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Abstract

The main objective of the thesis is to estimate the surface temperature of a steel slab by
solving an inverse heat conduction problem. This problem arises in applications, for example
in steel industry, where it is of great importance to be able to control the surface temperature
and heating or cooling rates during heat treatment processes in order to achieve good quality
of the end products. However, in many industrial applications, the surface itself is inac-
cessible for direct measurements or locating a measurement device such as a thermocouple
on the surface would disturb the measurements so that an incorrect temperature measure-
ment is recorded. In this situation, we are restricted to interior measurements, from which
we approximate the surface temperature by solving an inverse heat conduction problem in
the region between the surface and a measurement point, because this process is strongly
influenced by the time dependent temperature and heat-flux close to the surface.

In this thesis we formulate the problem as an operator equation Kf = g, where K is an
operator that maps the surface temperature f(t) to the interior measured temperature data
g(t), and we need to solve for the unknown surface temperature f(t). However, two main
complications arise. Firstly, the operator K is non-linear while most efficient regularization
methods are designed for solving linear operator equations. Secondly, due to random noise in
measurements, only noisy version gδ of the exact data g is available in practice, thus solving
for f is an ill-posed problem in the sense that the solution does not depend continuously
on the data. To address these issues, we present in this thesis an approach of rewriting
K as a linear operator equation. Also, ill-posedness is investigated and we implement a
regularization approach based on Tikhonov method.

Finally, the developed method is applied to a real industrial problem with measured data
taken during an industrial steel quenching process. Numerical experiments show that the
method works well. We also consider improving the accuracy of the solution by including
more measurements, and discuss how making use of the additional data may improve the
estimate of the surface temperature as well as improving the stability of the inverse problem.

Keywords and phrases: Inverse heat conduction problem (IHCP), Tikhonov regular-
ization, Steel slab, Industrial steel quenching process, Operator equation.



iv

Acknowledgment

I would like to acknowledge and give thanks in a special way to my supervisors, Dr. Fredrik
Berntsson and Dr. Japhet Niyobuhungiro for their commitment, effort, advice, review, en-
couragement and guidance that made this work fruitful, without them I would not have
completed it. And also I would like to take time to thanks Dr. Frderik Berntsson for let his
papers about inverse heat conduction problem, especially [12] which include the description
about the industrial application presented in this thesis be available and providing the actual
measured data from that experiment to be used in this thesis.

I thank my mother, grand brothers, and sisters, for their personal care, financial and
moral support during the whole study program.

Finally, I would like to acknowledge the financial support, school fees, I have received
from University of Rwanda through the Department of Mathematics. All involved peoples
are deeply acknowledged.



CONTENTS

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Theory of Inverse Heat Conduction Problem . . . . . . . . . . . . . . . . . . 1

1.1.1 Heat conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Methods of solving IHCP . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Ill-posedness of IHCP . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Background of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Estimation of surface temperature . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 A Linear operator equation and its properties . . . . . . . . . . . . . . . . . 11
2.2 Discretization using finite differences . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Linear discrete problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Regularization of the discrete problem . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Tikhonov regularization . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Parameter choice rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Extension to multiple measurements . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3. Temperature estimation on a steel surface . . . . . . . . . . . . . . . . . . 37
3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Data and computational results . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



1. INTRODUCTION

1.1 Theory of Inverse Heat Conduction Problem

1.1.1 Heat conduction

Consider a thin rod of metal as shown in Fig.1.1. When it is heated at the surface A, the heat

Fig. 1.1: Thin rod of metal

will flow from hottest region to coldest region B, i.e from A to B. In [1] the author postulated
the fundamental hypothesis for mathematical theory of heat conduction as follows: The rate
at which heat crosses from the inside to the outside of an isothermal surface per unit area
per unit time is equal to

− κ∂T
∂n

, (1.1)

where T is the temperature of the surface, κ the thermal conductivity of the substance, and
∂/∂n denotes differentiation a long the outward drawn normal to the surface. As its name
indicate the heat equation is used in applications which require the heat conduction, thus it
was derived using the theory of heat conduction through the body material which are change
of heat quantity in body material, Fourier’s law of heat conduction and conservation energy
law as summarized here:

Now, let assume that the thin rod has insulated sides and the material has constant
density ρ in (kg/m3), constant specific heat capacity cp in (Ws/kgK), constant cross section
S in (m2) and assume that there is no heat source within the rod and only an external heat
source. Heat conduction in this case can be approximated as one-dimensional problem in
x-direction with the temperature T (x, t) at length x and at time t. And also in the absence
of work done, the change of energy in the body material per unit volume, ∆Q is given as

∆Q = cp∆M∆T = cpρS∆x∆T. (1.2)

We can see that it is directly proportional to the mass M in (kg) of the material and to the
increase in temperature ∆T in (K/m).

A particular case of equation (1.1) is when the isothermal surface is perpendicular to the
x-axis, it leads to Fourier’s law of heat conduction which states that “the rate of heat flowing
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into a body through a small surface element on its boundary is proportional to the area of
that element and to the outward normal derivative of the temperature at that location in
positive direction of x-axis.”

Q̇ = −κ∂T
∂x

(1.3)

where Q̇ is the density heat flux in (W/m2), κ in (W/Km) is the thermal conductivity of the
material which depends on temperature and so for x. If T increases as x increases, the rate
will be negative and also if T decrease as x increase the rate will be positive.

Therefore, using equations (1.2) and (1.3), and conservation energy law, the following
equation (1.4) that describes the physical processes of heat conduction inside the body mate-
rial where it flows from one position to another in one dimensional was derived and is known
as Heat conduction equation, [2, 3, 4, 5].

ρcp
∂T (x, t)
∂t

= ∂

∂x

(
κ
∂T (x, t)
∂x

)
, (1.4)

where the thermal conductivity κ remains inside of derivative since it depends on x. One can
note that when the thermal conductivity κ is constant, the equation (1.4) is reduced to well
known heat equation (1.5)

∂T

∂t
= α2∂

2T

∂x2 (1.5)

with the thermal diffusivity, α2 = (κ/ρcp).

In [6, 7] it has been shown that the heat equation (1.5) has the following fundamental
solution on the whole real line

F (x, t) :=


1

2α
√
πt
exp

(
− |x|

2

4α2t

)
, (x ∈ R, t > 0)

0, (x ∈ R, t < 0)
(1.6)

and for any initial value problem
∂T
∂t

= α2 ∂2T
∂x2 , t > 0, 0 < x < L,

T (x, 0) = g(x), 0 < x < L,

its solution can be given as a convolution of F (x, t) and g(x); thus for (x ∈ R, t > 0) we have

T (x, t) = 1
2α
√
πt

∫
R
exp

(
−|x− y|

2

4α2t

)
g(y)dy

Suppose that the equation (1.4) is associated with initial value, boundary values, and let
all thermal parameters, density ρ, specific heat capacity cp, and thermal conductivity κ be
known, the problem of computing the temperature distribution throughout the body material
is well-posed problem and is known as the direct problem. However, the problem of finding
the surface temperature, i.e surface condition for given measurements of temperature at one
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or more boundary points is an inverse problem which is often found to be an ill-posed problem
in practice, and the process of estimation of surface temperature of body material from its
interior measurements is referred to us as Inverse Heat Conduction Problem(IHCP), [5, 8, 9].

