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Abstract 

Background: The global share of new HIV infections due to key populations (KP) and 

their partners is steadily rising and was estimated at 70%, with 51% in sub-Saharan 

Africa, in 2021.Rwanda has a heterogeneous HIV epidemic, that is widespread in the 

adult population (age 15-49 years), with features of a concentrated epidemic among 

specific population subgroups, with 35% among female sex workers (FSWs) and 6.9% 

among men who have sex with men (MSM).) Members of these populations are often 

difficult to find, and the size of these populations is largely unknown, posing a substantial 

challenge to calculate epidemiologic measures of the disease and to evaluate the reach 

and coverage of public health programs in line with progress towards the UNAIDS 95-

95-95 targets. Several methods have been used so far, each presenting both strengths and 

weaknesses. Capture-recapture is currently being recommended due to it mathematical 

ground and defensible results. However, there are still some methodological limitations, 

including dependencies between samples, inability to reach highly hidden key population 

subgroups, as well as loss of marks or tags that biases produced population size estimates. 

With this research project, we aim at addressing list-dependency between samples and 

tag loss bias that arises during capture-recapture implementation and develop an extended 

network-tracked capture-recapture approach able to account for harder to reach KP 

subgroups. 

Methods: To achieve the research objectives, firstly, we derived and applied a 

Generalized capture-recapture (CRC) model for population size estimation (PSE) from 

Bayesian model averaging to address list-dependencies between samples; and secondly 

derived an extended network-tracked capture-recapture method for obtaining population 

size estimates from a single Respondent Driven Sampling (RDS) that addresses tag loss 

bias on population size estimates and able to account for usually missed  KP subgroups 

in multiple CRCCRC studies. After derivation of the model and methods, we applied the 

concepts to three different national wide studies implemented in Rwanda involving FSWs 

aged 15 years and above and MSM aged 18 years and above, between 2021 and 2023. 

Data collection methods commonly used in the three studies included bio-behavioral 

survey (BBS), three-source capture-recapture (3S-CRC) and Respondent driven sampling 

was used in selecting participants. R-4.3 software was used for data analysis. 

Results: The Generalized capture-recapture model from Bayesian model averaging 

demonstrates a 71% reduction in standard errors as compared to Bayesian Latent class 

model. Once applied to the MSM 2021 study, the estimated MSM PSE lies within 

credible sets ranging from 19,347 to 22,268 with a median of 20,787 vs 18,100 median 

PSE ranging from 11,265 to 29,708 if the Bayesian Latent class model is used. Whereas, 

for FSW 2022 study, the PSE of street- and venue-based FSWs in Rwanda was estimated 

to be within credible sets ranging from 31,873 to 43,354 with a median of 37,647 vs a 
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35,954 median PSE ranging from 14,736 to 55,215 once Bayesian Latent class model is 

used. A low tag retention was observed between consecutive capture rounds in CRC 

implementation corresponding to 59%. The FSW 2023 study, estimated FSW PSE was 

98,587 ranging from 82,978 to 114,196 once network-traced capture-recapture method is 

used. 

Conclusion: The results of the analyses featured in this dissertation demonstrate 

derivation of a Generalized capture-recapture model from Bayesian model averaging that 

overcomes sample dependencies that arises in capture recapture studies. The Generalized 

capture-recapture model demonstrates a 71% reduction in standard errors as compared to 

Bayesian Latent class model. Furthermore, the novel network-traced capture-recapture 

method developed, brings three estimators into practice namely, Cross-Sample, Cross-

Alter, and Cross-Network that are free of tag-loss problems and demonstrated the ability 

to reach unreached KPs subgroups once CRC method is applied. This research brings a 

substantial contribution in the field of population size estimation concerning KPs and 

produces more reliable population size estimates, which have implications for the 

allocation of limited public health resources to marginalized populations. 

Keywords: Capture-Recapture, Population Size Estimation, HIV, Hard-to-Reach, Key 

Population, Rwanda.  
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Chapter 1 

Introduction 

1.1. Background  

1.1.1. Introduction 

Globally, gay men and other men who have sex with men (MSM),  Female sex workers 

(FSW), transgenders (TG), people who inject drugs (PWID), and people in prisons and other 

closed settings are considered the five main key populations (KPs) that are particularly 

vulnerable to HIV and frequently lack adequate access to health services [1]. Some studies 

conducted on the HIV/AIDS epidemic have revealed the high burden of HIV infection among 

KPs. 

The World Health Organization (WHO) highlights the need for focused efforts on KPs who 

are particularly vulnerable and disproportionately affected by HIV due to some specific risk 

behaviors. The common risk factors include; marginalization, and structural factors such as 

stigma, discrimination, violence, human rights violations, and criminalization, which 

contribute to the lack of access to prevention and treatment services, and hence become the 

key drivers of new HIV transmission in the general population [1, 2]. During 2022, in Eastern 

and Southern Africa, 54% of the total number of new HIV infections were reported among 

the general population, and the remainder were reported among KPs, with 13% of those 

reported among FSW mainly because of multiple partners, a low rate of condom use, 

stigmatization, and marginalization [3]. 

Whether the receptive partner is male or female, unprotected receptive anal sex carries a far 

higher biological risk than unprotected receptive vaginal sex; the risk of HIV transmission 

during anal intercourse may be up to 18 times higher than that during vaginal intercourse [1]. 
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Consequently, MSM have a heightened vulnerability to HIV infection. HIV prevalence among 

MSM is estimated to be 21% worldwide, 6% in sub-Saharan African nations, and ranging 

from 3.8% up to 31% [6,7]. Furthermore, due to systematic issues including discrimination, 

self-stigmatization, and limited access to resources, people with marginalized sexual or gender 

identities or behaviors may not always be able to protect themselves against HIV infection 

[8]. In low-prevalence nations and West and Central Africa, the HIV prevalence ratios are 

very high [9]. 

1.1.2. Trends of HIV among KPs in Rwanda 

In Rwanda, FSWs and MSM are considered the top two key population groups for HIV 

prevention and treatment focus due to their high-risk behaviors for contracting and/or 

transmitting STIs/HIV. They are often stigmatized and marginalized and relatively 

disproportionately affected by HIV. Due to a continued observed high prevalence of HIV 

among FSW and MSM as compared to the general population, they are considered as 

persistent niche of HIV and are thus treated as the bridge of HIV infection to the general 

population [4-6]. The HIV prevalence among FSWs in Rwanda has exhibited a downward 

trend over the years [7]. In 2010, the HIV prevalence among FSW in Rwanda stood at 50.8% 

[5]. Subsequently, in 2015, it decreased to 45.8% [8], and the most recent survey conducted 

in 2019 indicates a further reduction to 35.5% [9]. HIV prevalence among MSM stood at 6.9% 

by 2021 from 4.0% back in 2015 [11]. According to Rwanda’s HIV and AIDS national 

strategic plan [12], FSW and MSM are two of the main priority populations for HIV 

prevention and care. 

Estimating the size of FSW and MSM populations is crucial because it generates 

denominators for program design, planning, and implementation. In addition, it informs 

interventions, public health initiatives, provides useful parameters inputs for modeling, and 

helps to determine the appropriate resource allocation, gaps and unmet needs to serve such 

communities.  

1.2. Problem statement 

Attempts to estimate the KPs population size are frequently thwarted in ways that limit 

traditional survey tactics including Census and enumeration due to several factors that lead to 
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their rare visibility in communities and hence become hard-to-reach. Various methods have 

been used thus far to estimate the population sizes of hard-to-reach groups, each with its own 

set of strengths and drawbacks. Unfortunately, there is no gold standard approach, and various 

methodologies frequently result in contradictory conclusions [10]. The capture-recapture 

(CRC) method has been commonly used owing to its mathematical ground and defensible 

results [11-13]. However, two methodological concerns remain, including list dependencies 

between samples, inability to reach key population subgroups specifically those that do not 

attend specific venues at specific time, as well as loss of marks or tags during capture-

recapture study implementation that biases produced population size estimates. With this 

research, remedial approaches and tools are developed and applied to the real-world capture-

recapture data. 

1.3. Objectives 

1.3.1. Main Objective 

The general objective of this research is to address list dependencies between samples, tag 

loss bias on PSE, and derive an extended network-tracked CRC method from a single 

Respondent-Driven Sampling (RDS) that is free from tag loss and capable to reach unreached 

KP subgroups once CRC method is used. 

1.3.2. Specific objectives 

❑ To derive a generalized capture-recapture (CRC) model for population size estimation 

(PSE) by applying the Bayesian model averaging to address list dependencies between 

samples.  

❑ To address tag loss bias on population size estimates in capture-recapture studies. 

❑ To derive an extended network-tracked capture-recapture method for obtaining 

population size estimates from a single Respondent-Driven Sampling survey. 
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1.4. Rationale of the study 

For capture-recapture method, 4 major assumptions must be met to give reliable population 

size estimates. These assumptions include that individual captures should be independent, the 

population should be closed during the data collection period, each target population member's 

capture history should be correct (no tag or mark is lost), and the chance of getting captured 

should be homogeneous [17]. Sometimes, the method’s underlined assumptions are not met 

mostly due to some uncontrollable circumstances, hence affects resulting population size 

estimates.  

Researchers have been setting up preventive procedures to meet the CRC methodology 

underlined assumptions. To ensure that the population is closed, the investigators tend to limit 

the study implementation withing a short timeframe, and the KP tagging is done randomly to 

ensure that the probability of being tagged is homogeneous. However, to control that each 

capture history is correct for each individual, correctly identification of individual who were 

tagged is crucial. Sometimes it is challenging due to some tagged individuals lose their tags 

and becomes hard to correctly confirm that they have been tagged during a consecutive 

capture round, hence biasing the produced population size estimates.  

During the implementation of a capture-recapture study, sampled individuals from one capture 

round to another might be related, yet this breaches the CRC underlined assumption, hence 

leading to a biased population size estimate. Researcher have been adopting some ad hoc 

preventive procedures to overcome the sample dependence issues, however it is not 

controllable and ascertain that the sample dependence is resolved and there is no need to be 

accounted in the estimation process. 

In Rwanda, there have been three rounds of FSW PSE dated 2010 [22], 2018 [23] and 2022, 

all using Time Location Sampling (TLS). As the digital era emerges, with technologies 

reshaping and reorienting sex markets [24, 25], the use of venue-based sampling approaches 

might be missing a chunk of FSW who never congregate in the venues, including those 

practicing sex work at home (home-based) and those who get clients from internet platforms 

(internet-based). 
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With this research, we aim at providing remedial solutions to the above-mentioned limitations 

arising during the implementation of capture-recapture studies. 

1.5. Scope of the study 

With this research, we develop remedial solutions by deriving and applying a Generalized 

capture-recapture (CRC) model for population size estimation (PSE) using Bayesian model 

averaging to addresses list-dependencies between samples; and derived an extended network-

tracked capture-recapture method for obtaining population size estimates from a single 

Respondent Driven Sampling (RDS) that addresses tag loss bias on population size estimates 

and able to reach usually missed  KP subgroups in multiple CRC studies. The study only 

focuses on the population size estimation of female sex workers and men who have sex with 

men and applied the derived methods to the real-world data collected between 2021 and 2023 

using both CRC and RDS methods in Rwanda. 

1.6. Organization of the thesis 

This thesis is organized into six chapters. It offers a general introduction to the study in chapter 

one. Furthermore, chapter one describes the objectives, research questions, motivation of the 

study, and scope of work. Chapter two highlights available literatures around the topic, 

discussing previous research, and key concepts related to the research topic. Chapter three 

focuses on the methods of the research to meet research set objectives. Chapter four presents 

the findings and results obtained. Chapter five discusses the results that have been obtained. 

Lastly, Chapter six concludes the thesis and provides recommendations for further research 

and published manuscripts. 

1.7. Research motivation. 

Global HIV prevention is increasingly prioritizing the estimation of the size of hidden 

populations. By estimating the population prevalence of HIV infection and computing an 

attributable percentage, epidemiologists can estimate the burden of disease in relevant 

populations. Furthermore, estimations of population size are helpful parameter inputs for 

population dynamics models that account for social and sexual networks in the spread of 
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disease. Finally, estimations of the population size aid in assessing the coverage and reach of 

initiatives aimed at groups at risk. 

To estimate the population sizes of hard-to-reach groups, a variety of techniques have been 

employed thus far, each with unique advantages and disadvantages. Capture-recapture[14], 

multiplier [15], network scale-up [16], and successive sampling [17] approaches are all 

common. Unfortunately, there is no gold standard approach, and various methodologies 

frequently result in contradictory conclusions[10]. 

Considering its’ mathematically ground and plausible conclusions, the multiple sources 

capture-recapture method has been widely employed in epidemiology to estimate the number 

of key populations targeted by health interventions for certain health conditions [11, 12, 18]. 

The Three-source capture-recapture (3S-CRC) approach has been utilized in several studies 

to estimate the size of specific population categories, such as FSW, MSM, and PWID [19-22]. 

This research project aims to contribute to existing knowledge by deriving a Generalized CRC 

model for PSE from Bayesian model averaging that addresses list dependencies between 

samples, addressing tag loss bias on population size estimates in multiple capture-recapture 

studies, and to explore an extended network-tracked capture recapture method for obtaining 

population size estimates.  All the proposed methods are applied to estimate the population 

size of hard to sample population groups in Rwanda, focusing on Female Sex workers and 

Men who have Sex with Men. 
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Chapter 2 

Literature review 
2.1. Introduction to the literature review section 

The literature review chapter provides HIV epidemic context globally, regionally, and at the 

country level. Furthermore, it provides existing challenges in HIV care and treatment 

programs related to the missing critical data to inform policies and interventions. And lastly, 

this chapter describes the importance and existing limitations in line with the efforts to 

estimate the population size of key populations highly affected by the HIV epidemic. 

2.2. Global and country specific HIV context 

Two decades ago, the global AIDS pandemic seemed unstoppable. More than 2.5 million 

people were acquiring HIV each year, and AIDS was claiming two million lives a year. In 

parts of southern Africa, AIDS was reversing decades of gains in life expectancy. Effective 

treatments had been developed but were available only at prohibitively expensive prices, 

limiting their use to a privileged few people [1, 2]. As antiretroviral therapy (ART) availability 

and accessibility evolves over the years, numbers of new HIV infections and AIDS-related 

deaths have continued to decrease globally, bringing the AIDS response closer to achieving 

Sustainable Development Goal (SDG) 3.3 of ending AIDS as a public health threat by 2030. 

Globally in 2022, out of the 39.0 million [33.1 million–45.7 million] people living with HIV, 

86% [73%–98%] knew their HIV status, 76% [65–89%] were receiving antiretroviral therapy, 

and 71% [60–83%] were virally suppressed [1, 2]. 

HIV infection rates among some subpopulation groups are still disproportionately high [23].  

HIV research in sub-Saharan Africa, is now interested in same-sex practices. Recent research 

findings show that MSM groups are common in sub-Saharan Africa and that their HIV 
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infection rates are substantial [24]. Unprotected receptive anal sex  has been found to carry a 

risk that is approximately 18 times higher biologically than unprotected receptive vaginal sex 

[23]. Because of this, MSM have increased chance of acquiring HIV infection. By this fact, 

MSM are at higher risk of contracting HIV infection. The global estimated HIV prevalence 

among MSM remains high, with the highest prevalence found in sub-Saharan African 

countries [25, 26]. In addition, 54% of all new HIV infections in Eastern and Southern Africa 

in 2022 were reported among KPs; 13% of these infections were reported among female sex 

workers (FSW), primarily due to the fact that they had multiple partners, a low rate of condom 

use, stigma, and marginalization [3]. 

Rwanda is located in East Africa, that has borders with: Tanzania, Uganda, the Democratic 

Republic of the Congo (DRC), and Burundi. The nation is organized into five administrative 

regions, which comprise the City of Kigali and four provinces, with thirty districts as 

additional subnational unit levels. Rwanda is facing a mixed HIV epidemic, with features of 

a concentrated pandemic among specific key population subgroups at increased risk of 

acquiring HIV infection, FSWs [6] and MSM [27], and a generalized epidemic across adults 

with an HIV prevalence stabilizing at about 2.7%. According to Rwanda’s HIV and AIDS 

national strategic plan (NSP2018-2024), MSM and FSW are ranked the top key populations 

for HIV prevention and care focus [28]. 

2.3. Challenges in HIV care and prevention programs 

The focus of attention has switched to major impacted populations in sub-Saharan Africa as 

nations work toward controlling the HIV epidemic, such as FSW, PWID, TG, and MSM who 

are more likely to contract HIV [29]. The World Health Organization (WHO) highlights the 

need to focus on key population subgroups (KPs) who are particularly vulnerable and 

disproportionately affected by HIV due to several risk factors including behaviors, social 

norms, and political, which contribute to a lack of access to prevention and treatment services 

[1, 2]  and hence become the remaining  key drivers of new HIV transmission in the general 

population. 

The members of key populations are usually hard to reach with HIV treatment and prevention 

programs due to country specific culture norms, political context, and social norms that 
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consider sex work and homosexuality severely criminalized. At present, MSM in countries 

where homosexuality is criminalized face a nearly five-fold increased risk of contracting HIV 

in comparison to MSM in countries where homosexuality is not criminalized [30]. 

The willful neglect, denial and apparent ignorance about the epidemiological situation are the 

top line major obstacles to effective prevention and treatment for people from key populations. 

A surprising number of countries lack targeted programs, size estimates and HIV data for key 

populations. Occasionally, the lack of data results in the omission of crucial information that 

policymakers and planners rely on to monitor the management of the HIV epidemic. This 

information is used to assess needs, coverage, and the spread of new HIV infections. 

Furthermore, increased risk for HIV transmission among KPs is highly associated with social 

marginalization, and those individuals who are socially marginalized may not identify 

themselves as such when accessing health services. This makes it difficult to track them in 

HIV program registers and impedes efforts to plan and have informed resource allocations for 

high impact. 

2.4. Population size estimation for Key population groups highly affected by HIV. 

For years, it has been difficult to estimate the size of hard-to-reach population group because 

of inability to construct sampling frame, being dynamic in both place and time, and the 

possibility that members may be reluctant to identify themselves a s such. Many techniques 

are proposed for estimating population sizes, each with pross and cons making it harder to get 

an optimal preference. These includes Venue-based sampling [31], Time-location sampling 

(TLS) [32], Respondent-Driven Sampling (RDS) [33], Multiplier Methods[34], Network 

Scale-Up Method (NSUM) [35], Successive Sampling-Population Size Estimation (SS-PSE) 

[36], and Capture-Recapture (CRC) [37].  Numerous methods have been employed, each with 

unique advantages and disadvantages, and there is currently no one gold standard. 

The capture-recapture (CRC) methods have been shown to be useful in estimating the size of 

hard-to-reach populations [38-40]. CRC methods have a long history in wildlife population 

assessment studies, and later were adopted in human subject studies mostly population size 

estimation of hard-to-reach. CRC methods were for the very first time adopted in human 

studies, dating back to 1786, when Laplace attempted to estimate the population of France 

[41]. The traditional capture-recapture (CRC) method employs two captures and involves the 
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use of the Peterson estimator [42]; First, 𝑛1 subjects are sampled, marked and released back 

into the population of interest. After a certain amount of time, a second sample of size 𝑛2 is 

drawn and the number of marked subjects 𝑚2 is counted. The marked fraction in the second 

sample allows for the estimation of the initial population size. 

�̂� =
𝑛1𝑛2

𝑚2
                                                 (1) 

With Peterson estimator from Equation (1), change in population during the study period is 

not accounted for. Capture-recapture models are broken down into two major categories- open 

and closed population models. Closed populations models assume that population size is 

constant over the study period, while Open population models do not, the scope of this thesis 

focuses on Closed population models. Under Closed population models, there are Discrete 

and continuous-time models, in a typical discrete-time model, the target population is sampled 

several times (or over a certain number of occasions), and for each occasion, any subject 

captured can be counted only once. Closed CRC models rely on four key assumptions in order 

to produce accurate population estimates: each capture is independent; the population is 

closed; the capture history of each member of the target population is accurate; and the 

probability of being caught is uniform [43]. Maximum count for each subject is the number 

of samples. 

