters of the model. Adam is used since it has shown good

performance in other research on neural networks.

The learning rate parameter was 0.01, and the number of epochs was 20. This has been

done by the addition of layers and calibrating the convolution layers needed and max-

pooling layers. Table 0.1 indicates a summary of the configuration of CNN. Table 0.1

shows the training model with the number of network parameters at each layer.
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No Layer
Activation

Function

Filter
Network

ParametersNumber Size/ Shape

0 Conv2D ReLU 32 (3, 3) 320

1 Conv2D ReLU 32 (3, 3) 9248

2 Conv2D ReLU 32 (3, 3) 9248

3 Conv2D ReLU 32 (3, 3) 9248

4 Conv2D ReLU 32 (3, 3) 9248

5 Flatten ReLU - - 0

6 FC (Dense) ReLU 32 - 8224

7 FC (Dense) Softmax 3 - 99

Table 0.1: Training CNN model parameters.

A conv2D in table 0.1 stands for a 2D convolution layer and the filter of this conv2D

has a height and width. FC in table 0.1 stands for the fully connected layer and it

connects all previous output nodes to the next layer nodes. The training model with the

configuration shown in the table 0.1 takes around 665 seconds (11 minutes) for the 6000

dataset samples. This is the minimum time of the experiment in the frequency masking

of 250 initial samples. The maximum time used from all experiments is 1379 seconds

(22 minutes). This time was given by the execution of the Gaussian noise addition

with 250 initial samples. The minimum time from all experiments was 664 seconds (11

minutes). This period of 11 minutes was given by the frequency masking with 250 initial

samples. Other experiments were executed within the maximum and minimum time.

All experiments have given 1031 seconds (17 minutes) on average. So the training time
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can be estimated to 1031 seconds (17 minutes). The experiment may take around 17

minutes to train the model. Model training together with prepared data has produced

results of findings that are shown in the next section of this chapter.

4.3 Results of the findings and their comparison

Based on the results from table 0.2. The table shows a summary of results starting

with a sample size of 100; 250 and 500 original data each augmented to 2000 samples

on each species (CRC, PTW, and NOISE). PTW stands for pin-tailed whydah call,

CRC is Cape robin-chat call and NOISE represents any call other than these two calls.

Associated performance metrics measured using f1-score and accuracy are recorded in

the table. The f1 score is shown because it involves recall and precision. The nan val-

ues of table 0.2, are due to the division by zero in the f1 score formula at the denominator.
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Baseline
Frequency

Masking

Time

Masking

Gaussian

Noise

Random

Noise

100 samples

Accuracy
Train 1.000 1.000 0.999 0.985 0.333

Test 0.858 0.832 0.839 0.844 0.222

F1 Score

CRC 0.784 0.775 0.769 0.785 nan

NOISE 0.883 0.858 0.866 0.875 nan

PTW 0.842 0.807 0.818 0.798 0.363

250 samples

Accuracy
Train 1.000 0.999 0.997 0.886 0.508

Test 0.873 0.882 0.874 0.851 0.584

F1 Score

CRC 0.849 0.859 0.832 0.800 0.623

NOISE 0.920 0.902 0.896 0.869 0.586

PTW 0.861 0.847 0.850 0.789 0.568

500 samples

Accuracy
Train 0.995 0.991 0.977 0.961 0.857

Test 0.899 0.895 0.903 0.878 0.895

F1 Score

CRC 0.872 0.863 0.847 0.868 0.846

NOISE 0.919 0.915 0.922 0.902 0.917

PTW 0.867 0.864 0.884 0.826 0.868

Table 0.2: Comparison between experiment techniques versus sample size.

The comparison table 0.2 shows that the baseline and time masking, are the best tech-

niques using f1-score. The values in bold are the best predictions in each initial sample

size (100, 250, and 500) of the three call types for the used experiment techniques. For

example, a 100 initial sample size has an f1-score of 84.2% as the best prediction of

pin-tailed whydah for the used techniques. This prediction is achieved by the baseline

technique. Both methods (baseline and time masking) work well on the small initial

sample size (100) and the big initial sample size as well. With the constraints explained

in the model training and hyper-parameter tuning subsection; the 2000 samples were a

fixed number of samples to make an experiment of the study. 100, 250, and 500 samples

were taken as original samples. Augmentation is improving model performance from

the use of 100, 250, and 500 original samples. The use of 100 original samples is a

good approach to explain the aim of the study. A small dataset of 100 original samples

augmented to 2000 samples and it can produce a 78.5% of f1-score in classifying Cape
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robin-chat with Gaussian noise addition and, an f1-score of 84.2% with the baseline to

classify pin-tailed whydah; this shows that the augmentation has a statistical signifi-

cance in improving model performance without re-collecting the data which may involve

additional unplanned cost. The model has improved its performance by applying data

augmentations on 100 which is a small dataset compared to 250 and 500 initial samples

to start with. A 100 sample is 20 times lower compared to 2000 samples. A 100 taken

samples are a small dataset and it satisfies the aim of the research with the success on

the two species.

The random noise addition augmentation technique is the worst method for the small

amount of data (sample less than 500 initial samples). It has a very poor performance

and cannot be used for classification prediction. The study aim is to work with a small

sample size which also does not require a lot of processing resources (e.g RAM). Small

initial sample size has an advantage since it runs with a free Colab account.

The testing accuracy keeps on increasing as the initial sample size is increasing on

various techniques. This proves the hypothesis of the study. It states that an increase in

the sample size increases accuracy. The best testing accuracy in the next initial sample

size is greater than the best accuracy of the previously taken initial sample size. For

example, a 100 sample’s best accuracy is 85.8% which is less than the one of the 250

samples (88.2%).