Furthermore, the author of [10] classified the heat conduction problem into the regions
depicted in Fig.1.2, we can see that if the measurement points x′ and x′′ are different, the
boundary conditions of each inverse problem can be obtained by solving the direct problem
and use its solution as boundary conditions for each inverse problem for two sides and also
when x′ and x′′ are the same then temperature and heat flux must be given, and two inverse
problems exist.

Fig. 1.2: Diagram of direct and inverse problem regions, adopted from [10]

The most types of inverse problems which have been raised in heat conduction were studied
and summarized as: the problem of computing initial temperature from given temperature
measurements, problem of computing the thermal parameters from given temperature mea-
surements, and the problem of computing temperature of inaccessible part of the boundary
from heat flux and temperature measurements on other parts of the boundary, [9].
The later problem is often occurred in practice, in the industries which produce and refine
steels where the temperature and heat rates should be controlled at several stages during
production to achieve good quality of the their products and also increase their economic
level. However, in physical practice the surface may be impossible for attaching a sensor
for taking measurements, or the accuracy of measuring surface temperature history may be
seriously for some reason affected by that sensor; in that case solving an inverse heat con-
duction problem which consist of estimating the surface temperature from the temperature
measurements made at an arbitrary location inside the metal should be used. The sensor
can be a thermocouple if accessing the surface of the body material is possible, [2, 11, 12].
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1.1.2 Methods of solving IHCP

The methods for solving heat conduction problem have been discussed and studied in liter-
ature. For instance, the classical methods for solving IHCP are based on transforming the
problem into first-kind Volterra integral equations which is the type of problem that occur
naturally in many applications and then combined with some regularization technique such
as Tikhonov regularization, [13, 14]. And the disadvantage of the method is that the kernel
of integration is not known explicitly when the material properties, thermal conductivity, κ
and density, ρ are dependent on the temperature, [12].

In addition, Meyer and Daubechies wavelets and Fourier transform methods have been
used to solve IHCP, where the partial differential equation was transformed into an initial
value problem for an ordinary differential equation(ODE) by replacing the time derivative
in the heat equation by wavelet-based approximations or a Fourier-based approximation,
and then the resulting system of ODE was solved using standard numerical methods, such
as Runge Kutta method, [15]. There exist also in literature other methods such as discrete
mollification method that was proposed to solve the IHCP, see [16], the exact solution method
which consisted of finding the solution as rapidly convergent series have been established
in [17], and as well the finite differences, finite elements, and finite volume based methods
for both linear and non linear problem were proposed, [4, 5, 18]. Thus, this thesis is based
on the Crank-Nicloson implicit scheme finite difference and Tikhonov regularization.

1.1.3 Ill-posedness of IHCP

It has been argued that estimation of surface temperature of body material given its in-
terior measurements is an inverse problem that has been studied by several authors for
instance, [5, 10, 19] and it was found to be ill-posed, in the sense that small perturbations
in the measurements lead to higher perturbations in resulting solutions. To understand the
ill-posedness of inverse problem, let consider the operator equation problem

Kf = g (1.7)

with K the bounded operator from subset X of classical spaces onto a subset Y, where X and
Y are open subsets of Ck(Ω), Hk,p(Ω) or their finite co-dimensional subspaces, f ∈ X and g
∈ Y be unknown and known characteristics of heat model, respectively. The corresponding
direct problem is given K and f then find g, and its corresponding inverse problem is given
K and g, then find f .

Definition 1.1: The problem is said to be well-posed if the following properties for given data
hold:

(i) Existence of solution, that is there exist f ∈ X for any g ∈ Y

(ii) Uniqueness of solution, that is such f in (i) is unique
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(iii) Stability of solution, that is ‖f − f ∗‖X → 0 as ‖g − g∗‖Y → 0

Besides the problem (1.7) is said to be well posed when the operator K has bounded inverse
operator K−1 from Y onto X. If one of those conditions defined in Definition 1.1 is not hold,
the problem is said to be ill-posed and this is the more occurred case when solving the inverse
heat conduction problem, [5, 9, 20, 21].
In [9, 20] the authors suggested that when the problem is ill-posed the property (i) can be
neglected since one cannot suggest the conditions that will guarantee existence of solution
even if the existence of solution is necessary, and also if the property (ii) is not holds this will
leads to the problem of choosing the best solution among all solutions, final if the property
(iii) is not holds, this will leads to a severe problem in numerical solution, since we are
solving the problem with any small change in the data that will cause the higher change
in the solution. Thus, the one way to handle this issue is to change the subspace X or to
regularize the solution.

1.2 Background of the problem

1.2.1 Statement of the problem

We can write the problem (1.7) above as

K(f) = g, f ∈ X (1.8)

where K : X −→ Y is the mapping defined on X and taking values in Y . Let consider, X as
the solution space, Y as the space of exact data i.e right hand side, and also let Ŷ be the space
of noisy measurements, gδ of g with noise level δ the standard deviation of Gaussian white
noise says η. In this thesis we would like to approximate a solution of the ill-posed problem
(1.8) with given right-hand side gδ ∈ Ŷ , i.e, K(f) = gδ numerically. Here, ill-posedness is in
the sense of Definition 1.1 that the solutions do not depend continuously on the data and in
our practice, existence of solutions will be assumed and uniqueness is not of interest since in
practice and theory we obtain multiple solutions and we choose the best one. Since, the exact
data g ∈ Y are not available, but its noisy version gδ ∈ Ŷ is available and small discretization
or rounding errors this can yield to arbitrarily large difference between the numerical solution
and the exact solution.

Therefore, solving an ill-posed problem numerically require much effort to deal with the
that ill-posedness. Due to the fact that gδ is very sensitive to perturbations, then this issue
can be coped by solving the following minimization problem

min
f∈X

Φ(K(f), gδ) (1.9)

instead of problem (1.8), where Φ : Y × Ŷ −→ [0,∞) is some fitting functional for instance
Φ(K(f), gδ) :=

∥∥∥K(f)− gδ
∥∥∥2

2
, which is the minimal least-squares (LS) problem, [22]. Fur-

thermore, if the problem (1.8) is ill-posed then its corresponding minimization problem (1.9)
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will be also ill posed; so to cope with that issue we can add some penalty function J(f) to
Φ(K(f), gδ) and obtain the new minimization problem

min
f∈X

{
Φ(K(f), gδ) + λ2J(f)

}
(1.10)

where J(f) : X −→ R and λ is some positive regularization parameter. This problem (1.10)
is known as Tikhonov regularized problem, which is discussed in more details in Section 2.4.1
and the Tikhonov problem is given in the equation (2.46). Besides of this description of the
problem the following Section (1.2.2) of application explain in details the main problem we
have in hand in the thesis.