Intuitively, for independent samples, when recaptures in the subsequent samples are few, we 

know that the size is much larger than the number of distinct captures. On the other hand, if 

the recapture rate is high, then we are likely to have caught most of the subjects. CRC is an 

empirical population size estimation method (PSE) that yields population size estimates with 

greater precision because of its statistical basis. According to research, performing a CRC 

with additional (three or more) sampling/capture rounds enhances the design, yields more 

reliable estimates, and eases the sample independence requirement (assumption) in 

comparison to two-source CRC [44]. 

There are two fundamental concerns that arise when modeling CRC data, including List 

dependence and Capture heterogeneity. Every capture event should, in theory, constitute an 

independent draw from the population. List dependency, on the other hand, refers to the fact 

that various capture events may frequently be associated.  On the other hand, each subject in 
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the population should have the same probability of being captured; however, some subgroups 

may have increased propensity for capture.  Furthermore, there are three effects influencing 

capture probability: temporal effect (subscript t), behavior effect (subscript b), and individual 

heterogeneity (subscript h) and all the possible interactions might occur, leading to eight 

fundamental Closed CRC models: 𝑀0 (no variation effect), 𝑀𝑡,  𝑀ℎ, 𝑀𝑡ℎ , 𝑀𝑏  , 𝑀𝑡𝑏  , 𝑀𝑏ℎ  , 

𝑀𝑡𝑏ℎ. The analysis of closed CRC data amounts to finding the best fitting model and 

estimating the population size from the chosen model. The selection of the best fitting model 

is challenging since all three sources of variability might be present in varying degrees, and 

these reasons might lead to model selection bias. 

The results of 3S-CRC are mathematically supported and tenable, which has made it a popular 

tool in epidemiology to estimate the size of the key population targeted by health interventions 

for certain health disorders [11, 12, 18]. Using a sampling frame-free approach, the 3S-CRC 

method has been employed in numerous studies to estimate the size of certain population 

subgroups [19-22]. To date, there have been four rounds of studies aimed at estimating the 

population size of FSW and only one study for MSM in Rwanda, with the commonality of all 

using Time Location Sampling (TLS) methodologies [45-47]. Two-sources capture-recapture, 

enumeration, and multiplier were listed among the methods used, with a commonly stated 

methodological limitation of inability to tackle within non-venue-based FSW and leading to 

potential underestimation of FSW. 

With this research project, we aim at developing a Generalized Capture recapture model for 

PSE derived from Bayesian model averaging process and address list dependency bias on 

population size estimates in multisource capture-recapture.  Furthermore, we explore the trust 

embedded in social ties as well as the strengths of capture recapture to come up with a novel 

approach known as Privatized network Sampling (PNS). PNS is a PSE method that is capable 

of reaching different FSW subgroups, including non-venue-based subgroups [48], free of tag 

loss, and produces financial resources effective and more credible inferences about population 

size, given that it is built into respondent driven sampling (RDS) with no additional cost added. 
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Chapter 3 

Methods 

3.1. Introduction 

Chapter 3 describes methods used to achieve the objectives of the research project. Firstly, the 

chapter provides step-by-step development of the Generalized CRC models as well as the 

network-traced capture-recapture approach with the derivation of corresponding estimators. 

Furthermore, this chapter continues by demonstrating the application of the developed 

methods to real-world data by describing the study population, study design and settings, 

sample size calculation and sampling, data management, and statistical data analysis.  

3.2. Study population. 

Adult men aged at least 18 years who self-report as gay or bisexual or who have had anal 

intercourse with a man during the past year and who have lived predominantly in Rwanda for 

the past year are included in the study population. Living predominantly in Rwanda means 

that, despite the potential of leaving the nation, you have spent the majority of the last 12 

months in Rwanda. Any MSM who was unwilling to participate voluntarily was omitted from 

the study. Furthermore, the study population includes biologically born females (girls or 

women), aged 15 years and above, who self-reported having any type of sex with men in 

exchange for goods, money, or services in the last 3 months and practicing sex work at street- 

and venue-based hotspots as well as at other non-venue-based places including but not limited 

to home-based, internet-based and using pimps. Those fulfilling the above criteria and who 

are under 18 years of age are here referred to as sexually exploited minors. 
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3.3. Study design and setting. 

3.3.1. MSM Population Size Estimation using Three-source capture recapture 

method. 

To estimate the size of MSM in Rwanda, the three-source capture-recapture (3S-CRC) 

approach was employed. In a typical CRC method, a random subset of the population of 

interest is marked during the initial encounter in the capture-recapture method. The number 

of people who were first marked is later observed by drawing in another segment of the 

population. The estimate of the population size decreases with increasing rate of observing 

tagged individuals in the second sample, tagging can be repeated as often as needed. The 3S-

CRC is a robust method that has been demonstrated to be effective in estimating populations 

without a sample frame, such as FSWs, MSM, and people who inject drugs (PWID) [19]. It is 

further detailed in other sources [49]. The MSM 3S-CRC began with a capture stage. Members 

of the MSM population were "encountered" at this phase, and they were then "marked" by 

giving them a unique present that was difficult to buy on the local market. A second capture 

(recapture) was started a week later by providing MSM-friendly services to MSM across the 

nation. A Respondent-Driven Sampling (RDS) technique was employed during the third 

capture (recapture) [50, 51],  with the inclusion of particular questions to identify those MSM 

met on the other capture occasions. 

MSM community-based organizations (CBO) chose MSM key informants during capture one 

to help distribute unique objects across MSM's associations, groups, and non-members of any 

associations or MSM groups. A list of MSM associations and groups was created, together 

with the number of members for each in each province across the nation: Twelve from the 

City of Kigali, ten from the Southern province, eight from the Northern and Western 

provinces, and fourteen from the Eastern province. The distribution of distinct objects was 

allocated a specific color for each province. Probability proportional to the size of each 

association or group was used to determine the number of objects to be distributed within each 

association or group. Because MSM associations and groups already have a list of members, 

systematic sampling within an association or group was found to be an appropriate method 

for determining who gets the unique object. The method involves selecting a random start 

point and sampling interval from the list of members of MSM associations or groups. 
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Within an association or group, each picked MSM was given three unique objects: two for 

him and two to distribute to other MSM he knows and who are not members of any 

associations or groups. With the assistance of MSM key informants, a skilled team of 

distributors managed the distribution of unique objects inside an MSM association or group. 

As distinctive items, branded keychains costing little more than $3 US were utilized. The 

study goals were given to MSM, and they were counseled to retain the unique objects they 

had received in a secure location in case they were subsequently required to provide them for 

validation. The completion of this task required a week. 

It was possible that some items would not be correctly distributed and returned, or that the 

same person would receive more than one object. A debriefing was conducted with the MSM 

key informant and the MSM association/group members to reduce any potential bias on the 

population size estimates. The debriefing covered study objectives, eligibility requirements 

for receiving the object, the object distribution process, and important points such as asking 

the object receiver to confirm if he had not been approached by another person in the same 

study context to prevent duplication. Furthermore, the $3 monetary worth of the unique object 

was chosen to reduce the likelihood that the distributor of the object would want to keep the 

items for themselves or that the recipient would be ready to accept more than one item. The 

object distribution procedure was tracked every day by the object distributor and the MSM 

key informant, who reported the quantity of objects that were successfully delivered and those 

that were unsuccessfully distributed and had to be physically returned. 

The second capture was started the next week, and MSMs were tagged with certain MSM-

friendly services. MSM key informants and their CBOs assisted in the selection process for 

assistance.  Since MSM are provided with health services through standard medical facilities 

that are furnished with MSM-friendly environments and packages, these facilities were 

utilized to provide MSM-friendly services, such as condom and lubricant distribution. A key 

informant who is MSM and a healthcare professional who typically treats MSM at the same 

facility were assigned to give the chosen service to MSM and to document relevant data for 

the study at 23 health facilities chosen nationwide for this purpose. In order to provide a warm 

and inviting environment for MSM, the key informant's duty was to act as the receptionist and 

enable screening, while the health worker's function was to deliver services and document 

pertinent data. Community mobilizers worked on impending service provision to MSM prior 
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to the second capture in order to raise awareness and dispel the stigma and fear associated 

with participation. After being counted as captured, those who accepted the offered services 

were asked about whether they had received the delivered unique object during the preceding 

week. Responses (yes/no) were noted based on the MSM's possession of the present and his 

ability to accurately identify the special object he had been given. 

The Integrated Behavioral and Biological Surveillance Survey (IBBSS) employing RDS [52] 

, came after capture two, providing the means for the third capture.  RDS is a type of sampling 

that uses the concepts of biased networks and Markov-chain theory to lessen biases that are 

typically present in chain-referral techniques [51].  It has been demonstrated that, unlike most 

chain-referral samples, sampling starts with a purposefully selected group of initial subjects, 

but the final sample's makeup is entirely independent of those initial subjects [53]. All MSM 

who were recruited by their peers through the RDS technique were counted as captured during 

this third capture. Eight study sites were dispersed across the administrative provinces: two in 

the Western province, three in the city of Kigali, and one in each of the Northern, Southern, 

and Eastern provinces. Each referral chain started with MSM seeds, those who satisfied the 

study eligibility requirements and were well-liked and regarded by their peers. Through the 

Implementing Partners, which include NGOs and CBOs that assist the MSM community, the 

investigator had contact with the seed during this study. For a total of 24 seeds, three were 

chosen at each study location. 

Participants in the RDS survey were asked if, in the second week of the study's 

implementation, they had received either unique objects during capture one or supplied 

services during capture two. Several prompts were utilized to verify previous involvement, 

such as physically receiving the gift or properly identifying it on a laminated card that had 

pictures of several objects. MSM were prohibited from taking part in the study more than once 

in a single round. To ensure that each participant was only recorded once during capture three 

and to identify any duplication both inside and between study sites, an interoperable 

fingerprint system was employed. 

Every study site had fingerprint machines installed and linked to the internet to facilitate 

simple, instantaneous data synchronization. Following the recording of a fingerprint, the data 

was automatically translated into alpha numerical codes and sent to the central server to 
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synchronize all research site-level data. This established technology allowed us to recognize 

any MSM attempting to re-register his fingerprint at the same or a different study site. The 

fingerprint machines kept the alpha-numerical codes as participant IDs to protect participant 

confidentiality after converting recorded fingerprints into codes that could not be reversed. 

3.3.2. FSW Population Size Estimation using Three-source capture recapture 

method. 

Using the three-source capture-recapture approach (3S-CRC), a cross-sectional, countrywide 

FSW and sexually exploited minor population size estimation was conducted [54]. The 

method involved visiting hotspots where FSWs are known to congregate on three separate 

occasions, and sampling FSWs that are found at the hotspots on each occasion, calculating the 

degree to which FSWs samples overlapped across three consecutive occasions. In this 

framework, an encountered FSW at the visited hotspot is referred to as captured, and each 

encounter occasion is referred to as a capture round in the CRC method context. A resampled 

FSW at a subsequent capture round was referred to as recaptured, and the intuition is that the 

degree to which FSW samples overlap across the three consecutive capture rounds is inversely 

proportional to the population size. 

The objects used to tag FSWs who were presented at hotspots were small, inexpensive, and 

branded with specific messages so that they would have a memorable design and only be 

available from the study staff who distributed them. During capture one, a small bag branded 

with the "imigongo” traditional art form was offered; for the second capture, a purse branded 

with a flower and the key message "Rinda ubuzima" (‘Protect your life’) was offered; and 

during the third capture, a hair comb branded with a tree picture as a key message was offered. 

A stratified multistage sampling design was used, with administrative provinces considered 

as strata and FSW hotspots as primary sampling unit (PSU). Information from FSW’s hotspot 

mapping exercise was used as the sampling frame for this FSW PSE 2022. 

Prior to this survey, the Rwanda Biomedical Center (RBC) conducted a FSW hotspot mapping 

exercise across the country from March to May 2022 to collect some key information that 

would inform future studies involving FSWs. Hotspot mapping consisted of teams going to 

the field to identify active venues and streets where FSWs congregate to find sexual clients. 

The FSWs hotspot mapping exercise was facilitated by key informants identified by 
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implementing partners who provide health services to FSWs to guide mapping teams. The 

mapping exercise identified 668 hotspots (street- and venue-based) countrywide and collected 

some beneficial data, including hotspot name, hotspot size, pick days, pick hours, and 

corresponding geo-coordinates, to guide the sampling process. 

The principal sampling processes were as follows: Using the national list of FSW hotspots 

resulting from the hotspot mapping exercise, FSW hotspots were stratified by administrative 

provinces and the City of Kigali, and then a specific number of hotspots was selected using 

probability proportional to the number of FSW hotspots within each of the 4 provinces and 

the City of Kigali. Hotspot sampling was performed using probability proportional to size 

(PPS) for generating PPS samples. In PPS sampling, the probability that a hotspot was 

sampled was proportional to the estimated size of FSWs observed at that hotspot during the 

hotspot mapping exercise. In practice, this means that hotspots with many FSWs are more 

likely to be sampled than hotspots with fewer FSWs. 

To enhance the geographical representativeness of the sample, hotspots were listed by 

corresponding administrative provinces, and provinces were considered strata. To execute 

hotspot sampling, we listed all hotspots in order of the number of FSW observed during 

mapping exercise within a stratum (to reflect the relative sizes of the FSW populations), 

calculated the cumulative number of FSWs for each hotspot listed, determined the sampling 

interval, picked a random starting point, and finally selected a hotspot based on the random 

starting point, sampling interval, and cumulative FSW population size. This process was 

repeated at each capture round to minimize list dependency between capture occasions and 

resulted in selecting 62 hotspots countrywide at each capture round. 

3.3.3. FSW Population Size Estimation using Privatize Network Sampling 

method. 

To inform the development of this estimation, a formative assessment (FA) was conducted. A 

group meeting that included implementing partners (IP), stakeholders, and FSWs was 

convened, and focus group discussions (FGD) were conducted. FSWs from 5 provinces in 

Rwanda came to Kigali for a one-day meeting on March 10th, 2023. The objectives of the FA 

included the identification of sociocultural factors limiting or facilitating access to FSW, 
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assessing the feasibility of the planned method and procedures, and identifying barriers and 

strategies to overcome them. 

Representatives from implementing partners’ institutions who usually serve FSW 

communities attended the FA, as well as 10 FSWs from 5 provinces presenting disparities in 

demographic characteristics and how they reach clients. Among the participating FSWs, 2 

were under 20 years old, 2 were home-based, 1 uses internet-based platforms to reach clients, 

2 belonged to a network of university FSWs, and the other 3 were street- and venue-based 

FSWs. The FA assessment focused on three main themes: study design and procedures, 

characteristics of the study population, and survey logistics. 

For the study design and procedure’s theme, we got confident in the proposed method (PNS), 

decided to use name initials and the last 5 digits of one’s phone number combination to form 

the unique identification number of participants, informed study site preparation and setting, 

informed coupon (invitation) design, learned that there is a need for the engagement of local 

government, and received insights on the content development of training materials for data 

collectors. Regarding the second theme, we learned that some FSW subgroups are extremely 

hard to reach, including FSWs in the university students’ networks, those using pimps, and 

middlemen, and this information guided us on the outreach strategies. Finally, the FA has 

informed the logistic component of the study, such as compensation for participation, 

including a FSW within each of the study teams to serve as a receptionist, and consideration 

for an electronic coupon (invitation). 

This estimation utilized one single method of population size estimation, Privatized Network 

Sampling (PNS). This method utilized network data collected using the questions specifically 

developed for this purpose. Within a bio-behavioral survey (BBS) questionnaire that used 

RDS to sample FSW, more questions were added collecting information on the degrees at 

which FSW population are networked, hence used for population size estimation purposes. 

Data were collected countywide in 10 study sites, which included Gihundwe Health Center 

(HC), Kibuye HC, Gisenyi HC in the West; Gitarama HC and Rango HC in the South; Muhoza 

in the North; Mukarange HC and Nyagatare HC in the East; Remera HC and WE-ACT FOR 

HOPE CLINIC in the City of Kigali. Data collection was performed between May 8th, 2023, 

and June 24th, 2023. 
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The PNS sampling followed the Respondent Driven Sampling (RDS), which is a probability-

based chain-referral sampling methodology used to sample FSWs for a biobehavioral survey 

(BBS). For the RDS process, initial survey participants (“seeds”) were purposively recruited 

by the survey team to start enrollment. Criteria to be a seed, one should have been engaged in 

commercial sex work at least 12 months prior to the estimation, well-connected within FSW 

social networks, well regarded by peers, able to communicate with data collectors, and 

supportive of estimation goals. Furthermore, three seeds by site were purposively recruited 

reflecting diversity in sociodemographic characteristics (e.g., age, sexual orientation and 

gender identity, education, area of residence, marital status, language, religion), HIV status, 

and affiliation with a KP organization or KP service provider. 

Seeds and other subsequent recruiters were provided with a maximum of 3 coupons to 

distribute to their peers in their FSW social circle for recruitment. Instructions for peer 

recruitment using a recruitment process script were provided to seeds and participants by staff 

at the study site. When potential recruits came to the survey site, they were screened for 

eligibility and enrolled if they met the survey inclusion criteria and consented to participate; 

at this point, they were considered participants. After participating in the survey, these 

individuals were given their own recruitment coupons and asked to distribute them to their 

peers that they knew are FSW. This process continued until the target sample size and survey 

parameters were achieved. 

 

However, RDS data contains limited information about participant’s network. To collect 

major identifiable information about how individuals in the sample are related to one another, 

for each recruited respondent, using a cryptographic hash function, a hashed (anonymized) ID 

was created from the initials of the first and last name and the last 5 digits of the respondent’s 

phone number using Tele funked coding [55]. 

Furthermore, each recruited respondent was asked how many of the total network size peers 

the recruit knows their name and phone numbers, and a hashed ID was also created for up to 

5 peers in the respondent’s personal network. If the respondent stated knowing 5 or fewer 

peers, a hashed ID was created for each of them. If the respondent knows more than 5 peers, 

then 5 peers were selected in a near-random fashion using an age-related selection process of 

peers with an age that was closest to the participant. The entered data (initials, last 5 digits of 
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phone number) were not stored, and the hash ID was stored. The hashed ID could not be used 

to reconstruct the respondent’s provided data. This information helped to evaluate the rate at 

which participants’ networks contained other sampled participants. 

3.4. Sample size and sampling. 

3.4.1. MSM Population Size Estimation using Three-source capture recapture 

method. 

The proportion of all males aged 18 and over who had at least one male sexual partner in the 

previous year by province (0.30% City of Kigali, 0.16% Eastern, 0.08% Northern, 0.24% 

Southern, 0.24% Western) was used to estimate the pooled and provincial level stratified 

sample size for the first two initial captures. This was based on Rwanda Population-Based 

HIV Impact Assessment (RPHIA,2019). We calculate the necessary minimum sample size by 

assuming a design effect of 1.5, a precision of 0.5%, and adjusting for the 15% loss of coupons 

from a prior study related to CRCs [47]. For each of the first two captures, we calculated that 

a total of 2,705 items would need to be redistributed across the provinces as follows: 803 in 

Kigali city, 586 in Western province, 658 in Southern province, 219 in Northern province, 

and 439 in Eastern province. 

Based on the outcomes of the 2020 Rwandan Integrated Bio-Behavioral Survey (IBBS), the 

sample size for the RDS survey was determined. To calculate the sample size, the MSM HIV 

prevalence was 11.3% in Kigali, 6.4% in the western province, 1.4% in the southern province, 

3.1% in the northern province, and 1.2% in the southern province, and that the non-response 

rate is 10%, the design effect is 1.5 and the precision ω is 0.025. The formula for determining 

the sample size for an RDS study was applied, according to Salganik's 2006 [56]. Estimated 

minimum total sample size across the nation is 2,210, broken down into the following 

provinces: 1027 in Kigali city, 613 in Western province, 141 in Southern province, 308 in 

Northern province, and 121 in Eastern province. 

Using MS-CRC Power Analysis of the shinyrecap application, the estimated sample sizes for 

each capture and statistical power were verified [57]. 
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3.4.2. FSW Population Size Estimation using Three-source capture recapture 

method. 

Statistical power and the anticipated sample size for each capture round were determined 

using the shine recap application's MS-CRC Power Analysis [57]. Using the previously 

estimated size of FSWs in Rwanda of 23,495 [47], we set the application to simulate 500 

capture recapture studies and report the amount of variability in the estimates based on the 

posited population and the sample size at each capture event to 2,000 at an alpha level of 0.05. 