For the baseline method, frequency and time masking, and Gaussian noise augmen-

tation techniques may be used alternatively in the experiment. All have a slight change

in the prediction accuracy. The change is not significant for a small initial sample size

(100). The fact of producing good results at the small sample size makes them be the

good techniques. It is, therefore, possible to monitor these two species (pin-tailed why-

dah and Cape robin-chat) on a small scale of data captured. Any of the four techniques

mentioned in this paragraph can be used to help the work of ecologists in monitoring

both species. The overfitting is is explained with the gap spaces between the curves.

Accuracy and loss curves are given for training and validation sets.
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Figure 0.1: Frequency masking evaluation
plot for 100 sample.

Figure 0.2: Time masking evaluation
plot for 100 sample.

Figure 0.3: Baseline evaluation
plot for 100 sample.

Figure 0.4: Gaussian noise addition
evaluation plot for 100 sample.

The first three figures (0.1, 0.2, 0.3) indicate that each of the three techniques is not

producing overfitting, meaning the curve of the validation loss is less than training loss,

and each of the three techniques has a validation accuracy more than the training accu-

racy. The three first techniques outperform well. Baseline, time, and frequency masking

start with a small difference in their results and they stabilize at around epoch 2 (after

two epochs on the x-axis). The Gaussian noise addition can be used at around 1 epoch

(on the x-axis) of the fourth figure 0.4. This figure of 0.4 shows that the Gaussian noise

addition has most of the time overfitting. It changes more with validation loss greater

than training loss thus creating less accuracy for validation data. This situation starts

from the second epoch on the x-axis. The Gaussian can still be valid since the history

checkpoints will choose the best parameters where the technique will produce a model

without overfitting. Weights selected at around 1 on the x-axis of Gaussian noise addi-

tion will be kept for the best model. For 500 initial samples, the three first techniques

continue to stabilize results without overfitting. The Gaussian noise addition remains

with overfitting but is being reduced (see figure 0.6). The random noise addition that

performed poorly in the 100 initial samples shows that the 500 original samples had

produced good results without overfitting (see figure 0.5).
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Figure 0.5: Random noise evaluation
plot for 500 sample.

Figure 0.6: Gaussian noise evaluation
plot for 500 sample.

At least 500 initial samples are required for the classification prediction of 80% and

above for the three types of call if one needs to use any of the 5 techniques of augmen-

tation (baseline, frequency or time masking, or noise addition) used in this experiment.

The testing accuracy increases as the size of initial sample size are increasing for all

augmentation techniques.
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Chapter 5 Conclusions and

recommendations

5.1 Conclusions

It is an accepted fact within the machine learning community that a large amount of

data is required to train CNNs and that training CNNs from randomly initialized weights

on small datasets is not recommended. The experiment results suggest that on those

two species (pin-tailed whydah and Cape robin-chat), good performance can be achieved.

Analysis of survey data obtained in this research shows that an increase of samples

with data augmentation improves the performance accuracy. The study aimed to test

if a small samples size applied with data augmentation performs a better accuracy. Ap-

plied methods with different samples size (100, 250, and 500 samples) have proven this

hypothesis. Baseline, frequency and time masking, and Gaussian noise injection are

augmentation techniques to prove the stated hypothesis. There is a significant change

when increasing sample size.

The random noise injection augmentation technique becomes unusable. On less amount

of sample size, it performs poorly while on a huge amount of samples other methods work

well in the classification prediction. It will require huge computation resources (RAM,

GPU, and storage) since it may produce good results on high samples. Other methods

work well without additional resources which may require an additional cost of payment.

The baseline method fits well the data on the small size of samples. Masking (time

and masking), and Gaussian noise addition may be applied since there is no big differ-

ence in results. They bring small change which is not significant enough for potential
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improvements. Results are very close to each other. Time masking is the best model

with the highest accuracy of the test. It may work on small and big datasets.

The CNN takes a couple of few minutes to train the model when compared to the

time taken by humans to train on the three types of calls. A human requires an expert

for the training and it takes many hours to train a human annotator on recognizing the

calls. On CNN, humans take time to prepare inputs data but the training is short in

time. The results of the experiment show the success of the classification of the pin-tailed

whydah and Cape robin-chat for passive acoustic monitoring. Ecologists are strongly

recommended methods used by the experiment to monitor other species too.

5.2 Recommendations

Based on the experiment of the study, the experiment suggest baseline and time masking

methods for the classification prediction since they have performed better results for

small and big size data.

The study recommends also a combination of these data augmentations and compare

results. This could not be done on Colab free account which provides limited resources

to run the model. Additional costs may be applied to get full resources.

The best approaches of these techniques work well on fewer samples, therefore, the

baseline, masking (time and frequency), and Gaussian noise addition are the best models.

They achieve good results on small sample size (see 100 samples). It is an advantage for

working with a small dataset on a free account of Colab but it is a barrier if 2000 samples

are changed to another number of samples beyond. Free account of Colab is limited

in handling these samples. While the results were encouraging, further investigations

are required in comparing the augmentation techniques to different sample sizes. This

would, however, require that additional computational resources be available. The study

is limited to two species (pin-tailed whydah and Cape robin-chat) but the collected data

contain a lot of calls that can be used by further researchers since the data has been made

publicly available. This repository is recommended to the researchers with the study

that may require these data without being recollected. The experiment of the study

has shown success but further research in this field of bioacoustics may expand these

machine learning/deep learning techniques to other species. The results presented in this

thesis and the findings from the literature reveal that machine learning can successfully

be applied to passive acoustic monitoring. The encouraging results indicate that these
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techniques could be implemented in practice to monitor various species, for example,

it could be implemented to monitor and conduct biodiversity assessments in various

locations, including Rwanda.
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