1.2.2 Application

In applications it is often of importance to find the temperature on the surface of an object
in situations where the surface itself is inaccessible for direct measurement. This is the case
for instance when studying heat treatment of steel. The process is strongly influenced by
the time dependent temperature and heat-flux close to the surface. In such applications one
can place a measurement point inside the body material, close to the surface, and compute
the surface temperature by solving a heat conduction problem in the region between the
measurement point and the surface, [12]. The Fig.2.3 illustrate the situation.

Fig. 1.3: Determination of surface temperature from interior measurements

A simple mathematical model that describe the situation is

ρcp
∂T (x,t)
∂t

= ∂
∂x

(
κ(x)∂T (x,t)

∂x

)
, t ≥ 0, 0 ≤ x ≤ L3

T (x, 0) = T0 = constant, 0 ≤ x ≤ L3

T (0, t) = f(t), t ≥ 0
T (L3, t) = g3(t), t ≥ 0

(1.11)
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where T (x, t) is the temperature distribution inside the body material which is governed
by heat conduction equation (1.4), T (0, t) = f(t) is the surface temperature for t ≥ 0, and
T (L3, t) = g3(t) is the temperature recorded by the measurement device for t ≥ 0 and x = L3.
Initially the temperature can be taken to be constant. In this thesis we consider the case
where the steel material is heated to a constant temperature before the heat treatment starts,
then we have T (x, 0) = g3(0) = f(0), for 0 ≤ x ≤ L3.

As we will show later that if we take the model (1.11) with its initial and boundary
conditions as described above then the problem of finding T (x, t) is well-posed. Then it can
be solved using standard numerical methods.
In fact, in our application we want to determine the surface temperature, i.e. f(t) is unknown.
In order to accomplish this we take additional measurement, i.e, we recorded the temperature
at one additional location, see Fig.2.2, T (L2, t) = g2(t) for t ≥ 0, and 0 < L2 < L3.
By solving the well-posed problem in the interval 0 ≤ x ≤ L3 using f(t) and g3(t) as boundary
values we can compute the temperature at the location x = L2.
This can be formally used to define an operator K̃ by K̃(g3)f(t) = T (x = L2, t) = g2(t).
Therefore, for given measurement gδ2(t) we could consider the problem of finding f(t) as an
operator equation, K̃(g3)f(t) = gδ2(t), and solve for the unknown surface temperature f(t).
This approach works well with some complications that need to be dealt with. We show later
that:

• The problem of finding f(t) from the measurements gδ2 and gδ3 is ill-posed and regular-
ization is needed.

• The operator K̃ is non-linear;

and however most efficient regularization methods are designed for solving linear operator
equations, for instance in [23, 24, 25]. Therefore, in this project the operator equation,
K̃(g3)f(t) = gδ2(t), was rewritten as a linear operator equation, Kf(t) = gδ2(t), we investi-
gated the ill-posedness of the problem, and also we solved it using an efficient regularization
method. Finally, the developed method was applied to a real industrial problem with mea-
sured data taken during an industrial steel quenching process in [12].
To improve the accuracy of the solution, we included more measurements as follows: The third
measurement point, located at x = L1 was included, for instance see Fig.3.3(a), and redefine
the linear operator equation Kf(t) = T (L2, t) = gδ2(t) as Kf(t) = (T (L1, t), T (L2, t)) =
(gδ1, gδ2) and apply the same regularization technique. Impact of using the additional data on
the estimate of the surface temperature and the stability of the inverse problem is investi-
gated. We find out that it improves the estimate of the surface temperature and stability of
the inverse problem.
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1.3 Objective

First standard theory for the inverse heat conduction problem was studied and summarized
as an introductory part of the thesis. The specific objectives are:

1. To write a finite difference solver that can solve the direct well-posed problem as de-
scribed above. Also write a code for evaluating the linear operator K.

2. To apply Thikhonov regularization to the linear operator equation to find the numerical
approximation of the surface temperature f(t) and investigate the properties of the
problem, e.g. stability and accuracy, numerically

3. To reformulate the operator equation to include more data and also update the finite
difference solvers for this situation.

4. To apply the developed software to an industrial situation and find the surface temper-
ature during a quenching process using measured data.

1.4 Related works

The problem of estimating surface temperature or surface heat flux based on the mea-
surements of temperature at some interior points have aroused the curiosities of several
researchers, and was found to be an ill posed and was known to us as an inverse heat conduc-
tion problem. Such case can happen in different area of studies, for instance in aerodynamic
studies, quenching studies, and in laboratories which use indirect calorimetry devices; thus
this chapter review the existing literature for addressing such mentioned problem.

In the literature there are exact solutions and numerical solutions of inverse heat conduc-
tion problem (IHCP). One of 1900s written papers on IHCP was about solving numerically
an inverse problem of heat conduction for simple shapes as in application in quenching pro-
cess with special reference to the sphere of r, r1 and R distance from center, particular values
of r and outer radius respectively and was published in 1960 by Soltz. The problem author
had in hand was the following: the temperature of the body was initially uniform, and the
temperature θ(r1, τ) at some interior point r1 as a function of time was known and tried to
find the surface heat flux and surface temperature, Q(t) = −κ(R, t)/∂r and T (R, t), from
the following problem (1.12)

α∇2T (r, t)− ∂T
∂r

= 0; 0 ≤ r < R

∂
∂r
T (0, t) = 0

T (r, 0) = Ti; constant

T (r1, t) = f(t); 0 ≤ r1 < R

(1.12)
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and then to solve the problem the author formulated the problem as it was direct one,
obtain its integral equation for unknown surface condition and thus the numerical solution
was obtained by inverting that integral equation, [26]. Thereafter, in 1964 other work was
published on numerical integration method to solve an inverse problem in transient heat
conduction problem which gave a solution method that is more general and which may be
computationally simpler, and the theory was able to accommodate an nonuniform initial
temperature distribution within the solid. In addition analytical treatment was extended to
the sphere, the plane slab, and the long cylinder, [27]. Also the exact solution of the inverse
problem in heat conduction theory and application was established by Buggraf in the form
of rapidly convergent series of all-order derivatives of both temperature T (x, t) and heat flux
Q(t), [17].
In 1996, the numerical solution of generalized IHCP by using discrete mollification method
was obtained in [16] and for more details on mollification method to solve the Ill-posed
problems see, [28].
Furthermore, in 1999 the author of [8] used the spectral method to solve the inverse heat
conduction problem (1.13) known as sideways heat equation and this problem was found to
be an ill-posed problem, thus the problem was stabilized by introducing the cutting off high
frequencies in the Fourier space domain.