We discovered that there is a 95% probability that the population size estimate from the CRC 

study will fall between 7.6% and the true value, or 1,780 absolute accuracies. Considering the 

11% non-response rate from the previous study, 2,000 was found to be an appropriate sample 

size for every cycle of capture (Appendix 1). The number of objects distributed to each hotspot 

was proportional to the total number of FSWs estimated at the hotspot according to 2022 

mapping data. 

To select the number of FSWs to be offered unique objects (UOs) within a selected FSW 

hotspot, a systematic sampling approach was used for the distribution of UOs. The Unique 

Objects distribution process started with the FSW key informant conducting visual head 

counts of FSWs present at the hotspot, then estimating the distribution interval by dividing 

the head counts by the assigned hotspot U.Os. If the result of the division was one, every FSW 

present at the hotspot should receive the unique object; otherwise, a random start would be 

randomly selected within the distribution interval following the physical standing position of 

FSWs in the hotspot. Table 1 below shows the provincial distribution of the sampled 62 

hotspots and 2,000 UOs assigned at each capture round.   
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Table 1: Provincial level sample size replicated at each of the 3 capture rounds, 

Rwanda 2022. 

 Information from hotspot 

mapping  

3S-CRC sampling 

Province Number of 

hotspots 

per 

province  

 Estimated total 

number of FSW 

at hotspots during 

mapping exercise 

Number 

of FSW to 

be 

sampled  

Number of 

hotspots to 

be selected 

and visited 

Average number 

of FSWs to be 

sampled per 

hotspot 

City of Kigali 100 3,883 346 9 39 

Eastern 237 5,825 518 21 25 

Northern 74 3,095 275 7 42 

Southern 61 2,858 255 5 47 

Western 225 6,810 606 20 30 

Total 697 22,471 2,000 62 
 

 

3.4.3. FSW Population Size Estimation using Privatize Network Sampling 

method. 

The computation of sample size relied on the FSW biobehavioral survey (BBS), which was 

sufficiently powered to estimate the provincial-level HIV. The sample size calculation was 

based on the province-specific prevalence of HIV among FSWs aged 15 years and above, 

estimated from the previous rounds of FSW BBS[9]. 

The design effect (Deff) for each province was estimated at 0.998 in East Province, 1.683 in 

West Province, 1.221 in North Province, 3.245 in South Province and 1.508 in Kigali City. 

The 95% Z score value was 1.96 with an alpha level of 0.05 (95% confidence), and the finite 

population correction was applied using the results of 2018 FSW population size estimation 

(PSE) [47]. As a result, the minimum sample size of 2,500 was estimated: East and South with 

415, West with 623, North with 503 and City of Kigali with 544.  
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3.5. Data management 

Data were collected electronically using an Open Data Kit (ODK)[55] installed on android 

tablets. All collected data were reviewed daily and checked for errors before submission. 

Daily, data from completed participant’s questionnaires were electronically pushed to a 

password-protected database to ensure data safety. 

Data quality checks were conducted regularly to ensure that high-quality data were generated. 

Mainly for PNS purposes, the RDS plot was run to view the recruitment graph and check if 

the tree matches what actually was happening in recruitment, checked for duplicated hashed 

IDs (duplicates are expected, but here, we checked that these are indeed unique individuals), 

checked for cases where a single subject reports the same hashed ID value for two of their 

contacts, and checked for subjects who report the exact same network contacts. 

At the end of data collection, all study site-level data in a CSV format (Comma Delimited) 

were merged with coupon recruitment information from RDS to track for chain referral 

aspects. 
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3.6. Statistical analysis 

3.6.1. MSM Population Size Estimation using Three-source capture recapture 

method: Bayesian nonparametric latent class model. 

To prepare for analysis, R-4.0.5 for Windows was used to export participant-level data from 

ODK, and cleaning procedures were carried out using pre-established exclusion criteria and 

data logical flow, data were analyzed by province. For every provincial-level subset, 

aggregated datasets with counts of every capture/recapture combination were created. Using 

aggregate data sets, a Bayesian non-parametric latent-class model was employed to generate 

the final PSE with 95% credible sets. 

Here we introduce a Bayesian Nonparametric Latent Class model (NPLCM) for estimating 

the size of a closed population from multiple recapture data. This approach, which does not 

require a separate model selection step, is based on the Dirichlet process mixing of the 

product-Bernoulli distribution, which allows it to transparently vary its complexity and handle 

complicated patterns of heterogeneity of captures [58, 59]. Lastly, we describe an effective 

Markov chain Monte Carlo sampling approach (MCMC) for modeling posterior data from our 

model. 

Expanding upon concepts from Manrique-Vallier and Fienberg, we formulate multiple-

recapture estimation as a problem involving missing data [60, 61]. Considering a closed finite 

population of 𝑁 individuals. Considering that every person can appear on one or more of the 

J lists that only include a portion of that population, or not appear at all, we write 𝑥𝑖𝑗 = 1 to 

indicate that individual 𝑖 ∈ {1, … … … , 𝑁} was captured by list 𝑗 ∈ {1, … … … , 𝐽}, and 𝑥𝑖𝑗 = 0 

to indicate otherwise. We group these capture indicators into individual capture vectors, 𝑥𝑖 = 

(𝑥𝑖1, … … . . 𝑥𝑖𝑗) ∈ {0,1}𝐽. In this line, any individual with a capture vector composed uniquely 

of zeros, 𝑶 = (0, ……., 0), is unobserved, and therefore cannot be present in any sample (list). 

Let 𝑛 = ∑ 𝐼(𝑋𝑖 ≠ 0)𝑁
𝑖=1  be the number of observed individuals. Here, 𝐼 (•) takes the value 1 

if the condition in the argument is true and 0 otherwise. Our task is to determine the number 

of unobserved individuals, 𝑛0 = ∑ 𝐼(𝑋𝑖 = 0)𝑁
𝑖=1  or equivalently the population size 𝑁 = 𝑛 +

𝑛0. 
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By following missing data ideas, here we consider a complete data-generation process and a 

nonignorable missing data mechanism. Let the complete data-generation process be 𝑓(𝑋|𝜃) 

for 𝑋 ∈ {0,1}𝐽, such that 𝑋𝑖
𝑖𝑖𝑑
~

 𝑓(𝑋|𝜃) for 𝑖 = 1, . . . . . . . . , 𝑁 with N Known. The 

corresponding missing data mechanism consists of not observing subjects with a capture 

vector 𝚶.  Reordering the sequence of 𝑋𝑖𝑠 so that all the unobservable capture vectors are 

grouped together at the end of the sequence, this is at positions 𝑖 = 𝑛 + 1, . . . . . . . . . , 𝑁 , we 

get: 

𝑝(𝜒| 𝜃, 𝑁) = (𝑁
𝑛

) 𝑓(Ο|θ)𝑁−𝑛 ∏ 𝑓(𝑋𝑖|𝜃)𝐼(𝑁 ≥ 𝑛)𝑛
𝑖=1               (2) 

Where 𝜒 = (𝑋𝑖 , . … … … . . , 𝑋𝑛). Here, the probability mass function of the argument—

which may be inferred from the context—is represented by the symbol 𝑝(•). Both 𝑁 𝑎𝑛𝑑 𝜃 

in the multiple-recapture scenario are unknown and require estimation. This is addressed by 

specifying a prior distribution 𝑝 (𝑁, 𝜃) and computing 𝑝(𝑁, 𝜃|𝜒) ∝ 𝑝(𝑁, 𝜃)𝑝(𝜒|𝜃, 𝑁). 

The next task is to account for data heterogeneity in our modeling process, we address this by 

using the Latent Class Model. Ideally, everyone in the population has the same probability of 

being captured; however, some subgroups may have increased propensity for capture. Using 

some sort of stratification is a suggested course of action in this situation. The idea is to split 

the population into classes that should be fairly homogeneous, as this is where basic models 

are expected to hold more reliably. The population size estimates are then obtained by 

applying those models independently to each stratum. The covariate data needed to create this 

type of stratification must be readily available and closely connected to the source of sample 

variation in order to use the stratification method. Independence model is one instance of a 

potential simple model to be taken into consideration: 

𝑓(𝑋|𝜆1, … … . . , 𝜆𝐽) = ∏ 𝜆
𝑗

𝑥𝑗
(1 − 𝜆𝑗)

1−𝑥𝑗𝐽
𝑗=1          (3) 

The data may be considered missing if an appropriate stratification mechanism is absent. 

Taking into account the possibility that the population divide would produce K homogeneous 

strata, and the assumption that each of them will remain independent. Let 𝝅 = (𝜋1, … … . . , 𝜋Κ) 
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with ∑ 𝜋𝑘 = 1𝐾
𝑘=1  and 𝜋𝑘 > 0 be the vector of strata probabilities. Then, the probability mass 

function of the capture vector is: 

𝑃(𝑋|𝜆, 𝜋) = ∑ 𝜋𝑘
𝐾
𝑘=1 ∏ 𝜆

𝑗𝑘

𝑥𝑗
(1 − 𝜆𝑗𝑘)1−𝑥𝑗𝐽

𝑗=1                    (4) 

Where 𝝀 = (𝜆𝑗𝑘) with 𝜆𝑗𝑘𝜖(0,1). This mixture model has independent models for each of its 

components, such as (3), using settings unique to each stratum. It accepts an augmented data 

representation as the two-step procedure, much like any other mixture models: 

𝑥𝑗|𝒵
𝑖𝑛𝑑𝑒𝑝

∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜆𝑗𝒵)   𝑓𝑜𝑟 𝑗 = 1, … … … . 𝐽 

𝒵 ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ({1,2, … … . . , 𝐾}, (𝜋1, … … . . , 𝜋𝐾))              (5) 

In this case, stratum assignment is expressly represented by the latent variable 𝒵. The Latent 

Class Model is the mixture of product-Bernoulli distributions in equation (4) [62]. In the space 

{0,1}𝐽, the mixture in (4) can reflect any feasible discrete distribution. However, we still need 

to address the model selection problem of selecting a suitable number of latent classes, Κ, 

before it can be applied. 

In order to avoid predetermining the amount of mixture components and to enforce data-

learned sparsity in the mixture, Dunson and Xing suggested a Bayesian nonparametric 

modification to the LCM [63]. Using an infinite number of latent classes simultaneously in 

conjunction with a prior specification that introduces sparsity into the mixture by 

concentrating the majority of the probability mass into a small finite subset was suggested as 

an alternative to attempting to identify the “best” finite number of latent classes. The resultant 

model, which is an infinite-dimensional mixture of product-multinomial distributions, 

overcomes the model selection issue of needing to choose the proper number of latent classes, 

Κ, while retaining the expressiveness and simplicity of the original LCM. In addition, it serves 

as a tool for model averaging, propagating the dimensionality uncertainty of the model into 

estimates. 
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An example of a Dirichlet process mixing of product-Bernoulli distributions is the 

nonparametric LCM found in Dunson and Xing. The hierarchical generating method below 

helps to explain it: 

𝑥𝑗|𝒵
𝑖𝑛𝑑𝑒𝑝

∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜆𝑗𝒵)   𝑓𝑜𝑟 𝑗 = 1, … … … . 𝐽 

𝒵 ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ({1,2, … … . . }, (𝜋1, 𝜋2, … … )) 

𝜆𝑗𝑘

𝑖𝑛𝑑𝑒𝑝

∼
𝐵𝑒𝑡𝑎 (1,1)𝑓𝑜𝑟 𝑗 = 1, … . . 𝐽 𝑎𝑛𝑑 𝑘 = 1,2, … … 

(𝜋1, 𝜋2, … … ) ∼ 𝑆𝐵(𝛼) 

𝛼 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝑎, 𝑏),                                                         (6) 

where the stick-breaking procedure with parameter 𝛼 > 0 is denoted by 𝑆𝐵(𝛼) [64]. By 

focusing the majority of the probability mass onto the first few coordinates of the stick-

breaking process for 𝝅, sparsity is introduced into the mixture and overfitting is prevented. 

We may get the effective dimensionality of the mixture from the data by using the prior 

distribution on 𝛼 [65]. The finite-dimensional stick-breaking prior is defined here, 

(𝜋1, … … . . , 𝜋𝐾∗) ∼ 𝑆𝐵𝐾∗(𝛼), by making 𝜋𝑘 = 𝑉𝑘 ∏ (1 −ℎ<𝑘 𝑉ℎ) for 𝑉𝑘∗ = 1 and 

𝑉1, . . . . . , 𝑉𝐾∗−1
𝑖𝑛𝑑𝑒𝑝

∼
 𝐵𝑒𝑡𝑎 (1, 𝛼) where 𝐾∗ is the upper bound on the number of classes for a 

finite-dimensional approximation that is large enough [66]. 

Going back to the initial problem of estimating the unknown size of a closed population, we 

plug the LCM probability mass function from EquationE (4) into the general multiple-

recapture multinomial model shown in (2) to obtain a joint model for the observable sample 

(those units with capture patterns different from zero), 

𝑃(𝑋|𝜆, 𝜋, 𝑁) ∝ (
𝑁

𝑛
) [∑ 𝝅𝒌

𝐾∗

𝑘=1

∏ 𝜆
𝑗𝑘

𝑥𝑗
(1 − 𝜆𝑗𝑘)

𝐽

𝑗=1

]

𝑁−𝑛
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× ∏ ∑ 𝝅𝒌
𝐾∗

𝑘=1 ∏ 𝜆
𝑗𝑘

𝑥𝑖𝑗
(1 − 𝜆𝑗𝑘)1−𝑥𝑖𝑗𝐽

𝑗=1
𝑛
𝑖=1        (7)                                                                         

We can see that (7) is comparable to a marginalized form of the enriched data representation 

by using the latent variable from (5): 

𝑃(Χ, Ζ, Ζ0|𝜆, 𝜋, 𝑁) ∝ (
𝑁

𝑛
) ∏ 𝜋𝒵𝑖

0 ∏(1 − 𝜆𝑗𝒵𝑖
0)

𝐽

𝑗=1

𝑛0

𝑖=1

 

× ∏ 𝜋𝒵𝑖
∏ 𝜆

𝑗𝑘

𝑥𝑖𝑗
(1 − 𝜆𝑗𝑘)1−𝑥𝑖𝑗𝐽

𝑗=1
𝑛
𝑖=1          (8) 

Where Ζ = (𝒵1, … … . . , 𝒵𝑛)  and Ζ0 = (𝒵1
0, … … . , 𝒵𝑛𝑜

0 ), and both 𝒵𝑖 and 𝒵𝑖
0 take values on 

the set {1, … … … , 𝐾
∗

} for each 𝑖 = 1, … … . , 𝑛. By selecting prior distributions for parameters 

𝜋 and 𝑁, we finalize a comprehensive Bayesian specification. Given the nature of latent 

variables, the enhanced data representation in (8) easily leads to Gibbs sampling techniques 

based on MCMC algorithms that take use of conditional independence. 

Nevertheless, there are more challenges because the vector Ζ0 length is precisely equal to 

𝑛0 = 𝑁 − 𝑛. It is not feasible to design acceptable Gibbs sampling methods by only deriving 

entire conditional distributions for 𝑁 and each 𝒵𝑖
0, since this would lead to a reducible Markov 

chain, since 𝑁 is itself a parameter to estimate. Basu and Ebrahim highlighted this difficulty 

[67], who suggested using a conditional decomposition to sample 𝑁 and the latent variables 

(Ζ0 in this example) simultaneously in order to overcome it. Fienberg also took advantage of 

this concept [68], and Manrique-Vallier and Fienberg[69] using multiple-recapture and having 

been modified and expanded upon by Manrique-Valier and Reiter [70] as a standard procedure 

for sampling from the NPLCM while adhering to intricate structural zero constraints. 

Theologically, the overall method that Manrique-Valier and Reiter suggested [70] is directly 

applicable to this problem. Still, more simplifications are possible due to the unique structure 

of the multiple-recapture issue, in which only one cell is unobservable. Let 𝝎 =

(𝜔1, … … . . , 𝜔𝐾∗) with 𝜔𝑘 = ∑ 𝐼(
𝑛0
𝑖=1 𝒵𝑖

0 = 𝜅). Here 𝜔𝑘 denotes the number of unobserved 

individuals that belong to latent Κ. Then, we get the representation: 
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𝑃(𝒳, Ζ, 𝜔|𝜆, 𝜋, 𝑁) = (
𝑁

𝑛, 𝜔1, … … . . , 𝜔𝐾∗
) ∏ (𝜋𝑘 ∏(1 − 𝜆𝑗𝑘

𝐽

𝑗=1

))

𝜔𝑘𝐾∗

𝑘=1

 

× ∏ 𝜋𝒵𝑖

𝑛

𝑖=1

∏ 𝜆
𝑗𝒵𝑖

𝜒𝑖𝑗

𝐽

𝑗=1

(1 − 𝜆𝑗𝒵𝑖
)1−𝒳𝑖𝑗 

× 𝐼 (∑ 𝜔𝑘 = 𝑁 − 𝑛

𝐾∗

𝑘=1

) 

                                                                                                                                  (9) 

Here (8) is comparable to (7) after marginalizing over 𝚭 and 𝛚. 

The structure of a gibbs sampler algorithm, which extracts samples from the posterior 

distribution of model (9), including 𝑁, the population size, is shown below. Manrique-Vallier 

and Reiter's first steps are comparable when using the previous distribution suggested in (8) 

[70]: 

(i) Sample from 𝑃(𝑍| … . . ): 𝐹𝑜𝑟 𝑖 = 1, … . . 𝑛.                                               

Sample 𝒵𝑖 ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ({1, … . . , 𝐾∗}, (𝑝1, … … , 𝑝𝐾∗)),                         

with  𝑝𝑘 ∝ 𝜋𝑘 ∏ 𝜆
𝑗𝑘

𝑥𝑖𝑗
(1 − 𝜆𝑗𝑘)

1−𝑥𝑖𝑗𝐽
𝑗=1   

(ii) Sample from  𝑃(𝜆| … . . ): 𝐹𝑜𝑟 𝑗 = 1, … . . 𝐽. and 𝑘 = 1, … . . 𝐾∗.                                                           

Let 𝑛𝑘 = ∑ 𝐼(𝒵𝑖 = 𝑘)𝑛
𝑖=1  and 𝑛𝑗𝑘 = ∑ 𝐼(𝑥𝑖𝑗 = 1, 𝒵𝑖 = 𝑘  )𝑛

𝑖=1 .                                                    

Then, sample 𝜆𝑗𝑘 ∼ 𝐵𝑒𝑡𝑎(𝑛𝑗𝑘 + 1, 𝑛𝑘 − 𝑛𝑗𝑘 + 𝜔𝑘 + 1). 

(iii) Sample from 𝑃(𝜋| … . . ): 𝐹𝑜𝑟 𝑘 = 1, … . . 𝐾∗ − 1.                                  

Sample  
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𝑉𝑘 ∼ 𝐵𝑒𝑡𝑎 (1 + 𝑣𝑘 , 𝛼 + ∑ 𝑣ℎ

𝐾∗

ℎ=𝑘+1

) 

where 𝑣𝑘 = 𝑛𝑘 + 𝜔𝑘.  Let 𝑉𝐾∗ = 1 and make 𝜋𝑘 = 𝑉𝑘 ∏ (1 − 𝑉ℎ)ℎ<𝑘  for all 𝑘 = 1, … …, 𝐾∗ 

(iv) Sample from 𝑝(𝛼| … . ): 𝛼 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎 − 1 + 𝐾∗, 𝑏 − log 𝜋𝐾∗) 

(v) Sample from 𝑝(𝑁, 𝜔|….): The full joint conditional distribution of 𝜔 and 𝑁 is: 

𝑃(𝜔, 𝑁|𝜆, Ζ, 𝛼, 𝜋, 𝜒) ∝ 𝑃(𝑁)
𝑛0!