κTxx = Tt; 0 < x < 1, t ≥ 0
T (1, t) = g(t); t ≥ 0
Tx(1, t) = h(t); t ≥ 0
T (x, 0) = 0; 0 ≤ x ≤ 1

(1.13)

The solution of (1.13) in the Fourier domain was easily found to be

T̂ (x, ξ) = 1
2(e
√
iξ/κ(1−x)(ĝ − ĥ/

√
iξ/κ) + 1

2(e−
√
iξ/κ(1−x)(ĝ + ĥ/

√
iξ/κ))

where h is the heat-flux measurements, T̂ (x, ξ) is the Fourier transform of T (x, t), and ξ is the
parametrization parameter. The cut-off frequency ξc was introduced and all high frequencies
were drawn away in the solution, and thus the regularized solution T (x, t) can be obtained
by taking Fourier inverse transform of equation (1.14),

T̂c(x, ξ) = χc(ξ)T̂ (x, ξ) (1.14)

with χc the characteristic function of [−ξc, ξc]. Moreover, the problem (1.13) was discretezed
separately in time and in space domain. By using the method of lines the initial value problem
of an ordinary differential equation was obtained and solved numerically by implementing
fourth-order Runge Kutta method, where the time derivative was approximated by using
discrete Fourier transform.



2. ESTIMATION OF SURFACE TEMPERATURE

We have argued that the problem of determining the surface temperature f(t) from some
arbitrary measurement points taken inside of the body material as described in Section 1.2.2
above is an inverse problem. Let recall here what is an inverse problem. Following [9]
an inverse problem is concerned with knowing the present state of the system from future
observations, that is the calculation of the evolution of the system backwards in time. Also
an inverse problem can denotes the task of computing an unknown physical quantity of the
system form indirect measurements. Simply the inverse problem consisting of determining
the causes knowing the effects as shown in Fig.2.1.

Fig. 2.1: Direct and Inverse problem diagram

In this thesis, the inverse problem we have is to find the surface temperature T (0, t) = f(t) for
given measurements T (L3 = 1, t) = g3(t) and additional extra boundary condition T (L2, t) =
g2(t) on the mathematical model (1.11) where the bounded time interval 0 ≤ t ≤ 1 is used
since in practice we can only collect measurements during a finite time interval. And T (x, t)
satisfies the following resulting problem written in its simplified form. Now

(a(x)Tx)x = Tt, 0 ≤ t ≤ 1, 0 ≤ x ≤ 1
T (x, 0) = T0 = constant, 0 ≤ x ≤ 1
T (0, t) = f(t), 0 ≤ t ≤ 1
T (1, t) = g3(t), 0 ≤ t ≤ 1
T (L2, t) = g2(t), 0 < L2 < 1, 0 ≤ t ≤ 1

(2.1)

We can note that the problem of finding the solution T (x, t) with given boundary conditions is
well posed problem in the region L2 < x < 1 but an ill-posed problem in the region 0 < x < 1.
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Furthermore, a(x) was used instead of using ρ, cp and κ(x) as in general problem (1.11) since
this is a theoretical study and a(x) changes as x changes thus the results could arrives to
the same results as for using thermal properties of the material. Based on Section 1.1.3, the
computation of T (0, t) = f(t) in this case is an ill-posed problem and our space and time grid
domains are 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, respectively.

2.1 A Linear operator equation and its properties

Since our purpose is to determine the unknown surface temperature T (0, t) = f(t) from the
problem (2.1) with given measurement temperature T (L3, t) = g3(t), to do so we record the
temperature at one additional location x = L2, T (L2, t) = g2(t) as shown in Fig.2.2 below.
And then given a measurement g2(t) we could consider the problem of finding f(t) as an
operator equation such that K̃(g3)f(t) = g2(t), and solve for f(t) where the operator K̃(g3)
is defined in Definition 2.2 below; but let us first define the function space which is considered
throughout this thesis where the functions f and g2 belong.

Definition 2.1: (Function space C0([a, b])) We denote Ck([a, b]), 0 ≤ k ≤ ∞ the space
of real valued k-times continuously differentiable functions on the closed interval [a, b] of R.
Thus, the most common Ck([a, b]) space is C0([a, b]) the space of continuous functions defined
as C0([a, b]) = {f : [a, b]→ R : f(t) continuous on [a, b]}. This can be found in [29, 30] or
any standard book of functional analysis.

Throughout the remaining part of the thesis we consider the closed interval [a, b] to be [0, 1],
and for the real-valued functions f and g2 ∈ C0([0, 1]), we define the possible metrics and
norms that can be defined on C0([0, 1]).

(a) We define a uniform metric on C0([0, 1]) by

ρ∞(f, g2) = max
t∈[0,1]

|f(t)− g2(t)| , (2.2)

, and the corresponding norm of f(t) is given by

‖f‖∞ = max
t∈[0,1]

|f(t)| (2.3)

(b) We define also, for a fixed real number p ≥ 1, the metric on C0([0, 1])

ρp(f, g2) =
(∫ 1

0
|f(t)− g2(t)|p dt

) 1
p

,

and the correspond norm of f(t) is given by

‖f‖p =
(∫ 1

0
|f(t)|p dt

) 1
p
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Lemma 2.1: The function space C0[0, 1] equipped with maximum norm, ‖.‖∞ is Banach
space.

Proof : Let {fm(t)} ⊂ C0([0, 1]) and {fm(t)} be a Cauchy sequence in C0([0, 1]), then

‖fm − fn‖ = max
t∈[0,1]

|fm(t)− fn(t)| < ε, for (m,n > N(ε)) (2.4)

Hence, for any fixed t = t0 ∈ [0, 1], we get ‖fm(t0)− fn(t0)‖ < ε, for (m,n > N(ε)), so
{fm(t0)} is a Cauchy sequence in R. And R being complete, see [30], we can assign to each
t ∈ [0, 1] a unique f(t) ∈ R which define a pointwise function f on [0, 1]. For t ∈ [0, 1] and
let n −→∞ in equation (2.4) we have

‖fm − f‖ < ε, for (m > N(ε)) (2.5)

This shows that the sequence {fm} of continuous functions converges uniformly to the func-
tion f on [0, 1], and hence the limit function f is a continuous function on [0, 1]. Also from
equation (2.5) we have

max
t∈[0,1]

|fm(t)− f(t)| < ε, for (m > N(ε))

which implies that ‖fm − f‖ < ε, for (m > N(ε)), and then fm −→ f ∈ C0([0, 1]). Thus,
C0([0, 1] is Banach space, [31].

Definition 2.2: We define the operator K̃(g3) : C0([0, 1]) −→ C0([0, 1]) such that
(
K̃(g3)f

)
(t) =

T (x = L2, t) = g2(t), where T (x, t) is the solution of the problem (2.1), f and g2 are contin-
uous functions over [0, 1] and 0 < L2 < 1 as shown in Fig.2.2

Fig. 2.2: The positions of the thermocouples TC2, and TC3 inside the material that can be used to measure
the temperature histories in practice
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In order to study the properties of the operator K̃(g3) we split the problem (2.1) into the
following two sub-problems:

(a(x)T ax )x = T at , 0 ≤ t ≤ 1, 0 ≤ x ≤ 1
T a(0, t) = f(t), 0 ≤ t ≤ 1
T a(x, 0) = 0, 0 ≤ x ≤ 1
T a(1, t) = 0, 0 ≤ t ≤ 1
T a(L2, t) = g̃2(t), 0 ≤ t ≤ 1

(2.6)

and 

(
a(x)T bx

)
x

= T bt , 0 ≤ t ≤ 1, 0 ≤ x ≤ 1

T b(0, t) = 0, 0 ≤ t ≤ 1
T b(x, 0) = T0 = constant, 0 ≤ x ≤ 1
T b(1, t) = g3(t), 0 ≤ t ≤ 1
T b(L2, t) = g2(t)− g̃2(t), 0 ≤ t ≤ 1

(2.7)

We first find T b(x, t) that satisfies (2.7), and then since the heat equation is linear function
we can note that T a(x, t), solution to the problem (2.6) can be written as T a(x, t) = T (x, t)−
T b(x, t) where T (x, t) satisfies the problem (2.1) with g̃2(t) = T (L2, t) − T b(L2, t) = g2(t) −
T b(L2, t). Moreover, the problem (2.6) is known to be well-posed so it can be reformulated
as an operator equation such that (Kf) (t) = T a(x = L2, t) = g̃2(t) where K is an operator
defined as follows:

Definition 2.3: We define the operator K : C0([0, 1]) −→ C0([0, 1])) that maps f(t) to
g̃2(t) = T a(x = L2, t), that is (Kf) (t) = g̃2(t) where T a(x, t) is the solution of the problem
(2.6), f and g̃2 are continuous functions over [0, 1], and 0 < L2 < 1.

Lemma 2.2: (Linearity) The operator K defined in Definition 2.3 is linear; that is the
following properties hold:

(i) Additive: (K(s+ h)) (t) = (Ks) (t) + (Kh) (t), for the surface temperature s and h ∈
C0([0, 1])

(ii) Homogeneous: (K (αf)) (t) = α (Kf) (t), for positive real number α and f ∈ C0([0, 1])

Proof : (i) Let T ash(x, t) = T as (x, t) + T ah (x, t) be the solution of problem (2.6) where the
boundary condition f(t) = T a(0, t) is replaced by r(t) = s(t) +h(t) and T as (x, t) and T ah (x, t)
be the solutions of problem (2.6) where f(t) is replaced by s(t) and h(t), respectively. It is
clear that by Definition 2.3 that

(Kr) (t) = (K (s+ h)) (t)
= l̃2(t) + j̃2(t)
= (Ks) (t) + (Kh) (t)
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where l̃2(t) and j̃2(t) are the functions such that the operator K maps s(t) and h(t) to l̃2(t)
and j̃2(t), respectively. The result shows that for x = 1 we have T as (1, t)+T ah (1, t) = 0+0 = 0
hence the boundary condition T a(1, t) = 0 is also satisfied, therefore the operator K is addi-
tive.
To prove (ii) let T a(x, t) be amplified by positive real number α, then the problem (2.6)
become



(a(x)T ax )x = T at , 0 ≤ t ≤ 1, 0 ≤ x ≤ 1
αT a(0, t) = f(t), 0 ≤ t ≤ 1
T a(x, 0) = 0, 0 ≤ x ≤ 1
T a(1, t) = 0, 0 ≤ t ≤ 1
αT a(L2, t) = g̃2(t), 0 ≤ t ≤ 1

(2.8)

We can note that solving problem (2.8) is equivalent to solve problem (2.6) where T a(x, t) is
replaced by αT a(x, t). It follows that

(K(αf)) (t) = αT a(x = L2, t)
= αg̃2(t)
= α (Kf) (t)

The last equality hold since g̃2(t) = (Kf) (t) which shows that the operator K is homoge-
neous.

Remark 2.1: The operator K̃(g3) defined in Definition 2.2 is non linear

Proof : From Definition 2.2 and 2.3 it follows that(
K̃(g3)f

)
(t) = T (x = L2, t)

= T a(x = L2, t) + T b(x = L2, t)
= (Kf) (t) + T b(x = L2, t)

Where K is the linear operator defined in Definition 2.3 and T b(x, t) is the solution of sub-
problem (2.7) which depends on initial temperature T0 and the temperature at the boundary
x = L3, g3(t). In fact, we see that K̃(g3) is an affine operator, by assuming that T b(x = L2, t)
is known.

Proposition 2.1: The problem of finding the solution T (x, t) that satisfies the problem (2.1)
for given initial and boundary conditions is the direct problem which is well-posed problem.
That is there exist at least one such T (x, t), which should be at most one, and finally contin-
uously depends on the data of the problem.
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Proof : First we prove the uniqueness of T (x, t). Let us assume that there exist two different
solutions, T1(x, t) and T2(x, t) of the problem (2.1) and also define u(x, t) = T1(x, t)−T2(x, t)
to be their difference. And let us define the energy function associated with u(x, t) as follows:

E(t) :=
∫ 1

0
u2(x, t)dx (2.9)

According to the superposition principle, u(x, t) must also be the solution to the problem
(2.1). Then we have: 

(a(x)ux)x = ut, 0 ≤ t ≤ 1, 0 ≤ x ≤ 1
u(x, 0) = 0, 0 ≤ x ≤ 1
u(0, t) = 0, 0 ≤ t ≤ 1
u(1, t) = 0, 0 ≤ t ≤ 1
u(L, t) = 0, 0 ≤ t ≤ 1

(2.10)

We need to show that T1(x, t) and T2(x, t) are identical. To do so let multiply the above
partial differential equation given in (2.10) by u(x, t) and integrate both sides with respect
to x in the domain 0 ≤ x ≤ 1, this can be simply written as:∫ 1

0
utudx =

∫ 1

0
(a(x)ux)x udx (2.11)

By integrating by part the right hand side of the equation (2.11) we have∫ 1

0
utudx = [a(x)uxu]10 −

∫ 1

0
a(x)u2

xdx (2.12)

By using the boundary conditions, u(0, t) = u(1, t) = 0, given in (2.10) and simplifying the
left hand side of (2.12) we get ∫ 1

0

(1
2u

2
)
t
dx = −

∫ 1

0
a(x)u2

xdx (2.13)

Let assume that u(x, t) and ut(x, t) are continuous functions, then the time derivative in
equation (2.13) can be pulled out and thus we have

d

dt

∫ 1

0

(1
2u

2
)
dx = −

∫ 1

0
a(x)u2

xdx ≤ 0 (2.14)