𝜔1!, … … , 𝜔𝐾∗!
𝜌1

𝜔1 … … … . 𝜌
𝐾∗
𝜔𝐾∗

 

× 𝐼(𝑁 = 𝑛 + 𝑛0) 

where 𝑛0 = ∑ 𝜔𝑘
𝐾∗

𝑘=1  and 𝜌𝑘 = 𝜋𝑘 ∏ (1 − 𝜆𝑗𝑘)
𝐽
𝑗=1 . For 𝑃(𝑁) ∝

1

𝑁
 , Since N 

is entirely defined by 𝝎, this is a negative multinomial distribution that is not conditional on 

N. Therefore, by compounding a negative binomial with a multinomial distribution, we are 

able to collect samples from this distribution [71]: 

(i) Sample 𝑛0 = 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 1 − ∑ 𝜋𝑘
𝐾∗

𝑘=1 ∏ (1 −
𝐽
𝑗=1

𝜆𝑗𝑘)). Make N = n + 𝑛0 

(ii) Sample (𝜔1, … … , 𝜔𝐾∗) ∼

𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛0(𝑝1, … … … , 𝑝𝐾∗)) for 𝑝𝑘 ∝ 𝜌𝑘  

The above proposed Gibbs sampler algorithm consist only of sampling steps from standard 

distributions.  Additionally, it only requires sampling 𝐾∗ × (𝐽 + 2) + 𝑛 + 1 variates 

per iteration. 

The latent-class model for capture-recapture (LCMCR) in R-4.0.5 for Windows was used for 

all analyses [72, 73]. The LCMCR approach is built on a Dirichlet process mixture, which 
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allows it to transparently adjust its complexity without the need for a separate model selection 

phase and tolerate complicated patterns of heterogeneity of captures [58, 59]. For a Dirichlet 

process parameter, uninformative priors—those that dominate the likelihood function and 

have little bearing on the inference—were provided (α~Gamma (0.25, 0.25)). We used K=5 

latent classes; 10,000 samples from the posterior distribution drawn with a burn-in of 10,000 

iterations and a thinning interval of 1,000 iterations to specify the Markov Chain Monte Carlo 

(MCMC) sampling. Trace plots and the posterior probability distribution histogram for 

population size were used to evaluate the MCMC sampling's convergence. 

For three-source capture-recapture, median population size estimates with 95% credible sets 

were generated both overall and per province. The highest density intervals (the HD Interval 

package in R) were provided to make it easier to interpret findings and apply estimates for 

programs.  

3.6.2. FSW Population Size Estimation using Three-source capture recapture 

method: Bayesian Model Averaging 

To overcome sample heterogeneity, the Bayesian nonparametric latent class (NPLC) approach 

divides the population into relatively homogeneous classes where simple models are expected 

to hold better. These models are then applied to each stratum individually to generate estimates 

of the population size. As a result, there are more models that may be fitted to the data due to 

the huge dimensionality, which makes the challenge of model selection even more urgent. 

There is a solution to this issue with Bayesian model averaging.   

Based on a closed, finite population of 𝑁 persons, we discuss the missing data problem here, 

where each individual might be listed or overlooked by any of the 𝐽 lists that partly enumerate 

that population. In this case, the existence of a person's name on the particular list is deemed 

a capture. The information can be shown as a contingency table with one dimension for each 

list if it is feasible to identify the subjects or their capture histories individually. It is necessary 

to estimate the number of persons in the cell where none of the lists were able to locate them. 

Before deriving the model, we introduce Bayesian graphical models. Consider there are three 

different variables representing presence or absence in three different lists, we denote cell 

probabilities and data counts by 𝜃𝑖𝑗𝑘 and 𝐷𝑖𝑗𝑘, where 𝑖 indexes the first list, respectively. The 
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indices take on values 0, indicating absence from a list; 1, indicating presence in a list. Each 

variable in a graphical model is shown as a node in the graph, and linkages between variables 

show the clear interdependence that exist between them [74]. If 𝑆, 𝐶1 and 𝐶2 represent sets of 

variables, and if 𝑆 separates 𝐶1 and 𝐶2in the graph, i.e., all paths connecting both sets pass 

through 𝑆, then 𝐶1is independent of 𝐶2 given 𝑆. 

A prior distribution for 𝜃 ought to be focused on values that meet the model's independence 

connections; a class of such priors known as "hyper-Dirichlet" distributions was presented. 

[75]. 

Hyper-Dirichlet can be constructed by moving through the graph according to a perfect 

ordering, (𝐶1, 𝐶2, … . . , 𝐶𝐼), of the cliques, and placing a Dirichlet marginal distribution on 𝜃𝐶𝐼
, 

for each clique 𝐶𝑖 in turn, subjects to the constraint that each marginal distribution must cohere 

with what has been specified for previous cliques [76]. 

We begin by enumerating a class of possible models, indexed by M = {1,2, … . . , 𝑘}, for the 

cell probabilities of the contingency table. We also specify a prior distribution, 𝑝𝑟(ℳ), over 

M. The prior 𝑝𝑟(ℳ) should ideally be based on expert opinion. The cell probabilities for 

each model 𝑚 ∈ M are parametrized by some vector 𝜃(𝑚); priors for these parameters are 

described below. 

Let 𝑁 be the total population size; we assume that 𝑁 is independent of ℳand 𝜃(ℳ) a priori. 

A typical choice for the prior of 𝑁 when no information about it is available is the Jeffreys 

prior, 

𝑝𝑟(𝑁) ∝
1

𝑁
                                (10) 

An alternative is a noninformative prior for the integers proposed by Rissanen [77], 

  𝑝𝑟(𝑁) ∝ 2𝑙𝑜𝑔∗(𝑁)
                   (11) 

Where 𝑙𝑜𝑔∗(𝑁) is the sum of the positive terms in {log2(𝑁), log2{log2(𝑁),}, … … …  }. 



33 
 

Recalling that 𝑁 is independent of 𝜃 and ℳℳ a priori, using Bayes Theorem to arrive at the 

posterior distribution of (𝑁, 𝜃(ℳℳ)) conditional on the model 𝑀, and, integrating out 𝜃(𝑚), 

given the data 𝐷 we obtain: 

𝑝𝑟(𝑁|𝐷, ℳ = 𝑚) =
𝑝𝑟(𝐷|𝑁, ℳ = 𝑚) 𝑝𝑟(𝑁)

𝑝𝑟(𝐷|ℳ=𝑚)
  ,           (12) 

where, 

𝑝𝑟(𝐷|𝑁, ℳ = 𝑚) = ∫ 𝑝𝑟{𝐷|𝑁, 𝜃(𝑚), ℳ = 𝑚}
.

𝜃 (𝑚)
𝑝𝑟{𝜃(𝑚)|ℳ = 𝑚} 𝑑𝜃 (𝑚)  

= (
𝑁

𝐷
)

𝜓𝑚{𝛼(𝑚) + 𝐷∗}

𝜓𝑚{𝛼(𝑚)}
 

                                                                                             (13) 

Here 𝐷∗indicate the whole set of data including the unobserved cell’s count. Recall that the 

unobserved count is determined by 𝑁 and 𝐷. In case a model 𝑚 has cliques (𝐶1, … . . , 𝐶𝐼) and 

separators (𝑆2, … . . , 𝑆𝐼), indicate by 𝛼𝐶𝐼
(𝛼𝐶𝐼

: 𝐶𝐼: ∈ 𝒞𝐼) the Dirichlet distribution’s parameters 

on 𝜃𝐶𝐼
, and in a similar manner specify 𝛼𝑆𝐼

, where the sets of feasible configurations for  𝒞𝐼 

and 𝒮𝐼, respectively, are denoted by 𝐶𝐼 and 𝑆𝐼. Next, the function 𝜓(•) is described as follows: 

𝜓(𝛼) =
{∏ ∏ Γ(𝛼𝐶𝐼

)𝐶𝐼∈𝒞𝐼
𝐼
𝑖=1 }

{Γ(∑ 𝛼𝐶𝐼𝐶𝐼∈𝒞𝐼
) ∏ ∏ Γ(𝛼𝑆𝐼

)𝑆𝐼∈𝒮𝐼
𝐼
𝑗=2 }

                  (14) 

wherew, Γ stands for the gamma function. 

The posterior for 𝑁 is given by expression (3), conditional on a certain ℳℳ = 𝑚. We 

construct an unconditional posterior distribution by averaging models in order to account for 

model uncertainty: 

𝑝𝑟(𝑁|𝐷) =
∑ 𝑝𝑟(𝐷|𝑁, ℳ = 𝑚) 𝑝𝑟(ℳ=𝑚)𝑚

𝑝𝑟(𝐷)
                      (15) 

where, 

𝑝𝑟(𝐷) = ∑ ∑ 𝑝𝑟(𝐷|ℳ = 𝑚, 𝑁) 𝑝𝑟(𝑁) 𝑝𝑟(ℳ = 𝑚)

𝑁𝑚
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Participant-level data was imported into RStudio for analysis (R package: shinyrecap), and 

cleaning was performed based on pre-determined exclusion criteria (self-reporting to be a 

FSW and accepting the offered UO) and data logical flow following skip patterns. The dataset 

was subset by province to have provincial-level FSW population size estimates. For every 

subgroup, aggregated datasets with counts of every capture-recapture combination were 

created. Table 2 below shows how data were aggregated by overall and provincial 2𝑘 − 1 

contingency tables for analysis preparation, where 𝑘 stands for the number of capture 

occasions and aggregated counts, 𝑛𝑖 where 𝑖 stands for specific capture occasion. 

Table 2: Three-source capture-recapture aggregated dataset, Rwanda 2022. 

Capture 1: Capture 2: Capture 3: Total: 

1 0 0 𝑛1 

0 1 0 𝑛2 

0 0 1 𝑛3 

1 1 0 𝑛1&2 

1 0 1 𝑛1&3 

0 1 1 𝑛2&3 

1 1 1 𝑛1&2&3 

The final PSE with credibility sets was created from aggregated data sets using Bayesian 

model averaging [78], which is adaptable and capable of handling different types of variability 

in capture probability. For 3S-CRC data, confidence intervals and the median population size 

with 95% credibility sets were generated for both the overall and province-specific. 

3.6.3. FSW Population Size Estimation using Privatize Network Sampling 

method.  

For inference on disadvantaged and difficult-to-reach groups, link-tracing approaches like 

respondent-driven sampling (RDS) are often utilized. An extension of RDS that allows for 

additional inferential processes is privatized network sampling (PNS), in which the identities 

of each subject's connections are gathered in a way that protects their privacy. For this 

research, we derive and implement two PNS population size estimators. 

Let the degree of individual 𝑖 in the population of interest be denoted by 𝑑𝑖 for 𝑖 ∈ {1, … . . 𝑁}, 

where 𝑁 is the population size. For the duration of the study, we assume that the population's 

size and degrees will remain constant. The entire degree of a set 𝑣 is represented as 𝑑𝑣 =
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∑ 𝑑𝑖𝑖𝜖𝑣  , the mean degree of a set represented by �̅�𝑣=
𝑑𝑣

|𝑣|
 , and the population mean degree 

expressed as �̅�. First, the seeds are chosen, and the degree of the node is taken into 

consideration at each phase of the PNS sampling process. Following the sampling of a 

network node, the identities of all the alters or a randomly selected selection of them are 

gathered. Subsequently, a recruiter node is chosen from the sampled nodes. Next, a random 

recruit is chosen from among their alters that haven't been sampled yet.  

Let 𝑡 represent the total number of seeds and 𝑆𝑖 ∈ {1, … . . 𝑁} the index of the ith recruited 

subject, with realization 𝑆𝑖 and 𝑅𝑖 ∈ {−1,1, … . . 𝑁} the recruiter with realization 𝑟𝑖, where 𝑟𝑖 =

−1 in the case of seeds. Up to and including the ith subject, we represent the set of sampled 

subjects and their recruiters using the notation 𝑆≤𝑖 and 𝑅≤𝑖 respectively. An individual seed is 

a tree's beginning. We refer to 𝑠𝑖
𝑐 as the ith sampled subject within the cth tree, and 𝑠𝑖

\𝑐
as the 

ith sampled subject in all other trees omitting the cth one. 𝐺𝑖 ∈ {1, … . . 𝑡} is the tree of the ith 

sampled subject, and 𝑔𝑖 is the realization. In addition, let 𝑛 represent the number of sampled 

subjects, 𝑛𝑐 be the size of the cth tree and 𝑛\𝑐 = 𝑛 − 𝑛𝑐. We omit the subscript index when 

referring to the full sample to make notation easier (𝑆 = 𝑆≤𝑛 𝑎𝑛𝑑 𝑆𝑐 = 𝑆≤𝑛𝑐
𝑐 ).  

With realization 𝑜𝑠𝑖
, the neighbors reported by the ith sampled subject, apart from their 

recruiter and recruits, are represented as 𝑂𝑆𝑖
. In a case indexed by a set, 𝑂 is the multiset union 

over the elements of the set 𝑂𝑆 = ⨄𝑥𝜖𝑆𝑂𝑥. The alters reported by subjects in tree 𝑐 are 

presented as  𝑂𝑐 = 𝑂𝑆𝑐  for simplicity of notation, whereas those from other trees are 

represented as  𝑂\𝑐 = 𝑂𝑆\𝑐 . The size of any multiset 𝑥 is |𝑥| and the ith element after ordering 

the members of a multiset is denoted as 𝑥[𝑖]. Summations over all elements of a multiset are 

denoted as ∑ .𝑘𝜖𝑥  

The total number of cross tree matches between nominated alters and sampled subjects is 

defined to be  

𝑀 = ∑ 𝑞(𝑆𝑖 , 𝑂\𝐺𝑖)𝑛
𝑖=1 , 

Where 𝑞(𝑆𝑖, 𝑂\𝐺𝑖) is the number of times the ith sampled individual is nominated by sampled 

individuals in different trees. 
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𝑞(𝑆𝑖 , 𝑂\𝐺𝑖) = ∑ 𝐼(𝑆𝑖 = 𝑘)

𝑘𝜖𝑂\𝐺𝑖

 

And 𝐼 is the indicator function. Assuming that, conditional upon the recruitment trees 

observed thus far and the total number of nominated connections in each tree, free edge ends 

in the network are connected completely at random, we have that: 

𝐸(𝑞(𝑆𝑖 , 𝑂\𝐺𝑖)|𝑆≤𝑖 , 𝑅≤𝑖 , |𝑂1|, … . , |𝑂𝑡|) =  

 

𝑑𝑠𝑖
− 𝐼(𝑅𝑠𝑖

≠ −1)

𝑁�̅� − 2 (𝑖 − ∑ 𝐼(𝑅≤𝑖[𝑗]
|𝑅≤𝑖|

𝑗=1 = −1))
|𝑂\𝐺𝑖| 

The numerator is the number of free edge ends incident upon node 𝑆𝑖, potentially excluding 

one edge end observed connecting the individual to their recruiter. The denominator is the 

total number of free edge ends in the graph, excluding those observed in the recruitment graph. 

|𝑂\𝐺𝑖| is the number of nominated individuals in the other trees that could potentially lead to 

the sampled node. 

 

Figure 1:  An example PNS recruitment Graph with Two Trees, one of Size 3 and the 

other of Size 4 
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Gray points indicate connections reported by sampled subjects who were not themselves 

sampled. Cross sample matches are reported connection between individuals in different trees. 

Cross Alter matches are shared connections between individuals in different trees who are not 

sampled. 

We may now write the expected number of matches as: 

𝐸(𝑀) = 𝐸 (∑
𝑑𝑠𝑖

−𝐼(𝑅𝑠𝑖
≠−1)

𝑁�̅�−2(𝑖−∑ 𝐼(𝑅≤𝑖[𝑗]
|𝑅≤𝑖|

𝑗=1
=−1))

𝑛
𝑖=1 |𝑂\𝐺𝑖|)  

≈ 𝐸 (∑
𝑑𝑠𝑖

−𝐼(𝑅𝑠𝑖
≠−1)

𝑁�̅�−(𝑛−𝑡)

𝑛
𝑖=1 |𝑂\𝐺𝑖|)  

= 𝐸 (∑
∑ 𝑑

𝑠𝑖
𝑐−𝐼(𝑅

𝑠𝑖
𝑐

𝑛𝑐

𝑖=1 ≠−1)

𝑁�̅�−(𝑛−𝑡)
𝑡
𝑐=1 |𝑂\𝑐|)  

= 𝐸 (
∑ (�̅�𝑆𝑐−

𝑛𝑐−1

𝑛𝑐 )𝑛𝑐|𝑂\𝑐|𝑡
𝑐=1

𝑁�̅�−𝑛+𝑡)
)                            (16) 

Considering the classical form of population size estimation using capture-recapture, taking 

two independent random samples 𝐴 and 𝐵 from a population, the expected rate that individuals 

from sample 𝐴 are seen in sample 𝐵 is, on average, proportional to the size of sample 𝐴 relative 

to the population size and so the expected rate of overlap is, 

𝐸(|𝐴 ∩ 𝐵|) =
|𝐴||𝐵|

𝑁
 

Rearranging the equation, yields the classical Lincoln-Petersen estimator[42]. 

𝑁 =
|𝐴||𝐵|

(|𝐴∩𝐵|)
≈

|𝐴||𝐵|

|𝑎∩𝑏|
                    (17) 
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Where 𝑎  and 𝑏 are the observed samples from A and B so that |𝑎 ∩ 𝑏| is the observed 

overlap.  We now create an estimator by replacing the random variables 𝑀, 𝑆 and 𝑂 with their 

observed values 𝑚 (observed number of matches), 𝑠 (the sample), and 𝑜 (nominated alters). 

Additionally, we use the Gile’s successive sampling estimator [79]. 

�̂̅� =
∑ 𝑑𝑖𝑖𝜖𝑠 𝑤𝑖

∑ 𝑤𝑖𝑖𝜖𝑠
  

where 𝑤𝑖 are the successive sampling weights, in place of the unobserved �̅� . We note that the 

successive sampling estimator is a function of the total population size because the successive 

sampling estimator uses population size to construct the weights. 

The resulting estimating equation - the Cross Sample population size estimator �̂�𝒄𝒔 is, 

0 =
∑ (�̅�𝑆𝑐−

𝑛𝑐−1

𝑛𝑐 )𝑛𝑐|𝑂\𝑐|𝑡
𝑐=1

𝑁�̅�−𝑛+𝑡−𝑚
                     (18) 

One challenge is that when privatizing hashes are used, then 𝑚 in (18) is not observed, only 

the hashed values from the nominated neighbors are observed. Suppose that each node is 

assigned a hashed identifier ℎ𝑖 such that the probability that two random nodes have the same 

identifier is 𝜌 . Conditional upon the recruitment up to the ith node, and assuming that edge 

ends are connected randomly, the expected total number of edge ends incident upon other 

nodes with the same identifier is, 

𝜌 (�̅�(𝑁 − 1) − 2 (𝑖 − ∑ 𝐼(𝑅≤𝑖[𝑗] = −1)

|𝑅≤𝑖|

𝑗=1

)) 

≈ 𝜌(�̅�(𝑁 − 1) − 𝑛 + 𝑡) 
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Building on the One-step Estimator of Networked population size [80], the number of free 

edge ends for node 𝑆𝑖 is 𝑑𝑠𝑖
− 𝐼(𝑅𝑖 ≠ −1) and so the probability that a match is actually a 

true match is 

  𝑃(𝑂𝑐[𝑘] = 𝑆𝑖|ℎ(𝑂𝑐[𝑘]) = ℎ(𝑆𝑖), 𝑅𝑖 , 𝑆𝑖) ≈ (
𝜌(�̅�(𝑁−1)−𝑛+𝑡)

𝑑𝑠𝑖
−𝐼(𝑅𝑖≠−1)

)
−1

 

And so, the expected total number of matches can be related to the number of hashed matches 

as 

𝐸(𝑀) ≈ 𝐸 (∑ ∑ 𝑃(𝑂𝑐[𝑘] =

𝑘𝜖𝑂\𝐺𝑖

𝑛

𝑖=1

𝑆𝑖|ℎ(𝑂𝑐[𝑘])

= ℎ(𝑆𝑖), 𝑅𝑖 , 𝑆𝑖) 𝐼(ℎ(𝑆𝑖) = ℎ((𝑘))) 

We may then replace the 𝑚 in (18) with a sample estimate adjusting for potential random 

clashes of the hash function, 

�̂�(𝑁) = ∑ ∑ (
𝜌(�̂̅�(𝑁 − 1) − 𝑛 + 𝑡)

𝑑𝑠𝑖
𝑐 − 𝐼(𝑟𝑖 ≠ −1)

+ 1)

−1

𝐼(ℎ(𝑠𝑖) = ℎ((𝑘))

𝑘𝜖𝑜\𝑔𝑖

𝑛

𝑖=1

 

With the Cross Sample estimator, the number of potential matches incident on each tree is 

equal to the product of the number of nominated individuals in the other trees and the sample 

size of the tree. In a well-connected population where individuals know many other members 

of the population, we expect the number of nominated individuals to greatly exceed the 

number of sampled individuals. Consequently, we anticipate the number of potential matches 

between the nominated alters from a tree and the nominated alters from other trees to be large 

and thus potentially a better target for inference. The total number of cross tree matches 

between nominated alter sets is defined as: 
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𝑈 = ∑ 𝑊(𝑂𝑠𝑖
, 𝑂\𝐺𝑖  )

𝑛

𝑖=1

 

With realization 𝑢 , where 𝑊(𝑂𝑠𝑖
, 𝑂\𝐺𝑖  ) is the number of times nominated alters of ith sampled 

individual are nominated by sampled individuals in the different trees. 