Since, the right hand side of equation (2.14) is less than or equal to zero, hence
∫
u2(x, t)dx

is decreasing function of time. Then∫ 1

0
u2(x, t)dx ≤

∫ 1

0
u2(x, 0)dx (2.15)

for t ≥ 0. By using the initial condition, u(x, 0) = 0, we have
∫
u2(x, t)dx = 0. Therefore

u(x, t) ≡ 0 and T1(x, t) = T2(x, t) for t ≥ 0. Therefore, if T (x, t) exist should be unique.
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Secondary, we need to prove the stability of the problem, that is the initial and bound-
ary conditions are well formulated. Here we use also the energy method by assuming that
T (0, t) = T (1, t) = 0 and the initial temperature to be a function of x, i.e T (x, 0) = ζ(x). Let
T1(x, 0) = ζ1(x) and T2(x, 0) = ζ2(x), then u(x, t) = T1(x, t) − T2(x, t) is the solution with
initial value temperature [ζ1(x, 0)− ζ2(x, 0)]. Then from equation (2.15) we get the stability
in square integral sense, that is∫ 1

0
(T1(x, t)− T2(x, t))2dx ≤

∫ 1

0
(T1(x, 0)− T2(x, 0))2dx (2.16)

Then from equation (2.16) we can note that the variation in the solutions at any later time
is less than the variation in the initial data for two solutions, since the quantities on left
side and right side of (2.16) measure the nearness of the solutions at any later time and the
nearness of the initial data for two solutions, respectively. Therefore, if we start nearby t = 0,
we stay nearby. Hence, any small perturbation in the initial data will result to the small
perturbation in the solution.

Remark 2.2: Here in the thesis we discussed the stability of the problem (2.1) by using initial
condition T (x, 0). However, the effects of disturbance in the boundary conditions, i.e x = 0
and x = 1 should be also addressed, but we refer to [6] where the maximum principle have
been used to show that disturbances.

Proposition 2.2: (Shift invariance) The operator K defined in Definition 2.3 is time shift
invariant i.e Kf(t− t0) = g̃2(t− t0) for t0 > 0.

Proof : Let for t0, f̂(t) = f(t−t0) be the boundary condition of the problem (2.6) at x = 0 for
time (t− t0) and due to the initial condition we have f(0) = g̃2(0) = 0 and also g̃2(0) = f̂(0)
is valid solution. By Definition 2.3, it follows that(

Kf̂
)

(t) = (Kf) (t− t0)

= g̃2(t− t0)

then for f̂(t),
(
Kf̂

)
(t) = ĝ2(t) where ĝ2(t) = g̃2(t− t0).

2.2 Discretization using finite differences

In this section we seek to approximate the partial differential equation given in (2.6) with
another expression which prescribe values at only a finite number of discrete points of some
given space and time domains. Thus, in this thesis the finite difference method which consists
on replacing the derivatives in differential equations with finite difference approximations was
used. This method is based on Taylor’s series expansions. This gave a large finite algebraic
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system of equation to be solved instead of partial differential equation, and the computer is
needed to find its numerical solution with some initial condition and boundary conditions on
the boundaries of those domains, [18, 32, 33, 34].

Assume that the function T (x, t) is sufficiently smooth function in x and in t and define the
equidistant grid space and time domains Ω = {x|x = xi = i∆x, i = 0, 1, · · · , n; for n∆x =
1} and Ω′ = {t|t = tj = j∆t, j = 0, 1, · · · , N ; for N∆t = 1} with space and time step size
∆xand ∆t on the interval [0, 1], respectively.

Let T ji denotes T (x, t) at point (xi, tj), thus T ji−1 and T ji+1 can be calculated in terms of
Taylor series expansion of T (x, t) around the arbitrary point (i, j) i.e (xi, tj) just to simplify
the notation. Hence,

T ji±1 = T ji ±∆x (Tx)ji + (∆x)2

2 (Txx)ji ±
(∆x)3

3! (Txxx)ji +O((∆x)4) (2.17)

From the equation (2.17) we approximate (Tx)ji by using left difference derivative noted as
T̃x̄ here

T̃x̄ ≡
T ji − T

j
i−1

∆x = (Tx)ji −
∆x
2 (Txx)ji +O((∆x)2) (2.18)

The same from the equation (2.17) we approximate (Tx)ji by using right difference derivative
noted as T̃x here

T̃x ≡
T ji+1 − T

j
i

∆x = (Tx)ji + ∆x
2 (Txx)ji +O((∆x)2) (2.19)

In addition (Tx)ji can be obtained by using central difference formula and then it can be
written as

(Tx)ji = T ji+1 − T
j
i−1

2∆x +O((∆x)2) (2.20)

which is second order central difference equation. And also (Txx)ji can be approximated by
summing the left finite derivative and right finite derivative of T (x, t) form equation (2.17)
and solve for (Txx)ji this yield a second order accurate central finite difference equation

(Txx)ji = T ji+1 − 2T ji + T ji−1
(∆x)2 +O((∆x)2) (2.21)

Moreover, (Tt)ji can be approximated using for instance forward difference equation as

(Tt)ji = T j+1
i − T ji

∆t +O(∆t) (2.22)

Now, the partial differential equation given in the problem (2.6) rewritten below as

Tt = (a(x)Tx)x , a(x) > 0 (2.23)

can be reduced to
Tt = a(x)xTx + a(x)Txx, a(x) > 0 (2.24)
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The discrete form of equation (2.23) is obtained follows the same approach used in [18] by
defining the one-dimensional operator

AT = (a(x)Tx)x (2.25)

and use the difference expression

(a(x)Tx)x = ai+1

∆x T̃x −
ai

∆xT̃x̄ (2.26)

with T̃x̄ and T̃x defined in equation (2.18) and (2.19), respectively. Therefore by consider,
equations (2.18) and (2.19) we get the following

(a(x)Tx)x = ai+1 − ai
∆x (Tx)i + ai+1 + ai

2 (Txx)i +O((∆x)2) (2.27)

Thus, the coefficient ai can be obtained by comparing the equations (2.24) and (2.27) which
yield to

ai+1 − ai
∆x = a(x)x +O((∆x)2) (2.28)

ai+1 + ai
2 = a(x) +O((∆x)2) (2.29)

Hence, the dicritization of equation (2.23) is obtained by inserting equation (2.22), (2.21),
(2.28), and (2.29) into equation (2.24) and obtain the following:(

T j+1
i − T ji

∆t

)
= ai+1 − ai

2(∆x)2

(
T ji+1 − T

j
i−1

)
+ ai+1 + ai

2(∆x)2

(
T ji+1 − 2T ji + T ji−1

)
(2.30)

After some rearrangement of equation (2.30) we obtain

T j+1
i = raiT

j
i−1 + [1− r(ai+1 + ai)]T ji + rai+1T

j
i+1 (2.31)

where r = ∆t/(∆x)2, for i = 1, 2, · · · , n and j = 0, 1, · · · , N and this gives an explicit
method for solving the given partial differential equation.

Despite the fact that the explicit method given in equation (2.31) is simple to be imple-
mented it has one serious disadvantage, that is the time step ∆t should be necessarily very
small because the method is conditional stable since the computationally process is valid
only for 0 < ∆t/(∆x)2 ≤ 1

2 , thus ∆x should be kept small as much as possible so that the
method is valid. Therefore, Crank and Nicloson suggested in [35] a satisfactory method of
numerical evaluation of solutions of partial differential equations of the heat conduction type
and their method is unconditional stable for any r > 0, [32, 34].

Therefore, the scheme of the Crank-Nicloson to solve the partial differential equation is to
consider partial differential equation as being satisfied at the point (i∆x, (j+ 1

2)∆t), in other
words the partial derivatives are replaced by the mean of its finite difference approximations
at jth and (j + 1)th time levels, [32, 34, 35]. Thus, T ji−1, T

j
i , and T ji+1 on right hand side

of equation (2.31) are approximated by their average properties between time levels jth and
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(j + 1)th and the coefficient ai by their average between the space levels ith and (i+ 1)th and
perform some rearrangement, that yield the Crank-Nicloson implicit scheme:

− rβT j+1
i−1 + (2 + rν)T j+1

i − rµT j+1
i+1 = rβT ji−1 + (2− rν)T ji + rµT ji+1 (2.32)

where β = (ai+1 + ai) , ν = (ai+2 + 2ai+1 + ai), and µ = (ai+2 + ai+1) . When equation (2.32)
is evaluated sequentially at each grid, then we get the following linear system of algebraic,
with unknowns T j+1

i for i = 1, 2, · · · , (n− 1) and j = 0, 1, · · · , (N − 1).

(2 + rν) −rµ
−rβ (2 + rν) −rµ

−rβ (2 + rν) −rµ
. . . . . . . . .

−rβ (2 + rν)





T j+1
1

T j+1
2
...

T j+1
n−2

T j+1
n−1


=



(2− rν) rµ

rβ (2− rν) rµ

rβ (2− rν) rµ
. . . . . . . . .

−rβ (2− rν)





T j1
T j2
...

T jn−2

T jn−1


+



2T j0
0
...
0

2T jn


(2.33)

Here T j0 and T jn for all j = 0, 1, · · · , N are known values from the boundary conditions and
T 0
i are known values for all i = 0, 1, · · · , n from initial condition. The equation (2.33) can

be written as AT j+1
i = BT ji where A and B are the matrices on the right hand side and left

hand side of equation (2.33), respectively. We can note that the computation of T j+1
i from

the equation (2.33) the computer is needed, hence the author developed a MATLAB solver1,
that implement the Crank-Nicolson to compute the temperature distribution T (xi, tj) in the
material, that is temperature at each grid point (i, j) for given boundary conditions and
initial condition.

2.3 Linear discrete problem

Let the problem (2.6) rewritten as

(a(x)Tx)x = Tt, 0 ≤ t ≤ 1, 0 ≤ x ≤ 1
T (0, t) = f(t), 0 ≤ t ≤ 1
T (x, 0) = 0, 0 < x < 1
T (1, t) = 0, 0 ≤ t ≤ 1
T (L2, t) = g2(t), 0 ≤ t ≤ 1

(2.34)

1This MATLAB solver can be obtained from the author by the request on the following e-mail address:
pingenda9@gmail.com

pingenda9@gmail.com
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where we use T (x, t) and g2(t) instead of T a(x, t) and g̃2(t) just for simple notation. The
problem (2.34) can be reformulated as linear discrete problem Kf = g2, where K is the
linear operator defined in Definition 2.3 which map the surface temperature f(t) to another
function of temperature measured at one location x = L2, g2(t) = T (x = L2, t) as shown
in Fig.2.2. So for given equidistant grid domain Ω = {0 = x1 < x2 · · · < xn = 1} and time
computational grid domain Ω′ = {0 = t1 < t2 · · · < tN = 1}, we then have discrete vectors
f = [f(t1), f(t2), · · · , f(tN−1), f(tN)]T and g2 = [g2(t1), g2(t2), · · · , g2(tN−1), g2(tN)]T ; thus
the problem (2.34) is written as system of linear equation

Kf = g2 (2.35)

where K is N ×N matrix, f and g2 are N × 1 vectors.

Lemma 2.3: The matrix K can be obtained from the standard basis, {ei} of the space RN

and shift invariance property, Proposition 2.2 of K.

Proof : From (2.35), the vector f can be written as f = ∑N
i=1 f(ti)ei then (2.35) becomes

K

(
N∑
i=1

f(ti)ei
)

=
N∑
i=1

K (f(ti)ei) (2.36)

N∑
i=1

f(ti)K(ei) = g2(ti) (2.37)

for i = 1, 2, · · · , N we can see that in order to evaluate the matrix-vector product Kf we
need the vectors K(ei). Since K(ei) = K(:, i) then the above equation (2.37) can be written
as system of equations

[
K(:, 1), · · · , K(:, N)

] 
f(t1)
...

f(tN)

 =


g2(t1)

...
g2(tN)

 (2.38)

To obtain K(:, 1) we first computed the temperature distribution T (x, t) in the material by
solving the well-posed problem corresponding to (2.34) by using the Crank-Nicloson scheme
given in equation (2.33) for given boundary conditions T (0, t) = e1, and T (1, t) = 0 where
e1 is the vector [0, 1, 0, · · · , 0]T due to the initial condition f(t = 0) = 0. Therefore, we
set K(:, 1) = T (x = L2, t) where T (x = L2, t) is the temperature calculated at the position
x = L2 from Crank-Nicloson scheme and in the same way for ei we can compute each K(:, i)
for i = 2, 3, · · · , N . But there is an efficient way to obtain the remaining column vectors of
matrix K knowing only K(:, 1) due the time shift invariant property of the linear operator
K as follows:

Let K(:, 1) = k = [k1, k2, · · · , kN−1, kN ]T then the matrix K is given by

Ki,j =

ki−j+1, if i≥ j

0, Otherwise
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that is

K =



k1 0 0 0 · · · 0
k2 k1 0 0 · · · 0
k3 k2 k1 0 · · · 0
... ... ... . . . . . . ...

kN−1 kN−2 kN−3
. . . . . . 0

kN kN−1 kN−2 · · · · · · k1


(2.39)

and this matrix can be computed by using the developed MATLAB solver2.

Definition 2.4: A matrix A is called Toeplitz if it is constant along diagonals, [22, 36].

According to Definition 2.4 the matrix K is lower triangular Teopltiz matrix, and the Fig.2.3
shows the time shift invariant property of matrix K by representing its first and twentieth
column vectors.