𝑊(𝑂𝑠𝑖
, 𝑂\𝐺𝑖  ) = ∑ ∑ 𝐼(𝑗 = 𝑘)

𝑘𝜖𝑂\𝐺𝑖𝑗𝜖𝑂𝑠𝑖

 

The total number of free edge ends incident on nominated alters of individual 𝑠𝑖 is 

|𝑂𝑠𝑖
| (�̅�𝑂𝑠𝑖

− 1), excluding the edges connecting the alters to individual 𝑠𝑖. We again assume 

that edges ends are conditionally connected completely at random to calculate the conditional 

expectation, 

𝐸(𝑊(𝑂𝑠𝑖
, 𝑂\𝐺𝑖  )|𝑆≤𝑖 , 𝑅≤𝑖 , |𝑂1|, … . . , |𝑂𝑡|) =

|𝑂𝑠𝑖
| (�̅�𝑂𝑠𝑖

− 1)

𝑁�̅� − 2 (𝑖 − ∑ 𝐼(𝑅≤𝑖[𝑗]
|𝑅≤𝑖|

𝑗=1 = −1))
|𝑂\𝐺𝑖| 

The expected number of matches is then, 

𝐸(𝐴) = 𝐸 (∑
|𝑂𝑠𝑖

|(�̅�𝑂𝑠𝑖
−1)

𝑁�̅�−2(𝑖−∑ 𝐼(𝑅≤𝑖[𝑗]
|𝑅≤𝑖|

𝑗=1 =−1))

𝑛
𝑖=1 |𝑂\𝐺𝑖|)  

≈ 𝐸 (
∑ (�̅�𝑂𝑠𝑖

−1)|𝑂𝑠𝑖
||𝑂\𝐺𝑖|𝑛

𝑖=1

𝑁�̅�−𝑛+𝑡
)  

= 𝐸 (
∑ |𝑂\𝑐||𝑂𝑐| ∑

|𝑂𝑖|

|𝑂𝑐|
(�̅�𝑂𝑖

−1)𝑖𝜖𝑆𝑐
𝑡
𝑐=1

𝑁�̅�−𝑛+𝑡
)  

≈ 𝐸 (
(�̃�−1) ∑ |𝑂\𝑐||𝑂𝑐|𝑡

𝑐=1

𝑁�̅�−𝑛+𝑡
)                                   (19) 
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where �̃� =
∑ 𝑑𝑖

2𝑁
𝑖=1

∑ 𝑑𝑖
𝑁
𝑖=1

 is the mean degree when degrees are sampled with probability proportional 

to degree. The approximation used in the second equation mirrors the approximation used in 

the Cross Sample estimator (16). The approximation in the fourth equation is obtained by 

noting that the alter degrees (𝑑𝑂
𝑆𝑖

𝑐 ) are selected with probability proportional to degree, since 

edge ends are assumed to be connected completely at random. Hence, the expected value of 

�̅�𝑂𝑖
 is �̃� − 1. Replacing random variables by their realizations and means by their estimators 

in equation (19) we arrive at the Cross Alter estimating equation, 

  0 =
(�̂̃�−1) ∑ |𝑂\𝑐||𝑂𝑐|𝑡

𝑐=1

𝑁�̂̅�−𝑛+𝑡
− 𝑢,                    (20) 

with �̂̃� =
∑ 𝑑𝑖

2𝑤𝑖𝑖𝜖𝑠

∑ 𝑑𝑖𝑤𝑖𝑖𝜖𝑠
. The 𝑁 that solves (2020) is the Cross Alter estimate (�̂�𝒄𝒂) 

Similar to the adjustment to the Cross Sample estimator, the probability of a tie existing given 

a connection to an individual with the same hash is, 

  𝑃 (𝑂𝑐[𝑘] = 𝑂𝑐[𝑙]|ℎ(𝑂\𝑐[𝑘]) = ℎ(𝑂𝑐[𝑙])) ≈ (
𝜌(�̅�(𝑁−1)−𝑛+𝑡)

𝑑𝑂𝑐[𝑘]−1
+ 1)

−1

 

However, unlike the Cross Sample estimator, we do not observe the degrees in the 

denominator and so must take a different approach to the adjustment. Under the random 

connection assumption, the nominated alters are selected with probability proportional to 

degree. If an observed match of hashes (ℎ(𝑂\𝑐[𝑘]) = ℎ(𝑂𝑐[𝑘])) is false, meaning 

that  𝑂\𝑐[𝑘] ≠ 𝑂𝑐[𝑘], then the degree distribution of this false match will match the degree 

distribution of 𝑂𝑐[𝑘] since the hashing function is independent of the degree distribution. If 

an observed hash match is a true match on the other hand, the match is selected from among 

the nominated alters with probability proportional to degree, meaning that its degree 

distribution is proportional to degree squared since the alter were themselves selected with 

probability proportional to degree. 
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The degree distribution of the hash matches is therefore a mixture distribution. Let 𝜙 be the 

estimated proportion of hash matches that are true matches with, 

𝑝1 =
1

∑ 𝑑𝑖
2𝜔𝑖𝑖𝜖𝑠

∑ (
𝜌 (�̂̅�(𝑁 − 1) − 𝑛 + 𝑡)

𝑑𝑖 − 1
+ 1)

−1

𝑑𝑖
2𝜔𝑖

𝑖𝜖𝑠

 

and 

𝑝2 =
1

∑ 𝑑𝑖𝜔𝑖𝑖𝜖𝑠
∑ (

𝜌 (�̂̅�(𝑁 − 1) − 𝑛 + 𝑡)

𝑑𝑖 − 1
+ 1)

−1

𝑑𝑖𝜔𝑖

𝑖𝜖𝑠

 

Being the estimated probabilities of a hash match being a true match marginalizing over the 

degree distributions of true and false matches, respectively. Since the degree distribution is 

mixed with mixing probability equal to the probability that a hash match is a true match, 𝜙 is 

defined by the relationship, 

𝜙 = 𝑝1𝜙 + (1 − 𝜙)𝑝2 

Or more simply, 

𝜙 =
𝑝2

1 − 𝑝1 + 𝑝2
 

We can then multiply the number of hash matches by 𝜙 to get an estimate of the number of 

true matches to substitute in for 𝑢 in (5) 

�̂�(𝑁) =  𝜙 ∑ ∑ ∑ 𝐼(ℎ(𝑗) = ℎ(𝑘))

𝑘𝜖𝑜\𝑔𝑖𝑗𝜖𝑜𝑠𝑖

𝑛

𝑖=1

 

The Cross Sample estimator makes use of the number of matches into the sample (𝑚) and 

the Cross Alter estimator makes use of the matches to the nominated alters (𝑢). The Cross 
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Network estimator makes use of both of these quantities by combining equation (18) and 

(20). 

∑ ((�̂̃�−1)|𝑂𝑐|+(�̅�𝑠𝑐−
𝑛𝑐−1

𝑛𝑐 )𝑛𝑐|𝑂\𝑐|)𝑡
𝑐=1

𝑁�̂̅�−𝑛+𝑡−𝑢−𝑚
                       (21) 

The solution to which is the Cross Network estimator (�̂�𝒄𝒏). −�̂� (𝑁) −  �̂� (𝑁) may 

be substituted in for −u − m in the case of hashed identifiers. 

A complete dataset for analysis was composed of key PNS variables, including subject ID 

(unique identifiers for individuals in the dataset), recruiter ID (unique identifier for the 

recruiter of the subject), subject hash ID (the privatized identifier for the subject), degree (the 

network size of the individual, this excludes contacts for whom the individual does not know 

their identifiers), and contact hash IDs (privatized identifiers for each contact of the subject). 

Each site-level dataset was converted into an RDS coupon data frame, which means that each 

recruiter is aligned alongside the corresponding direct recruits. With this data frame, each seed 

is regarded as the base of a tree that branches out as its recruits recruit more people, and each 

tree is its own sample. Three estimators were considered, including Cross Sample Estimator, 

Cross Alter Estimator, and Cross Network Estimator, which combines the Cross-Sample and 

Cross-Alter Estimators. The intuition for PNS is “the rate at which subjects’ networks contain 

other sampled subjects recruited by other seeds is related to population size.” 

The PNS method relies on three assumptions, including: connections between recruits and 

recruiters are completely random; small sample fractions (i.e., small sample fractions lead to 

potentially large amounts of sampling error when estimating population size); and long 

recruitment chains. However, these assumptions do not always hold, imposing a 

methodological limitation in that case. The Cross-Network Estimator displays reduced 

volatility compared to both the Cross-Alter and Cross-Sample estimators and showed little 

biased results considering different levels sample fractions and network sizes as described 

elsewhere[48]. Consequently, to assess estimator robustness, variance was the main parameter 

used.  
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All data analysis processes were performed using RStudio-2023.06.2-561 with the “RDS” and 

“pnspop" packages. Confidence intervals were calculated using the bootstrap process with the 

number of samples set to 10,000. 

Site-level estimates were aggregated at the national level, then the pooled national estimates 

were distributed by province using proportions of FSW from existing program data. The 

analysis outputs include point estimates with corresponding 95% credible intervals. Finally, 

each estimate was adjusted for the proportion of FSW who did not have cell phones. 
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3.7. Ethical considerations 

All the three surveys reviewed ethical approvals from the Rwanda National Ethics Committee 

(RNEC). The studies ensured maximum anonymity and confidentiality to guarantee that study 

participants are not victimized for participation. In this line, no names or identifying 

information were collected from any survey participant, participants were only identified 

using unique IDs. Furthermore, the study sites were secure places within a health facility 

setting that usually offers HIV services to key population communities to minimize possibility 

of stigma.  Finally, paper-based study documents were maintained by the team leaders and 

stored in a designated locked cabinet during field work. Access to data was restricted and 

closely monitored, and all electronic data collection tools were password protected. 

Participation in the studies was voluntarily and free to withdraw at any time during the conduct 

of the study. Neither refusal to participate nor withdrawal will affect services they would 

normally receive. In Rwanda, children under 18 years require parental consent prior to 

participation in the survey.  The only exception is for “emancipated minors” who are children 

head of household; these children are not required to provide the consent of a caregiver but 

can instead consent directly. For FSWs under the age of consent who are NOT the head of 

household, we request a waiver of informed consent. A written informed consent was obtained 

from the study participants to be part of the survey. Furthermore, a waiver of informed consent 

for participants aged 15 to 17- years was granted by RNEC. Children <18 years of age 

identified as being engaged in sex work, trafficked, or victim of violence, received a special 

post HIV test counseling and were referred for appropriate services to ensure their protection 

and well-being. 

Data collection staff completed training on human subjects’ research and signed a 

confidentiality agreement before the start of enrollment. Participants were compensated with 

for transportation costs and time and for each successful referral enrolled in the survey for 

RDS specific recruitments. Compensation for transport was determined based on the areas' 

transport cost as stipulated by Rwanda Utilities Regulatory Authority (RURA) and delivered 

in cash by the study site accountant. 

Prior to implementation, field staff received a one-week standardized training together in one 

site, followed by a half-day refresher training at their respective sites. These trainings focused 
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on general knowledge of key population, ethical issues in human subject research, and 

standard operating procedures for the survey implementation. 
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Chapter 4 

Results  

4.1. Introduction of the results section 

Chapter 4 presents the main results from three studies implemented in Rwanda between 2021 

and 2023 by applying the developed methods to this research project. Firstly, it provides the 

population size of men who have sex with men using the capture-recapture method with a 

Bayesian non-parametric latent class model. Next, it provides the population size of female 

sex workers using the developed generalized capture-recapture from Bayesian model 

averaging. Lastly, it presents the population size estimate of female sex workers when the 

network-traced capture recapture (Privatized Network Sampling - PNS) method is used. 

4.2. MSM Population Size Estimation using Three-source capture recapture 

method: Bayesian nonparametric latent class model. 

Capture one Results: Key holders with the unique design were distributed to the MSM 

through their corresponding associations, groups, and key informants. The following are the 

results from capture one. A total of 2,465 out of the 2,723 objects (90.5%) were successfully 

distributed (Table 3). 

Table 3: Provincial-level objects distribution breakdown 

PROVINCE 

ACTUAL 

NUMBER OF 

OBJECTS 

ASSIGNED 

ACTUAL NUMBER 

OF OBJECTS 

SUCCESSFULLY 

DISTRIBUTED 

ACTUAL NUMBER OF 

OBJECTS NOT 

DISTRIBUTED 

SUCCESSFULLY AND 

RETURNED 

EASTERN 636 558 78 

CITY OF KIGALI 894 885 9 

NORTHERN 166 150 16 

SOUTHERN 585 515 70 

WESTERN 442 357 85 

TOTAL 2,723 2,465 258 
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Capture two Results: MSM friendly services were provided at 23 health facilities usually 

having key population service package country wide. Lubricants and Condoms were 

distributed during the capture two period, a total of 1,340 out of the anticipated 2,705 MSM 

(49.5%) came for health services at health facilities. Out of 1,340 MSM who came for the 

services, 1,314 met inclusion criteria and were offered the services (98.1%), and of them 721 

(54.9%) were identified as having received the distributed unique object during the previous 

week. Table 4 provides provincial level breakdown. 

Table 4: Provincial-level service provision among MSM 

PROVINCE NUMBER 

OF 

HEALTH 

FACILITY 

ANTICIPATED 

MSM TO BE 

OFFERED 

SERVICES 

MSM 

RECEIVED 

AT HF 

MSM 

RECEIVED 

OFFERED 

SERVICES 

MSM RECEIVED 

DISTRIBUTED 

UNIQUE OBJECT 

DURING THE 

PREVIOUS WEEK 

EASTERN 5 439 343 337 211 

CITY OF KIGALI 5 803 510 497 185 

NORTHERN 1 219 28 25 4 

SOUTHERN 7 658 291 291 195 

WESTERN 5 586 168 164 126 

TOTAL 23 2,705 1,340 1,314 721 

Capture three results: During capture three, RDS was used for participant recruitment. Every 

MSM recruited during RDS was screened for eligibility and considered as captured during 

capture three once he consents to participation. A total of 2,211 MSM were captured during 

this capture occasion. Among those captured during capture three, 422 (19.1%) were 

identified as having received distributed unique objects during capture one whereas 415 

(18.8%) were identified as having received MSM friendly services during capture 2. Table 5 

provides provincial level break down for capture three results.  
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Table 5: Provincial-level breakdown for capture three results 

PROVINCE ANTICIPATED 

MSM TO BE 

CAPTURED 

DURING 

CAPTURE 

THREE 

MSM 

CAPTURED 

DURING 

CAPTURE 

THREE 

MSM 

RECEIVED 

DISTRIBUTED 

UNIQUE 

OBJECT 

MSM 

RECEIVED 

PROVIDED 

MSM 

FRIENDLY 

SERVICES 

MSM 

RECEIVED 

BOTH UNIQUE 

OBJECT AND 

MSM 

FRIENDLY 

SERVICES 

EASTERN 121 126 50 64 36 

CITY OF 

KIGALI 

1,027 1,021 128 124 42 

NORTHERN 308 303 20 18 4 

SOUTHERN 141 152 42 54 28 

WESTERN 613 609 182 155 100 

TOTAL 2,210 2,211 422 415 210 

Overall, we sampled 2,465, 1,314, and 2,211 MSM in captures one, two, and three, 

respectively. There were 721 recaptures between captures one and two, 415 recaptures 

between captures two and three, and 422 recaptures between captures one and three. There 

were 210 MSM captured in all three captures. The Venn-diagram in Figure 2 below, provides 

all the three capture occasions and overlaps detailed results:  

 

 

 

 

 

 

 

Figure 2: Venn-diagram representing individual capture results and overlaps between 

capture occasions. 

Before conducting CRC analysis, we explored dependency between captures by testing for 

homophily in the RDS recruitment chain based on capture history variable, hence we found 

(Homophily = 1.016596) which shows a non-dependency. 

210 

205 212 

511 388 

1,584 

1,532 

Capture 2: 1,314 
Capture 1: 2,465 

Capture 3: 2,211 
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The trace plot in Figure 3 below, presents simulation results over 10,000 samples 

demonstrating the population size distribution. This indicates for a converging simulation 

result based on the random noise shape observed between the values 10,000 and 20,000 on 

the Y-axis.  

 

Figure 3: Trace plot showing the population size by sample number. 

Figure 4 below, presents the posterior distribution (Population size distribution) provided by 

the model. 

 

Figure 4: Histogram of posterior probability distribution for population size. 

The final MSM population size estimates for the overall and the provincial levels are presented 

in the table below.  The median from the posterior probability distribution is used as the point 

estimate and 95% probability intervals are used to describe uncertainty. 
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Table 6: Population size estimation of men who have sex with men, Rwanda 2022. 

Province Size estimate percent a Median 
95% credible sets 

[CS] 

Eastern 0.3 [0.3 – 0.5] 2,287 [1,927 – 3,014] 

City Of Kigali 2.7 [1.6 – 4.6] 7,842 [4,587 – 13,153] 

Northern 0.5 [0.2 – 1.0] 2,375 [842 – 4,239] 

Southern 0.4 [0.3 – 0.6] 2,109 [1,681 – 3,418] 

Western 0.3 [0.3 – 0.5] 2,469 [1,994 – 3,518] 

Overall 0.7 [0.4 – 1.1] 18,100 [11,300 – 29,700] 
aPopulation estimates of men were based on the 2012 Census data by National Institute of Statistics 

of Rwanda 2021 population size projections. 

We estimated the overall population of MSM in Rwanda to be 18,100 (95% CS: 11,300 - 

29,700) where the majority lived in the City of Kigali 7,842 (95% CS: 4,587 – 13,153). The 

MSM population size estimates were almost similar for the remaining 4 provinces (Northern, 

Southern, Eastern, and Western provinces).  

Considering the Bayesian model averaging process, that allows to flexibly account for list 

dependency by creating models for all possible dependencies, and averaging over them in a 

way that is proportional to the probability that the dependence is correct. 

The first step in the analysis is to formulate a prior for population size. This is to represent the 

prior knowledge about population size along with uncertainty. By default, a “log-normal” 

prior is used. Figure 5 below, presents the prior distribution as well as cumulative distribution.

 

 

 

Figure 5: Prior distribution as well as cumulative distribution. 

Once the prior is specified, the probability distribution of the population size is calculated. 

Figure 6 below, presents the posterior population size estimates distribution, furthermore, it 
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presents both individual model distribution as well as the average model distribution. In 

addition, Table 7 describes the probability distribution for population size. Either the mean 

and/or median is used for point estimate. The (5% probability interval is used to summarize 

the estimate’s uncertainty. 

 

Figure 6: Posterior population size estimation distribution. 

Table 7: BMA PSE distribution mean/median and uncertainty around estimates. 

Mean Median 95% Lower 95% Upper 

21,188 20,787 19,347 22,268 
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4.3. FSW Population Size Estimation using Three-source capture recapture 

method: Bayesian Model Averaging 

Of the 1,778 FSWs approached during Capture 1, 1,768 (99.4%) were newly captured, 

referring to not being captured elsewhere within the same week. Among those newly captured, 

unique object acceptance was high at 1,766 (99.9%). For 1,870 FSWs approached during 

Capture 2, 1,851 (98.9%) were newly captured within the second week of capture. Among 

those newly captured in Capture 2, UO acceptance was high at 1,848 (99.8%). During Capture 

3, 1,910 FSWs were approached, and 1,867 (97.7%) were newly captured. The main reasons 

for unique object refusal documented were not being willing to receive the object and being 

willing to receive money instead of a unique object. Table 7 below presents the results by 

capture round. 

Table 8: Results of 3S-CRC by capture round, FSW PSE, Rwanda 2022 

 
 Capture 1 Capture 2 Capture 3 

  n (%) n (%) n (%) 

Approached FSWs  1,778 1,870 1,910 

Already in current capture    
Yes  10 (0.6) 19 (1.1) 43 (2.3) 

No  1,768 (99.4) 1,851 (98.9) 1,867 (97.7) 

Unique object acceptance     
Accepted  1,766 (99.9) 1,848 (99.8) 1,865 (99.9) 

Refused  2 (0.1) 3 (0.2) 2 (0.1) 

Reason for refusal     
Doesn't want/Refused unique object 1 1 2 

Wanted money, not objects 1 2  0 

The majority of FSWs sampled were presumed to be 25 years old, while sexually exploited 

minors aged 15–17 had few captures across all three capture rounds. Table 8 below describes 

sampled FSWs at each capture round by age and province. 
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Table 9:  Sampled FSWs by capture round, Age Group and Province, FSW PSE, 

Rwanda 2022. 

Capture 

 Age 

group 

City of 

Kigali 

Eastern 

Province 

Northern 

Province 

Southern 

Province 

Western 

Province 
Total 

Capture 1        
 15 - 17    9     2     2    2   13 28 

 18 - 24 122 109 162 106 129 628 

 25+ 127 142 222 247 372 1,110 

       1,766  

Capture 2        
 15 - 17     5     5     5 0 0 11 

 18 - 24 116 130 206 126 329 911 

 25+ 239 164 162 124 237 926 

                1,848  

Capture 3        
 15 - 17 0      5   3    3   24 35 

 18 - 24 184 155 85 92 335 851 

 25+ 131 152 276 142 278 979 

                      1,865  

A total of 1,766 unique objects were distributed countrywide during Capture 1, 1,848 objects 

during Capture 2, and 1,865 objects during the third capture. In a three-week survey 

implementation exercise, 62 hotspots were visited countrywide in each capture round; 

however, bigger hotspots were resampled in the subsequent capture rounds. Two hotspots 

were resampled between Capture 1 and Capture 2; eight hotspots were resampled between 

Capture 2 and Capture 3; six hotspots were resampled between Capture 1 and Capture 3; and 

two hotspots were resampled in all three Capture rounds. Below are the maps for individual 

captures, highlighting venue and street hotspots visited (Figure 5). 
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Figure 7: Maps of individual capture highlighting venue/street hotspots visited, 

Rwanda 2022. 

The 3S-CRC aggregated, cleaned final dataset was imported into shinyrecap for analysis. For 

all three capture rounds, 1,766 FSWs, 1,848 FSWs, and 1,865 FSWs were sampled, where 

there were 1,408 FSWs, 1,471 FSWs, and 1,529 FSWs observed strictly during Capture 1, 

Capture 2, and Capture 3, respectively. There were 169 exclusive overlaps between Capture 

1 and Capture 2, 210 exclusive overlaps between Capture 2 and Capture 3, and 65 recaptures 

between Capture 1 and Capture 3. Finally, 61 FSWs were recaptured in all three Capture 

rounds. Figure 6 below presents the Venn diagram illustrating aggregated data of capture 

history results for single, double, and triple captures to construct a structured 3S-CRC dataset. 
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Figure 8: The Venn diagram presenting national aggregated data of capture history 

results for single, double, and triple captures, Rwanda 2022. 

Out of 231 FSWs recaptured between Capture 1 and Capture 2, 96 physically presented UOs 

received during Capture 1, while out of 135 who did not have unique objects with them, 134 

were able to correctly describe and identify the received unique object on a laminated card, 

bringing the total number of recaptures to 230. Of the 127 FSW recaptured between Capture 

1 and Capture 3, 53 had provided unique objects with them, while of the 74 who did not have 

unique objects with them, 73 were able to correctly describe and identify the received unique 

object on a laminated card. Of the 272 FSW recaptured between Capture 2 and Capture 3, 111 

had the received unique objects with them, while 160 who did not have unique objects with 

them were able to correctly describe and identify the received unique object on a laminated 

card. Table 9 highlights the two methods used to record recapture histories. 
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Table 10: Recapture identification cascade, FSW PSE, Rwanda 2022. 

  Re-capture Round 

  Capture 2 Capture 3 

Capture 1 (C1)   

Total recaptured From C1 231 126 

Showed C1 object 96 53 

Did not have unique objects with them 135 74 

Correctly identified C1 object 134 73 
   

Capture 2 (C2)   

Total recaptured From C2 NA 271 

Showed C2 object NA 111 

Did not have unique objects with them NA 161 

Correctly identified C2 object NA 160 

Only one FSW out of 135 FSWs who were claiming to have been offered capture one unique 

object during Capture 2 was unable to describe and correctly identify the object received on a 

laminated card. Out of 74 FSWs in Capture 3 who were claiming to have been offered a unique 

object but who did not have the objects with them, 73 were able to describe and correctly 

identify the object received on a luminated card. Only one FSW out of 272 FSWs who were 

claiming to have been offered Capture 2 unique object during Capture 3 was unable to describe 

and correctly identify the object received on a luminated card. 

The FSW population size presented in Table 10 below is based on three models: log-linear, 

Bayesian model averaging (using non-informative prior), and Bayesian nonparametric latent-

class models.  

Table 11:  FSW National Population Size Estimates using 3S-CRC method, FSW PSE, 

Rwanda 2022 

Model type 

% of women 15 

years and above 

who are FSWs* 

Median 95% Credible Set 

PSE 
Lower 

Bound 

Upper 

Bound 

Log-linear (Mth Poisson2) 1.0 (0.8–1.2) 34,370 28,164 42,246 

Bayesian Model Averaging 

(non-informative prior) 
1.1 (0.9–1.3) 37,647 31,873 43,354 

Bayesian Latent Class 1.0 (0.4–1.6) 35,954 14,736 55,215 

* Denominators are national total number of adult females aged 15 years and above from 5th 

Rwanda Population and Housing Census (PHC), 2022. 
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Based on the outputs and model diagnostics (Appendices 2-4), the data was found to contain 

list dependence; therefore, Bayesian Model Averaging with non-informative prior was 

chosen, which best dealt with list dependence as it automatically detected potential 

dependencies in the data. After fitting the model, the population size of street- and venue-

based FSWs in Rwanda was estimated to be within a credible set ranging from 31,873 to 

43,354 with a median of 37,647, corresponding to 1.1% (0.9–1.3) of the general population 

of adult females aged 15-49 years in Rwanda (Table 11). 

Relative to adult females in the general population, Western and Northern provinces rank first 

and second with a higher concentration of FSWs, respectively. The City of Kigali and Eastern 

Province rank third and fourth, respectively. The Southern province was identified as having 

a lower concentration of FSWs. 

Table 12:  FSW provincial Population Size Estimates produced using Bayesian Model 

Averaging with non-informative prior, FSW PSE, Rwanda 2022. 

Province 

% Of women 

15-49 years who 

are FSWs * 

Median 95% Credible Set 

PSE Lower Bound Upper Bound 

City of Kigali 0.8 (0.5–1.0) 3,974 2,815 5,197 

Eastern Province 0.6 (0.3–1.0) 5,022 2,535 8,601 

Northern Province 1.1 (0.7–1.6) 5,993 3,710 8,876 

Southern Province 0.5 (0.2–0.9) 3,884 1,548 6,727 

Western Province 1.2 (0.9–1.6) 8,983 6,536 11,791 

* Denominators are provincial total number of adult females aged 15years and above from 5th 

Rwanda Population and Housing Census (PHC), 2022. 
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4.4. FSW Population Size Estimation using Privatize Network Sampling method. 

In total, 30 FSWs were enrolled as seeds across 10 study sites countrywide to initiate referral 

chain recruitment. The maximum wavelength achieved during recruitment was 11 with a 

mode of 4. Figure 7-11 below illustrates the RDS recruitment tree by province. 

 

Figure 9: Eastern Province recruitment tree, Rwanda FSW BBS 2023. 
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Figure 10: City of Kigali recruitment tree, Rwanda FSW BBS 2023. 

 

Figure 11: Northern province recruitment tree, Rwanda FSW BBS 2023. 
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Figure 12: Southern province recruitment tree, Rwanda FSW BBS 2023. 
 

 

Figure 13: Western province recruitment tree, Rwanda FSW BBS 2023. 
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The highest proportion of FSW were estimated among those aged 30-39 years, with the 

smallest proportion among 15-17 age group (0.8%) which was anticipated. The results shows 

that the study recruitment tapped into all age categories of FSW, which is a great indication 

for a representative sample as far as age is concerned. Regarding marital status, the majority, 

69.8% (95% CI: 66.5-72.9), 22.0% (95% CI:19.3-24.9) were single and divorced/separated 

respectively, and the same distribution remains across all provinces.  In terms of where FSW 

meet or find clients, FSW participants presented diverse ways including previously untapped 

subgroups when using venue-based sampling approaches as Time Location Sampling (TLS).  

in this line, an estimated 14.3% (95% CI: 12.3-16.6) of FSW meet clients using the internet, 

phone brokers, or escort agency. Of all recruited FSW, 79.4% (95% CI: 76.4 -82.2) had a cell 

phone and a Sim card, and 81.4% (95% CI: 78.0 – 84.4) of them had at least nominated an 

FSW peer of whom she knows by name and has a telephone contact. This aligns with what 

formative assessment (FA) finds and provides confidence in the suggested way of creating the 

anonymized unique identification using the last 5 digits of one’s phone number and name’s 

initials combination to trace deidentified recruitment chains. (see Table 12)
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Table 13:  Social demographic characteristics of participants by province, Rwanda FSW PNS 2023. 

  Province  

 
 Northern Eastern Western City of Kigali Southern Overall 

 N Row % [95% CI] Row % [95% CI] Row % [95% CI] Row % [95% CI] Row % [95% CI] Row % [95% CI] 

Age group        
15 - 17 23 2.6 [1.4 - 4.8] 0.3 [0.1 - 1.5] 1.5 [0.5 - 4.1] 0.4 [0.1 - 1.7] 0.0 [0.0 - 0.2] 0.8 [0.5 - 1.3] 

18 - 24 515 26.3 [22.1 - 30.9] 21.3 [16.5 - 27.1] 25.4 [20.8 - 30.7] 24.5 [18.3 - 31.9] 13.6 [9.6 - 19.1] 20.7 [17.9 - 23.9] 

25 - 29 497 23.5 [19.4 - 28.0] 22.4 [17.3 - 28.5] 20.8 [16.8 - 25.5] 12.9 [9.1 - 18.0] 19 [14.3 - 24.7] 18.1 [15.7 - 20.8] 

30 - 34 535 22.2 [18.1 - 26.9] 21.7 [16.6 - 27.9] 19.8 [15.9 - 24.3] 15.8 [12.3 - 20.2] 26.3 [20.2 - 33.5] 21.4 [18.6 - 24.6] 

35 - 39 502 15.0 [11.9 - 18.9] 17.7 [13.4 - 22.9] 19.6 [15.6 - 24.3] 20.0 [15.6 - 25.1] 23.9 [18.3 - 30.6] 20.4 [17.7 - 23.4] 

40+ 439 10.5 [7.8 - 13.9] 16.6 [12.3 - 22.0] 12.9 [9.9 - 16.8] 26.4 [20.9 - 32.8] 17.1 [12.6 - 22.8] 18.6 [15.9 - 21.5] 

Current marital status              

Single 1733 73.3 [68.5 - 77.5] 74.9 [69.0 - 80.0] 77.8 [73.0 - 81.9] 55.0 [48.3 - 61.5] 78.7 [72.4 - 83.9] 69.8 [66.5 - 72.9] 

Married/Cohabitating 54 0.3 [0.0 - 2.4] 0.8 [0.3 - 2.5] 1.3 [0.3 - 5.0] 9.3 [6.6 - 13.0] 0.7 [0.2 - 2.6] 3.5 [2.5 - 4.8] 

Divorced/Separated 633 24.5 [20.4 - 29.1] 22.0 [17.1 - 27.7] 16.4 [13.0 - 20.5] 27.8 [22.6 - 33.6] 16.8 [12.2 - 22.8] 22.0 [19.3 - 24.9] 

Widow 88 1.9 [0.9 - 4.0] 2.3 [1.1 - 4.8] 4.2 [2.4 - 7.5] 7.9 [4.5 - 13.3] 3.5 [1.7 - 7.0] 4.6 [3.2 - 6.7] 

Prefer not to answer 3 0  0  0.3 [0.1 - 1.4] 0  0.3 [0.0 - 2.1] 0.1 [0.0 - 0.7] 

Education level              

None 490 16.7 [13.2 - 20.9] 25.9 [20.4 - 32.4] 22.9 [18.4 - 28.2] 16.5 [12.5 - 21.4] 18 [13.1 - 24.2] 18.0 [15.5 - 20.8] 

Primary 1327 43.5 [38.5 - 48.5] 50.7 [44.1 - 57.2] 49.1 [43.7 - 54.5] 55.1 [48.4 - 61.7] 59.8 [52.6 - 66.6] 54.0 [50.5 - 57.6] 

Secondary/vocational/higher 

education 
662 39.8 [34.9 - 44.9] 23.4 [18.4 - 29.3] 24.5 [20.2 - 29.3] 28.4 [22.7 - 34.9] 20.5 [15.2 - 27.0] 27.1 [24.0 - 30.3] 

Do not know/No answer 32 0  0  3.5 [1.9 - 6.4] 0  1.7 [0.6 - 4.8] 0.9 [0.4 - 1.9] 

Where do you usually meet or find clients?            

Brothel/Guesthouse/Massage/Parlor 118 0.2 [0.0 - 1.1] 1.8 [0.6 - 5.1] 4.8 [3.2 - 7.0] 16.2 [12.2 - 21.3] 3.2 [1.5 - 6.5] 6.9 [5.4 - 8.9] 

Hotel/Club/Bar/Restaurant 1110 47.8 [42.8 - 52.9] 54.6 [48.1 - 61.1] 58 [52.6 - 63.2] 36.1 [29.4 - 43.3] 75.5 [69.5 - 80.6] 55.3 [51.8 - 58.8] 

Street/Park 720 22.2 [18.3 - 26.7] 7.5 [5.6 - 9.9] 21.2 [17.1 - 25.9] 34.5 [28.8 - 40.8] 8.3 [5.3 - 12.8] 20.3 [17.8 - 23.1] 

Other public places 66 2.8 [1.3 - 6.2] 4.4 [2.1 - 9.0] 1.4 [0.6 - 3.0] 1.4 [0.6 - 3.2] 2.0 [1.0 - 4.0] 2.0 [1.4 - 3.0] 
Internet, phone broker, escort agency 467 26 [21.7 - 30.8] 30.1 [24.4 - 36.6] 12.4 [9.3 - 16.3] 11.5 [8.0 - 16.3] 9.6 [6.6 - 13.7] 14.3 [12.3 - 16.6] 

Other 29 1.0 [0.2 - 4.3] 1.6 [0.6 - 4.3] 2.2 [1.0 - 4.7] 0.2 [0.1 - 0.4] 1.5 [0.6 - 3.8] 1.0 [0.6 - 1.9] 

Prefer not to answer 1 0  0  0.1 [0.0 - 0.9] 0  0  0.0 [0.0 - 0.1] 

Have a Sim card and cell phone              

Yes 2002 75.2 [70.5 - 79.3] 95.9 [94.3 - 97.1] 76.1 [70.8 - 80.7] 86.6 [82.1 - 90.1] 74.0 [67.2 - 79.9] 79.4 [76.4 - 82.2] 

No 509 24.8 [20.7 - 29.5] 4.1 [2.9 - 5.7] 23.9 [19.3 - 29.2] 13.4 [9.9 - 17.9] 26.0 [20.1 - 32.8] 20.6 [17.8 - 23.6] 

Has at least one peer's contact              

         Yes  1509 93.6 [88.3 - 96.6] 91.5 [89.2 - 93.4] 59.6 [53.5 - 65.5] 64.3 [56.6 - 71.4] 96.0 [94.5 - 97.1] 81.4 [78.0 - 84.4] 

 No 493 6.4 [3.4 - 11.7] 8.5 [6.6 - 10.8] 40.4 [34.5 - 46.5] 35.7 [28.6 - 43.4] 4.0 [2.9 - 5.5] 18.6 [15.6 - 22.0] 

Number of peers from whom contacts are available            
One peer 188 3.7 [1.9 - 7.2] 2.4 [1.4 - 3.9] 15.7 [10.4 - 23.0] 37.3 [28.7 - 46.7] 1.8 [1.1 - 2.9] 12.9 [9.9 - 16.6] 

Two peers 270 6.8 [4.5 - 10.1] 1.7 [0.9 - 3.3] 26.5 [20.9 - 33.0] 32.8 [25.6 - 41.0] 2.7 [1.8 - 4.1] 13.2 [10.9 - 16.0] 

Three peers 548 36.6 [31.1 - 42.4] 95.6 [93.5 - 97.0] 37.4 [30.3 - 45.2] 16.6 [11.7 - 23.1] 4.1 [2.5 - 6.9] 21.3 [18.8 - 24.2] 

Four Peers 128 16 [12.0 - 21.1] 0.2 [0.0 - 1.2] 9.9 [6.6 - 14.6] 7.1 [4.3 - 11.5] 5.8 [2.9 - 11.4] 8.1 [6.2 - 10.5] 

Five peers 238 22.1 [17.6 - 27.4] 0.1 [0.0 - 0.3] 8.3 [5.3 - 12.9] 3.3 [1.6 - 6.6] 67.2 [59.3 - 74.3] 33.1 [28.7 - 37.8] 

More than five peers    137          14.8 [11.3 - 19.1]        0.0 [0.0 - 0.1]      2.2 [1.0 - 4.6]        2.9 [1.3 - 6.3]  18.3 [12.7 - 25.7]          11.3 [8.7 - 14.6] 
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Table 14:  presents both unadjusted and adjusted study site-level population size estimates 

by each estimator used. 
 

 Unadjusted Estimates Adjusted Estimates 

Study site Estimators PSE 
Lower 

Bound 

Upper 

Bound 
PSE 

Lower 

Bound 

Upper 

Bound 

GIHUNDWE HC Cross-Sample 

       

15,538 

        

3,399 

      

71,023 

      

19,599 

        

4,288    89,586 

GISENYI HC Cross-Sample   1,463 1,033   2,073   1,494  1,054   2,116 

GITARAMA HC Cross-Sample 6,256 2,884 13,571 7,839 3,613 17,005 

KIBUYE HC Cross-Sample 5,875 2,995 11,527 8,728 4,448 17,123 

MUHOZA HC Cross-Sample 104,226 41,554 261,421 140,369 55,964 352,075 

MUKARANGE HC Cross-Sample 1,021 773 1,349 1,371 1,038 1,811 

NYAGATARE HC Cross-Sample 3,905 1,945 7,842 3,905 1,945 7,842 

RANGO HC Cross-Sample 2,903 2,151 3,919 3,852 2,854 5,200 

CITY OF KIGALI Cross-Sample 11,314 8,029 15,942 14,414 10,229 20,310 

GIHUNDWE HC Cross-Alter 4,043 2,975 5,494 5,099 3,752 6,930 

GISENYI HC Cross-Alter 1,511 1,159 1,969 1,542 1,183 2,009 

GITARAMA HC Cross-Alter 6,006 3,830 9,418 7,526 4,799 11,801 

KIBUYE HC Cross-Alter 3,696 2,830 4,827 5,490 4,203 7,170 

MUHOZA HC Cross-Alter 27,472 21,272 35,479 36,999 28,649 47,783 

MUKARANGE HC Cross-Alter 354 226 556 476 303 746 

NYAGATARE HC Cross-Alter 10,166 5,196 19,892 10,166 5,196 19,892 

RANGO HC Cross-Alter 4,650 3,580 6,039 6,170 4,750 8,013 

CITY OF KIGALI Cross-Alter 18,457 13,978 24,373 23,514 17,807 31,051 

GIHUNDWE HC Cross-Network 5,479 3,996 7,512 6,911 5,040 9,476 

GISENYI HC Cross-Network 1,491 1,193 1,863 1,522 1,218 1,901 

GITARAMA HC Cross-Network 6,106 4,117 9,055 7,651 5,159 11,346 

KIBUYE HC Cross-Network 4,241 3,343 5,381 6,300 4,965 7,993 

MUHOZA HC Cross-Network 32,758 25,288 42,434 44,117 34,057 57,149 

MUKARANGE HC Cross-Network 597 454 785 801 610 1,053 

NYAGATARE HC Cross-Network 7,200 4,364 11,881 7,200 4,364 11,881 

RANGO HC Cross-Network 4,191 3,351 5,243 5,562 4,446 6,957 

CITY OF KIGALI Cross-Network 14,540 11,991 17,630 18,523 15,277 22,460 

Site-level population size estimate variation was observed across estimators. The population size 

estimates produced by the cross-sample estimator were greater than those produced using the 

cross-Alter estimator at the Gihundwe HC, Kibuye HC, Muhoza HC, and Mukarange HC study 

sites. Population size estimates from Gisenyi HC and Gitarama HC remained almost the same 

across the two estimators. However, population size estimates produced by the cross-sample 

estimator were less than those produced using the cross-Alter estimator for the Nyagatare HC, City 

of Kigali, and Rango HC study sites. Site-level population size estimates produced using the cross-
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network estimator were observed to be between the estimates produced using cross-sample and 

cross-Alter estimators except for the Gisenyi HC study site. The same patterns were observed for 

both adjusted and unadjusted population size estimates; however, the differences are not 

statistically significant (see Table 13). Site-level estimates present high volatility; thus, their use 

and interpretation should be done cautiously.  

Table 15:  Overall Population Size Estimates by estimator, Rwanda FSW BBS 2023. 

 Unadjusted Estimates  Adjusted Estimates 

Estimators PSE 
Lower 

Bound 

Upper 

Bound 
  PSE 

Lower 

Bound 

Upper 

Bound 

Cross-Sample 152,502 64,763 388,667  201,570 85,434 513,067 

Cross-Alter 76,354 55,045 108,046  96,981 70,643 135,394 

Cross-Network 76,603 58,097 101,782  98,587 82,978 114,196 

Looking at the pooled population size estimate, the Cross-Sample estimator tends to produce larger 

estimates as compared to the Cross-Alter and Cross-Network estimators considering both 

unadjusted and adjusted estimates. On the other hand, population size estimates produced using 

cross-Alter and cross-network estimators go hand in hand considering both adjusted and 

unadjusted estimates (see Table 14). The observed patterns in estimates across estimators aligns 

with several simulation study finding where Cros Alter and Cross Network estimators present 

similar level of performance, but Cross Alter shows an elevated variance level[48]. 

Table 15 presents provincial-level adjusted FSW population size estimates produced using the 

Cross Network estimator, which combines both cross-sample and cross-Alter estimator features 

and presents the lowest variance and bias as compared to other estimators. 

Table 16:  Cross-Network Estimator's Population Size Estimates by province, Rwanda 

FSW BBS 2023. 

Province Consensus Population Size Estimate 

[95%CI] 

*PSE as % of female aged 15+ 

years of the general population 

Northern 11,317 [9,526 -13,109] 1.6% [1.3-1.9] 

Southern 15,826 [13,320 -18,331] 1.7% [1,4-1.9 

Eastern 19,833 [16,693 -22,973] 1.7% [1.4-2.0] 

Western 20,593 [17,332 -23,853] 2.2% [1.8-2.5] 

City of Kigali  31,018 [26,107- 35,929] 5.3% [4.5-6.1] 

Total 98,587 [82,978- 114,196] 2.3% [1.9-2.6] 

*Calculated based on the 5th Rwanda Housing and Population census, 2022[81]. 
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The national level FSW PSE was estimated at 98,587 (95% CI: 82,978 – 114,196), corresponding 

to 2.3% of the total adult female population aged 15 years and above in Rwanda. The highest FSW 

PSE was observed in the City of Kigali with 31,018 (95% CI: 26,107 – 35,929), followed by West 

province with 20,593 (95% CI: 17,332 – 23,853), the East province with 19,833 (95% CI: 16,693 

– 22,973), and the South province with 15,826 (95% CI: 13,320 – 18,331). The lowest FSW 

population size was estimated in the North province with 11,317 (95% CI: 9,526 – 13,109). These 

patterns go hand in hand with vibrating areas in Rwanda where most of FSW attractive activities 

are found, including but not limited to economic, tourism and leisure activities. 
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Chapter 5 

Discussion 
5.1. Introduction to the discussion section 

This chapter discuss the results obtained when applying the methods described in chapter 3. It also 

provides the comparison of the efficiency of the statistical methods applied in this research with 

other similar literature. Furthermore, comparison between the research findings with the available 

literatures.  

5.2. MSM Population Size Estimation using Three-source capture recapture method: 

Bayesian nonparametric latent class model. 

The MSM population size estimation presents the first use of 3S-CRC to estimate MSM population 

size on a nationwide scale in Rwanda. The 3S-CRC method provided an estimate for MSM in the 

City of Kigali with 7,842 (95% CI: 4,587 – 13,153) that was similar to what was estimated by 

“Projet San Francisco (PSF)” (8,411 (6,760 – 11,151))[82]. Considering geographical coverage 

and difference in methodologies used, the 2018 and 2021 Kigali MSM population size estimations, 

we are able to understand the slight differences in estimates being observed. The distribution of 

MSM in each of the remaining 4 provinces was fairly uniform and lower than the estimates in 

Kigali. Differences in estimate of the MSM population size distribution across the country may 

also reflect long-term movement patterns among MSM, from rural to urban as well as from smaller 

to larger urbanized contexts[83].  

To some degree, MSM size estimates are influenced by the proportion of MSM who may not 

participate in the study due to potential privacy concerns, a potentially significant element given 

the burden of stigma and heteronormative behavioral expectations (e.g. marriage and parenting) 

for MSM in Rwanda. Our overall MSM population size estimate represents 0.7% [0.4 - 1.1] of the 

total adult male population in Rwanda based on 2012 Census data by National Institute of Statistics 

of Rwanda 2021 population size projections. The 2020 WHO and UNAIDS technical brief 
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recommends the revision of the MSM PSE for those countries using the MSM PSE less than 1% 

of total adult males based on the region [19]. UNAIDS monitoring system through 2019, estimated 

a global median proportion of adult men who had sex with another man in the previous year of 

1.9% across 38 low or middle-income countries, this proportion is at 1.45% in Eastern and 

Southern Africa where Rwanda is located [84-86]. From that, the estimate from the current study 

aligns with the WHO recommendation regarding to MSM PSEs [26].  

The final estimate for this study was based on 3S-CRC dataset. In summary, four major 

assumptions must be met for CRC to give reliable population estimates: individual captures are 

independent; the population is closed; each target population member's capture history is correct; 

and the chance of getting caught is homogeneous [43]. 

To minimize dependencies between captures, we used different distribution settings for each 

capture occasion. During the first capture, members of the MSM population were tagged by the 

key chain through their corresponding associations, groups, and key informants.  In the second 

capture, MSM were tagged by being offered MSM friendly services through health facilities that 

usually serve MSM nationwide. In third capture, we used RDS method where all recruited MSM 

were considered as captured during capture three. For all the three captures, a one-week time 

interval was used between two consecutive capture occasions to minimize recall bias and fulfilling 

population closeness assumption. At each capture of the first two capture rounds; unique object 

distribution, MSM friendly services provision, procedures ensured a random aspect to ensure that 

the chance of getting caught is homogeneous. However, our estimates might be limited with 

missing a random sampling aspect during the third round where RDS was used. 

There were other several plausible constraints to the design of our estimation activity. Possible 

limitation of the underlying 3S-CRC assumptions that might have influenced the validity of our 

findings, leading to reduced accuracy of population sizes and wide confidence ranges. To begin 

with, we employed unique objects as a tagging strategy to protect the anonymity of sampled 

populations. However, not all individuals were carrying the received object at the subsequent 

capture occasion, complicating the identification of recaptures. Furthermore, we had to assume 

that the person presenting the object is the person who received the object (an essential limitation 

present in anonymous sampling-based CRC). We tried to mitigate these limitations by offering the 
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opportunity to identify the correct object from a laminated card with several pictures including the 

correct unique object for those presenting without unique objects with them. There was a 

possibility of guessing or having seen the object and therefore biasing the PSE downwards. To 

overcome possible participation duplicates enrollment during the third capture, a biometric system 

using fingerprint identification was installed and employed across all study sites. We also 

acknowledge any possible selection bias that might have been influenced by the study inclusion 

criteria set. 

The key strength of our study is that it is powered to provide national and provincial level PSE for 

MSM in Rwanda for the very first time. Sampling considered administrative provinces as strata 

and targeted 28 (out of 30) districts in Rwanda which are nationally representative and reflective 

of the demography. The selected districts included key urban areas with a high likelihood of 

expanding the catchment to include participation by MSM based in rural areas. Furthermore, 

during the third capture occasion, RDS was used giving more confidence in reaching MSM with 

lower social visibility. 

The final estimate of the MSM population size in Rwanda is based on a Bayesian model averaging 

approach to account for the complex patterns of heterogeneity between captures and the 

aggregation of homogeneous strata into latent classes. While other statistical techniques make 

reasonably strong assumptions about the structure of the joint distribution of capture patterns, the 

latent-class Bayesian method, on the other hand, is a model-averaging strategy that seeks to 

estimate the joint distribution as directly as feasible from the data [58].  

5.3. FSW Population Size Estimation using Three-source capture recapture method: 

Bayesian Model Averaging 

This study provides both national and provincial-level estimates of the population size of street- 

and venue-based FSWs and sexually exploited minors aged 15 and above in Rwanda. The 

population size of street- and venue-based FSWs and sexually exploited minors is estimated to be 

within a credible set ranging from 31,873 to 43,354, with a median of 37,647, corresponding to 

1.1% (0.9–1.3) of adult females aged 15 years and older in the general population. These results 

indicate a significant difference in the FSW population size as compared to the 2018 population 

size of FSWs aged 15 and above, which was estimated to range from 8,328 to 22,806 credible sets 
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with a median of 13,716 [47].The difference might be attributed to several factors, including but 

not limited to differences in estimation models used and geographical coverage. 

Furthermore, this study provides a provincial-level population size estimate of street- and venue-

based FSWs and sexually exploited minors aged 15 and above for the very first time. The largest 

population size estimate was found in the Western province, followed by the Northern and Eastern 

provinces. The City of Kigali and Southern Province were found to have relatively lower estimates 

of the FSW population as compared to other provinces. Differences in estimates distribution across 

the country may reflect long-term internal movement patterns among FSWs, from rural to more 

urbanizing areas as well as from smaller to larger urbanized contexts, as indicated by the Rwanda 

Population and Household Census 2022 [81]. 

The findings from the 2022 female sex workers population size estimation might not have 

considered high profile and those FSWs using web-based and social media platforms to reach their 

clients, leading to a slight possible underestimation of the true population size. Furthermore, we 

acknowledge possible methodological limitations that might influence the final FSW PSE from 

this study. Compared to program coverage data from the Rwanda Health Management Information 

System (RHMIS), the key strength of our study is that it is powered to provide national and 

provincial-level PSE for FSW in Rwanda for the very first time. 

So far, three rounds of FSW population size estimation have been conducted in Rwanda since 2010 

[45-47]. The 2010 FSW size estimation using capture recapture and multiplier methods estimated 

the national population size of FSWs to range from 2,998 to 3,412 with a median of 3,205. In 2012, 

the population size of FSWs was estimated to range from 23,000 to 39,000. Later, after 6 years, in 

2018, the national population size of FSWs was estimated to range from 8,328 to 22,806, with a 

median of 13,716. These differences in the population size of FSWs might be attributed to different 

reasons, including but not limited to methodological or geographic coverage differences. 

Compared with the previous three rounds of FSW population size estimation exercises, we 

observed a difference in the FSW population size, which also might be attributed to the reasons 

stated above.  
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5.4. FSW Population Size Estimation using Privatize Network Sampling method. 

The national population size of female sex workers and sexually exploited minors aged 15 and 

above using PNS approach in Rwanda was estimated at 98,587 (95% CI: 82,978 – 114,196), 

corresponding to 2.3% of the total females aged 15 years and above in Rwanda based on the 5th 

Rwanda Housing and Population census, 2022[81]. The highest FSW concentration was found in 

the City of Kigali, with 5.3% [4.5 – 6.1] and the lowest in the North province with 1.6% [1.3 – 

1.9] as % of female aged 15 years and above of the general population. 

The reported FSW population size estimate looks larger when compared with previously estimated 

size of FSW population in Rwanda. The variances between the current FSW PSE and the previous 

ones can be more potentially attributed to the methodological capability to reach non-venue based 

FSWs around the country. The National HIV annual report 2022-23 reported a total number of 

60,460 FSW identified during the reporting year period in the HIV program [87]. Believing that 

the program reported number is not exhaustive and recognizing the limitations associated with 

program data, including the possible inability to deidentify individual-level data, give more 

confidence in the PSE resulted from the current study. 

One important limitation associated to the use of PNS to estimate the population size in our 

context, is related to the coverage of SIM cards and cell phones among FSW within the survey 

sample, which was used to produce hashed ids to uniquely identify overlaps (alters) in the tracing 

network sampling. Access to mobile technology varies among individuals, and not all FSWs may 

possess a SIM card or a functioning cell phone. Furthermore, the estimates from this study might 

have been affected by those FSW who decide not to provide FSW phone numbers, the data 

collection tool used that did enable to delimit participants only for the province where the survey 

was being implemented, and the social desirability bias of the BBS. Lastly, we acknowledge 

methodological related limitations in line with underlining PNS assumptions.  

To minimize the effects of the listed limitations on the estimates, the study has adjusted the 

estimates to account for the proportion of those FSW who did not have SIM card and cell phones. 

In addition, to have provincial-level estimates, we assumed that the provincial-level distribution 

of FSW population reported by HIV program in its’ 2022-2023 HIV annual report remains the 

same for the current FSW population size estimation, therefore the pooled estimate was 
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proportionally distributed across provinces using the percent proportion distribution from the 

annual HIV report 2022-2023. Regarding the PNS underlining assumptions, the sample size used 

was a significant portion of the previously estimated size of FSW, and a long recruitment chain 

was achieved by reaching 11 waves.  
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Chapter 6  

Conclusion and future work 
In conclusion, MSM PSE 2021 study provides for the first time, an estimated population size of 

MSM aged 18 years and above in Rwanda. The results will allow national programs and 

implementation partners to invest in HIV services at a level that is commensurate with need, 

coverage, and new infections. These data enable policymakers and planners to monitor HIV 

epidemic control nationwide, specifically, among the MSM population and to plan for other health 

services, such as prevention and treatment of STIs, among others.   

Furthermore, this study sheds light on critical aspects of the female sex workers (FSW) population 

in Rwanda, revealing a higher concentration compared to the regional average, with 2.3% 

identified as FSWs of the total adult females in the general population in contrast to the 1.1% 

reported in sub-Saharan Africa[88]. FSW population size estimate derived from these studies 

serves as the basis for targeted interventions, resource allocation, advocacy efforts, resources 

mobilization, and policy development aimed at improving access to preventive, care and treatment 

services for FSW in Rwanda.  

While these estimates are usable at national and provincial levels, further work is needed on small 

area estimation to align PSE results with the intended HIV treatment and prevention interventions 

at sub-national levels among MSM. Furthermore, we acknowledge that there are still limitations 

of estimating some hard-to-reach MSM groups, this is a potential area for further research. 

Additionally, this is the first time that PNS is implemented for the estimation of the FSW 

population size estimate in Rwanda, adding to the emerging tools that we have in the hard-to-reach 

PSE field. Moving forward, future research endeavors could explore smaller area estimation 

techniques to ascertain the distribution of FSWs at the district level, enabling more localized and 

tailored interventions. Furthermore, we call for further research to investigate a way of using know 

previous data, literature information as priors instead of using non-informative priors while 

conducting Bayesian modeling. 
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Finally, this research project demonstrates how the Generalized CRC model for PSE derived from 

Bayesian model averaging process provides a remedial approach to overcome model selection bias 

and privatize network sampling overcomes tag loss bias as well as demonstrating its capability to 

reach harder-to-reach key population subgroups. 
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Appendices 

Appendix 1: Multiple Capture Re-Capture Power Analysis 

 

Appendix 2: Bayesian Latent Class 
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Appendix 3: Log-linear models  

 

Appendix 4: Bayesian Model averaging 

 

 



78 
 

Appendix 5:  R Codes used for data analysis. 

  
R Codes used for data analysis: Bayesian nonparametric latent-class model 
######################################################################### 
##       R PROGRAM: Elysee_PSE.R 
## 
##         PROJECT: FSW-PSE: Estimating the Size of MSM 
##                  Population in Rwanda Using Three-Source 
##                  Capture-Recapture Methods, 2021. 
## 
## INVESTIGATOR(S): Elysee TUYISHIME 
## 
## DISCLAIMER: Although this program has been developed and used for the purposes of data analysis 
##                         in this thesis, no warranty, expressed or implied, is made by the investigator as to the                                 
##                         accuracy and functioning of the program and related program material nor shall the fact 
##                         of distribution constitute any such warranty, and no responsibility is assumed by the                       
##                         investigator in connection therewith. 
## 
##      CHANGE LOG: Date        Change 
##                  ----------  ---------------------------------------- 
######################################################################### 
 
basepath <- "C:/Users  /IBBSS_PSE Among MSM 2021/Datasets/Final data files for Analysis/Final/Outputs" 
setwd(basepath) 
install.packages('Rcapture') 
install.packages('LCMCR') 
install.packages('lattice') 
 
library(Rcapture) 
library(LCMCR) 
library(lattice) 
######################################################################### 
## Read the data exactly as provided by Ermias 
######################################################################### 
datafsw<-(' 
         ch1 ch2 ch3 Freq 
          1   0   0   2465 
          0   1   0   1314 
          0   0   1   2229 
          1   1   0    721 
          1   0   1    422 
          0   1   1    415 
          1   1   1    210') 
FSW <- read.table(textConnection(datafsw),header=TRUE) 
 
desc <- descriptive(FSW, dfreq = TRUE) 
plot(desc) 
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######################################################################### 
## Fit frequentist loglinear models 
######################################################################### 
Res <- closedp(FSW, dfreq = TRUE) 
print(Res) 
 
######################################################################### 
## Heterogeneity graph 
######################################################################### 
boxplot(Res) 
 
######################################################################### 
## Construct results table 
######################################################################### 
CI0 <- closedpCI.t(FSW, dfreq = TRUE, m=("M0")) 
CIt <- closedpCI.t(FSW, dfreq = TRUE, m=("Mt")) 
CIh.c <- closedpCI.t(FSW, dfreq = TRUE, m=("Mh"), h=c("Chao")) 
CIh.p <- closedpCI.t(FSW, dfreq = TRUE, m=("Mh"), h=c("Poisson")) 
CIh.d <- closedpCI.t(FSW, dfreq = TRUE, m=("Mh"), h=c("Darroch")) 
CIh.g <- closedpCI.t(FSW, dfreq = TRUE, m=("Mh"), h=c("Gamma")) 
CIth.c <- closedpCI.t(FSW, dfreq = TRUE, m=("Mth"), h=c("Chao")) 
CIth.p <- closedpCI.t(FSW, dfreq = TRUE, m=("Mth"), h=c("Poisson")) 
CIth.d <- closedpCI.t(FSW, dfreq = TRUE, m=("Mth"), h=c("Darroch")) 
CIth.g <- closedpCI.t(FSW, dfreq = TRUE, m=("Mth"), h=c("Gamma") ) 
Est <- rbind(CI0$CI, CIt$CI, CIh.c$CI, CIh.p$CI, CIh.d$CI, CIh.g$CI, 
             CIth.c$CI, CIth.p$CI, CIth.d$CI, CIth.g$CI)[, 1:3] 
Est <- cbind(Est, Res$results[1:10, c(3, 5)]) 
N <- sum(FSW$Freq) 
dfR <- N - Res$results[, 4] 
CritChisq <- qchisq(0.025, df = dfR, lower.tail = FALSE) 
pVal1 <- pchisq(Res$results[, 3], df = dfR, lower.tail = FALSE)[1:10] 
Est <- cbind(Est, pVal1) 
write.csv(Est, file = file.path(basepath, "Loglinear_results.csv")) 
######################################################################### 
## ui fit Chi-squared values 
######################################################################### 
uiChiSq <- (uifit(Res)$fit.stat)[1:10] 
pVal2 <- pchisq(uiChiSq, Res$results[1:10, 4], lower.tail = FALSE) 
cbind(uiChiSq, pVal2) 
 
######################################################################### 
## Bayesian nonparametric latent-class model 
######################################################################### 
x <- seq(0, 1, by = 0.01) 
png(file.path(basepath, "priors.png")) 
par(mfrow = c(2,3)) 
plot(x, dbeta(x, shape1 = 0.25, shape2 = 0.25), type = "l") 
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plot(x, dbeta(x, shape1 = 1, shape2 = 1), type = "l") 
plot(x, dbeta(x, shape1 = 5, shape2 = 5), type = "l") 
plot(x, dbeta(x, shape1 = 1, shape2 = 5), type = "l") 
plot(x, dbeta(x, shape1 = 5, shape2 = 1), type = "l") 
dev.off() 
par(mfrow = c(1,1)) 
 
FSW[,c(1:3)] <- lapply(FSW[,c(1:3)] , factor) 
## nlcm with Jeffrey's hyperprior 
smplr.Jeff <- lcmCR(FSW, tabular = TRUE, K = 10, a_alpha = 0.025, 
                    b_alpha = 0.025, seed = 123, buffer_size = 10000, 
                    thinning = 100) 
post.Jeff <- lcmCR_PostSampl(smplr.Jeff, burnin = 100000, 
                             samples = 10000, thinning = 100, 
                             output = FALSE) 
CI.Jeff <- quantile(post.Jeff, c(0.025, 0.5, 0.975)) 
CI.Jeff <- as.data.frame(t(CI.Jeff)) 
CI.Jeff <- CI.Jeff[,c(2,1,3)] 
colnames(CI.Jeff)[1:3]<-c("Median","LowerCI", "UpperCI") 
CI.Jeff 
## nlcm with uniform hyperprior 
smplr.unif <- lcmCR(FSW, tabular = TRUE, K = 10, a_alpha = 1, 
                    b_alpha = 1, seed = 123, buffer_size = 10000, 
                    thinning = 100) 
post.unif <- lcmCR_PostSampl(smplr.unif, burnin = 100000, 
                             samples = 10000, thinning = 100, 
                             output = FALSE) 
CI.unif <- quantile(post.unif, c(0.025, 0.5, 0.975)) 
CI.unif <- as.data.frame(t(CI.unif)) 
CI.unif <- CI.unif[,c(2,1,3)] 
colnames(CI.unif)[1:3]<-c("Median","LowerCI", "UpperCI") 
CI.unif 
## nlcm with symmetric 5,5 hyperprior 
smplr.5_5<- lcmCR(FSW, tabular = TRUE, K = 10, a_alpha = 5, 
                    b_alpha = 5, seed = 123, buffer_size = 10000, 
                    thinning = 100) 
post.5_5 <- lcmCR_PostSampl(smplr.5_5, burnin = 100000, 
                             samples = 10000, thinning = 100, 
                             output = FALSE) 
CI.5_5 <- quantile(post.5_5, c(0.025, 0.5, 0.975)) 
CI.5_5 <- as.data.frame(t(CI.5_5)) 
CI.5_5 <- CI.5_5[,c(2,1,3)] 
colnames(CI.5_5)[1:3]<-c("Median","LowerCI", "UpperCI") 
CI.5_5 
## nlcm with positively skewed 1,5 hyperprior 
smplr.1_5<- lcmCR(FSW, tabular = TRUE, K = 10, a_alpha = 1, 
                    b_alpha = 5, seed = 123, buffer_size = 10000, 
                    thinning = 100) 
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post.1_5 <- lcmCR_PostSampl(smplr.1_5, burnin = 100000, 
                             samples = 10000, thinning = 100, 
                             output = FALSE) 
CI.1_5 <- quantile(post.1_5, c(0.025, 0.5, 0.975)) 
CI.1_5 <- as.data.frame(t(CI.1_5)) 
CI.1_5 <- CI.1_5[,c(2,1,3)] 
colnames(CI.1_5)[1:3]<-c("Median","LowerCI", "UpperCI") 
CI.1_5 
## nlcm with negatively skewed 5,1 hyperprior 
smplr.5_1<- lcmCR(FSW, tabular = TRUE, K = 10, a_alpha = 5, 
                    b_alpha = 1, seed = 123, buffer_size = 10000, 
                    thinning = 100) 
post.5_1 <- lcmCR_PostSampl(smplr.5_1, burnin = 100000, 
                             samples = 10000, thinning = 100, 
                             output = FALSE) 
CI.5_1 <- quantile(post.5_1, c(0.025, 0.5, 0.975)) 
CI.5_1 <- as.data.frame(t(CI.5_1)) 
CI.5_1 <- CI.5_1[,c(2,1,3)] 
colnames(CI.5_1)[1:3]<-c("Median","LowerCI", "UpperCI") 
CI.5_1 
 
post <- rbind(data.frame(Prior = rep("Jeffreys", length(post.Jeff)), Size = post.Jeff), 
              data.frame(Prior = rep("Uniform", length(post.unif)), Size = post.unif), 
              data.frame(Prior = rep("Beta(5,5)", length(post.5_5)), Size = post.5_5), 
              data.frame(Prior = rep("Beta(1,5)", length(post.1_5)), Size = post.1_5), 
              data.frame(Prior = rep("Beta(5,1)", length(post.5_1)), Size = post.5_1)) 
post$Prior <- as.factor(post$Prior) 
png(file = file.path(basepath, "Prior_sensitivity.png")) 
bwplot(Size ~Prior, data = post, layout = c(1,1), 
       ylab = "Population size", xlab = "Stick-breaking hyperprior") 
dev.off() 
ests <- rbind(data.frame(Prior = "Jeffreys", Size = CI.Jeff[1], 
                         Lower = CI.Jeff[2], Upper = CI.Jeff[3]), 
              data.frame(Prior = "Uniform", Size = CI.unif[1], 
                         Lower = CI.unif[2], Upper = CI.unif[3]), 
              data.frame(Prior = "Beta(5,5)", Size = CI.5_5[1], 
                         Lower = CI.5_5[2], Upper = CI.5_5[3]), 
              data.frame(Prior = "Beta(1,5)", Size = CI.1_5[1], 
                         Lower = CI.1_5[2], Upper = CI.1_5[3]), 
              data.frame(Prior = "Beta(5,1)", Size = CI.5_1[1], 
                         Lower = CI.5_1[2], Upper = CI.5_1[3]) 
              ) 
write.csv(ests, file = file.path(basepath, "Posterior_summary_by_hyperprior.csv")) 
 
 
############################ END OF THE PROGRAM ##################################  
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R Codes used for data analysis: Bayesian Model Averaging (MBA) 
## Input Data 
############################################################################## 

df <- structure(list(Capture_1 = c(1L, 0L, 0L, 1L, 1L, 0L, 1L), Capture_2 = c(0L,  
1L, 0L, 1L, 0L, 1L, 1L), Capture_3 = c(0L, 0L, 1L, 0L, 1L, 1L,  
1L), Total_counts = c(1408L, 1471L, 1529L, 169L, 210L, 65L,  
61L)), row.names = c(NA, -7L), class = “data.frame”) 
getData <- function(disag=FALSE){ 
    if(disag && “Aggregate”== “Aggregate”) 
      df <- disaggregate(df[-length(df)],df[[length(df)]]) 
    df 
} 

## Log-linear Analysis Report 
############################################################################## 

library(Rcapture) 
library(shinyrecap) 

# Model Comparison 

    logli <- closedp(getData(TRUE), dfreq = FALSE) 
    normTFit <- try(closedpCI.t(getData(TRUE), m="Mth",h="Normal")) 
    normFit <- try(closedpCI.t(getData(TRUE), m="Mh",h="Normal")) 
    results <- as.data.frame(logli$results[1:10,-c(3,4,7)]) 
    colnames(results)[1] <- "Population Size" 
    if(!inherits(normTFit, "try-error")){ 
      results <- rbind(results, normFit$results[,c(1,2,7,8)]) 
      row.names(results)[11] <- "Mth Normal" 
    } 
    if(!inherits(normFit, "try-error")){ 
      results <- rbind(results[1:6,], normFit$results[,c(1,2,7,8)],results[7:nrow(results),]) 
      row.names(results)[7] <- "Mh Normal" 
    } 

# Model Results for Mth Poisson 

    agg <-  "Aggregate"  == "Aggregate" 
    ci <- closedpCI.t(getData(), 
                            dfreq = agg, 
                            m =  "Mth" , 
                            h =  "Poisson" ) 
    if( "Poisson"  == "Normal"){ 
      ci <- ci$results[c(1,3,4)] 
    }else{ 
      ci <- ci$CI[1:3] 
    } 
    names(ci)<- 
      c("Population Size", "Lower 95%", "Upper 95%") 
    print(round(ci)) 
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# Log-linear Descriptives 

    freqstat <- descriptive(getData(TRUE), dfreq = FALSE) 
    print(freqstat) 

    plot(freqstat) 

## Bayesian Model Averaging 
############################################################################## 

if(!exists("input")) input <- list() 
input$DataType <- "Aggregate" 
input$dgaPriorType <- "lnorm" 
input$dgaPriorMedian <- 13714L 
input$dgaPriorDelta <- 0.125 
input$dgaNMax <- 50000L 
input$dgaPrior90 <- 23495L 
input$dgaSaturated <- FALSE 
library(dga) 
library(ggplot2) 
library(shinyrecap) 

#Prior Distribution 

    if( !is.null(getData())){ 
      dat <- getData() 
      if (input$DataType == "Aggregate"){ 
        nobs <- sum(dat[[length(dat)]]) 
        ncap <- ncol(dat) - 1 
      }else{ 
        nobs <- nrow(dat) 
        ncap <- ncol(dat) 
      } 
    }else 
      return(NULL) 
    if(input$dgaPriorType == "lnorm"){ 
 
      mu <- log(input$dgaPriorMedian) 
      ssd <- (log(input$dgaPrior90) - mu) / qnorm(.9) 
      x <- 0:(input$dgaNMax - nobs) + nobs 
      values <- dlnorm(x,mu,ssd) 
    }else{ 
      x <- 1:(input$dgaNMax - nobs) + nobs 
      values <- 1 / (1:(input$dgaNMax - nobs)) 
    } 
    values <- values / sum(values) 
    prior <- list(x=x, values=values) 
    priorDist <- function() prior 
    dgaPriorType <- input$dgaPriorType 
    x <- prior$x 
    values <- prior$values 
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    if(dgaPriorType == "lnorm"){ 
      titl <- "Log-normal Prior" 
    }else{ 
      titl <- "Non-informative Prior (p(x) ~ 1/ (Population Size - Sample Size))" 
    } 
    lower90 <- x[min(which(cumsum(values) >= .1))] 
    upper90 <- x[min(which(cumsum(values) >= .9))] 
    p <- ggplot() + 
      geom_line(aes(x=x,y=values)) + 
      geom_vline(xintercept = lower90, color="red") + 
      geom_vline(xintercept = upper90, color="red") + 
      xlab("Population Size (red lines = 10th and 90th percentiles)") + 
      ylab("Prior Probability") + 
      ggtitle(titl) + 
      theme_bw() + 
      xlim(c(0,max(x))) 
    print(p) 

    p <- ggplot() + 
        geom_line(aes(x=x,y=cumsum(values))) + 
        xlab("Population Size") + 
        ylab("Prior Cumulative Probability") + 
        ggtitle(titl) + 
        theme_bw() + 
        xlim(c(0,max(x))) 
    print(p) 

#Posterior Distribution 

    dat <- getData() 
    if (input$DataType == "Aggregate") { 
      dat <- disaggregate(dat[,-ncol(dat)], dat[[ncol(dat)]]) 
    } 
    if(ncol(dat) == 3){ 
      data(graphs3) 
      graphs <- graphs3 
    }else if(ncol(dat) == 4){ 
      data(graphs4) 
      graphs <- graphs4 
    }else{ 
      data(graphs5) 
      graphs <- graphs5 
    } 
    nobs <- nrow(dat) 
    rec <- make.strata(dat, locations=rep("a",nrow(dat)))$overlap.counts 
    rec <- array(rec, dim=rep(2, ncol(dat))) 
 
    mu <- log(input$dgaPriorMedian) 
    ssd <- (log(input$dgaPrior90) - mu) / qnorm(.9) 
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    nmax <- input$dgaNMax - nobs 
    delta <- input$dgaPriorDelta 
    prior <- priorDist() 
      x <- prior$x 
      post <- bma.cr(rec, 
                     delta=delta, 
                     Nmissing=x - nobs, 
                     logprior = log(prior$values), 
                     graphs = graphs) 
    dga <- list(prior=prior, post=post) 
        post <- dga$post 
    if(!input$dgaSaturated){ 
      post <- post[-nrow(post), , drop=FALSE] 
    } 
    postN <- colSums(post) 
    postN <- postN / sum(postN) 
    x <- dga$prior$x 
    mn <- sum(x * postN) 
    med <- x[which(cumsum(postN) > .5)[1]] 

  # HDI 
    opt <- optimize( 
      function(cut){ 
        abs(.05 - sum(postN*(postN <= cut))) 
      }, 
      interval = c(0,max(postN)) 
    ) 
    inInterval <- which(postN > opt$minimum) 
    lower <- x[inInterval[1]] 
    upper <- x[inInterval[length(inInterval)]] 
 
    #lower <- x[which(cumsum(postN) > .025)[1]] 
    #upper <- x[which(cumsum(postN) > .975)[1]] 
    result <- data.frame(mn, med, lower, upper) 
    names(result) <- c("Mean","Median","95% Lower","95% Upper") 
    result %>% knitr::kable(digits=0) 

    postN <- colSums(post) 
    postN <- postN / sum(postN) 
    ind <- cumsum(postN)  < .995 
    plotPosteriorN(post[,ind], x[ind]) 

# BMA Individual Model Summaries 

    if(!input$dgaSaturated){ 
      graphs <- graphs[-length(graphs)] 
    } 
    mp <- rowSums(post) 
    means <- apply(post, 1, function(p){ 
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      p <- p / sum(p) 
      sum(p * x) 
    }) 
    means <- as.integer(round(means)) 
    mp <- mp / sum(mp) 
    mp <- round(mp * 100, 3) 
 
    data.frame(Interaction=formatGraphs(graphs), 
               `Posterior Probability (%)` = mp, 
               `Expected Pop. Size` = means, 
               check.names=FALSE) %>% knitr::kable() 

## Bayesian Latent Class 
############################################################################## 

    library(LCMCR) 
    library(shinyrecap) 
    dat <- getData() 
    if ("Aggregate" == "Aggregate") { 
      dat <- disaggregate(dat[,-ncol(dat)], dat[[ncol(dat)]]) 
    } 
    input <- list(lcmcrShape = 0.25, lcmcrScale = 0.25, K = 10L, lcmcrThinning = 100L,  
    lcmcrSamples = 1000L, lcmcrBurnin = 100000L) 
    K <- input$lcmcrK 
    shape <- input$lcmcrShape 
    invScale <- input$lcmcrScale 
    thinning <- input$lcmcrThinning 
    samples <- input$lcmcrSamples 
    burnin <- input$lcmcrBurnin 
    d2 <- as.data.frame(lapply(dat, as.factor)) 
    sampler <- lcmCR(d2, tabular = FALSE, K = K, a_alpha = shape, 
                        b_alpha = invScale, seed = "auto", buffer_size = samples*thinning + burnin + 1, 
                        thinning = thinning) 
    post <- lcmcrSample(sampler, burnin = burnin, 
                                 samples = samples, thinning = thinning, 
                                 output = FALSE, nMonitorBreaks=100, monitorFunc = func) 
    result <- list(N=post) 
    resultVal <- function() result 

# Posterior Distribution 

    post <- resultVal()$N 
    quant <- quantile(post, c(0.50, .025, 0.975)) 
    hdint <- HDInterval::hdi(post) 
    result1 <- data.frame(mean(post), quant[1], hdint[1], hdint[2]) 
    names(result1) <- c("Mean","Median","95% Lower","95% Upper") 
    result1 %>% knitr::kable(digits=0) 

    hist(post, breaks=50) 

# Trace Plot 
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    ess <- effectiveSize(post) 
 
    plot(post, 
         xlab="Sample #", 
         ylab="Population Size", 
         main="Trace Plot") 

# Pairwise Analysis 

    library(shinyrecap) 
    library(CARE1) 
    dat <- getData() 
    if ("Aggregate" == "Aggregate") { 
      dat <- disaggregate(dat[,-ncol(dat)], dat[[ncol(dat)]]) 
    } 
    result3 <- estN.pair(as.record(dat)) 
    result3 <- result3[,-2] 
    colnames(result3)<- c("Population Size", "se", "95% CI Lower","95% CI Upper") 
    result3 %>% knitr::kable(digits=0) 

############################ END OF THE PROGRAM ##################################  
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Privatize Network Sampling Analysis code 
 
# Install packages 
 

install.packages('RDS') 
install.packages('pnspop') 

 
# Import libraries 

library(RDS) 
library(pnspop) 

 
# Load data 

data(fsw2023) 
# Run plot on ”rds” to view the recruitment graph. 

Rds <-as.rds.data.frame( 

fsw2023, 
id = “subject”, 
recruiter.id = “recruiter”, 
network.size = “degree” 

) 
Plot (rds) 

## Cross Network Analysis 

Cross_tree_pse( 
Subject = fsw2023$subject, 
Recruiter = fsw2023$recruiter, 
Subject_hash = fsw2023$subject_hash, 
Degree = fsw2023$degree, 
Nbrs = fsw2023[c(“friend_hash1” , “friend_hash2” , “friend_hash3” , “friend_hash4”                                                                                                                          
,“friend_hash5” , “friend_hash6” , “friend_hash7” , “friend_hash8” , “friend_hash9”, 
“friend_hash10”)], 
 
Method = “network” 
) 

## Cross Sample Analysis 

Cross_tree_pse( 

Subject = fsw2023$subject, 
Recruiter = fsw2023$recruiter, 
Subject_hash = fsw2023$subject_hash, 

              Degree = fsw2023$degree, 

               nbrs = fsw2023[c(“friend_hash1” , “friend_hash2” , “friend_hash3” , “friend_hash4”                                                                                                                          

,“friend_hash5” , “friend_hash6” , “friend_hash7” , “friend_hash8” , “friend_hash9”, “friend_hash10”)], 

Method = “sample” 
) 
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## Getting Confidence Intervals 

boostrap_pse( 

Cross_tree_pse( 
Subject = fsw2023$subject, 
Recruiter = fsw2023$recruiter, 
Subject_hash = fsw2023$subject_hash, 
Degree = fsw2023$degree, 
Nbrs = fsw2023[c(“friend_hash1” , “friend_hash2” , “friend_hash3” , “friend_hash4”                                                                                                                          
,“friend_hash5” , “friend_hash6” , “friend_hash7” , “friend_hash8” , “friend_hash9”, 
“friend_hash10”)], 
 
Method = “network” 
rho = .0001 

n_boostrap = 5000 

) 

 

boostrap_pse( 

Cross_tree_pse( 
Subject = fsw2023$subject, 
Recruiter = fsw2023$recruiter, 
Subject_hash = fsw2023$subject_hash, 
Degree = fsw2023$degree, 
Nbrs = fsw2023[c(“friend_hash1” , “friend_hash2” , “friend_hash3” , “friend_hash4”                                                                                                                          
,“friend_hash5” , “friend_hash6” , “friend_hash7” , “friend_hash8” , “friend_hash9”, 
“friend_hash10”)], 
 
Method = “sample” 
rho = .0001 

n_boostrap = 5000 

) 

 

############################ END OF THE PROGRAM ################################## 
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