Fig. 2.3: First and twentieth column vectors of 500× 500 matrix K

2.4 Regularization of the discrete problem

Suppose we want to solve for f from ill-posed problem (2.35) rewritten as Kf = gδ2 where
the exact data g2 is not available but its noisy version, gδ2 with

gδ2 = Kf + η (2.40)

is available such that
∥∥∥gδ2 − g2

∥∥∥ ≤ δ, where η is normally distributed perturbation of variance
δ representing error in the data with known noise level δ, and

δ
def= ‖η‖ > 0. (2.41)

2This MATLAB solver can be obtained from the author by the request on the following e-mail address:
pingenda9@gmail.com

pingenda9@gmail.com
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In the sense of Definition 1.1, if the operator K−1 is unbounded then K−1gδ2 is not good
approximation of K−1g2 since K being ill-conditioned it will amplifies the errors in the
solution; thus we need to replace the ill posed-problem by another well posed problem that
involves a small parameter λ so that it can be solved in a stable way and its solution f δλ tends
to f of the original problem (2.35) as the noise level δ tends to zero for small regularization
parameter λ, that process is defined as regularization. In other words, a regularization of K−1

is to replace the unbounded operator K−1 by a new bounded parameter-dependent family
{Rλ} of continuous operator and the best approximation of f is to set f δλ to be Rλg

δ
2 which

now can be computed in stable way since Rλ is bounded, as given in the following Definition
2.5.

Definition 2.5: (Regularization)Let K:X−→ Y be a bounded linear operator between the
spaces X and Y , λ0 ∈ [0,+∞). Now for every λ ∈ (0, λ0), let

Rλ : Y −→ X

be a continuous(not necessary linear) operator. The family Rλ is called a regularization for
K−1, if for all g2 belong in domain of K−1, there exist a parameter choice rule λ = λ(δ, gδ2)
such that

lim
δ→0

sup
{∥∥∥Rλ(δ,gδ2)g

δ
2 −K−1g2

∥∥∥ |gδ2 ∈ Y, ∥∥∥gδ2 − g2

∥∥∥ ≤ δ
}

= 0 (2.42)

holds. And λ : R+ × Y −→ (0, λ0) such that

lim
δ→0

sup
{
λ(δ, gδ2)|gδ2 ∈ Y,

∥∥∥gδ2 − g2

∥∥∥ ≤ δ
}

= 0 (2.43)

For a specific g2 belong in the domain of K−1, a pair (Rλ, λ) is called a convergent regular-
ization method for solving Kf = gδ2 if equation (2.42) and (2.43) hold, [9].

Definition 2.6: (Singular Value Decomposition(SVD)) If K is m × n matrix, then
there exist orthogonal matrices U = (u1, u2, · · · , um) ∈ Rm×m and V = (v1, v2, · · · , vn) ∈
Rn×n such that K = UΣV T with Σ = diag(σ1, · · · , σp) ∈ Rm×n, p = rank(K) ≤ min{m,n},
where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Where σi are singular values of matrix K, ui and vi are left and right singular vectors of
matrix K, respectively; such that UT = U−1 and V T = V −1, thus from that fact we have
K−1 = V Σ−1UT = V diag(σ−1

i )UT , this can be found in [22] for example or any standard
book on Linear Algebra for more details.

Corollary 2.1: If K = UΣV T is the SVD of K ∈ Rm×n and m ≥ n, then for i = 1, 2 · · · , n
Kvi = σiui and KTui = σivi.
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Now by using equation (2.40) and Definition 2.6 we can compute the approximation of K−1gδ2
as follows:

K−1gδ2 = K−1Kf +K−1η

= f + V diag(σ−1
i )UTη

= f + [v1, · · · , vn]diag(σ−1
1 · · ·σ−1

n )


uT1
...
uTn

 η
= f + v1σ

−1
1 uT1 η + · · ·+ vnσ

−1
n uTnη

= f +
n∑
i=1

σ−1
i (uTi η)vi

We can see that
K−1gδ2 = f +

n∑
i=1

σ−1
i (uTi η)vi (2.44)

It is clear that K−1gδ2 is unstable, i.e, ill-conditioned due to the division of smaller singular
values in equation (2.44), thus a more sophisticated approach is needed to handle that insta-
bility. Therefore, in [23] it was proposed that to deal with that instability we should multiply
σ−1
i in equation (2.44) by filtering function ωλ(σ2

i ) such that ωλ(σ2
i )σ−1

i −→ 0 as σ −→ 0.
And this yields the good approximation f δλ of f given as

f δλ =
n∑
i=1

ωλ(σ2
i )σ−1

i (uTi gδ2)vi (2.45)

And such regularizing filter function is

ωλ(σ2
i ) =

1, if σ2
i > λ

0, if σ2
i ≤ λ

and then the equation (2.45) becomes

f δλ =
∑
σ2
i>λ

σ−1
i (uTi gδ2)vi

which is known as the Truncated Singular Value Decomposition(TSVD) solution of Kf = gδ2
and this will filter away all singular components corresponding to smaller singular values,
and another regularizing filter function is given by the equation (2.54) below.

2.4.1 Tikhonov regularization

In this part we look on the specific regularization method proposed by Tikhonov, see [24],
where the Tikhonov regularization approach is to replace the ill-posed problem K(f) = gδ2
by the more stable problem

min
f∈X

{∥∥∥Kf − gδ2∥∥∥2

2
+ λ2 ‖f‖2

2

}
(2.46)

for given regularization parameter λ and also (2.46) is known as Tikhonov functional.
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Proposition 2.3: : If K is m × n matrix, m ≥ n with p = rank(K) ≤ n and K = UΣV T

be the SV D of K. Then

(i) The unique minimizer of the Tikhonov functional (2.46) is the solution of the normal
equation

(KTK + λ2In)f = KTgδ2 (2.47)

where In is n × n identity matrix. Moreover, solving this normal equation is not ill-
conditioned provided that λ is chosen appropriately.

(ii) The regularized solution of (2.35) where g2 is not available but its noisy version gδ2 is
available, is given by the formula

f δλ =
p∑
i=1

σi(uTi gδ2)
σ2
i + λ2 vi (2.48)

Proof : Let Φ(f) =
∥∥∥Kf − gδ2∥∥∥2

2
+λ2 ‖f‖2

2, r = Kf−gδ2 be the residual vector, h be arbitrary
vector in Rn and ε > 0 be a small positive parameter. Then the minimizer of Φ(f) must
satisfy

∂

∂ε
Φ(f + εh)|ε=0 = 0 (2.49)

thus

Φ(f + εh) =
∥∥∥K(f + εh)− gδ2

∥∥∥2

2
+ λ2 ‖(f + εh)‖2

2

= ‖r‖2
2 + 2ε 〈r,Kh〉+ ε2 ‖Kh‖2

2 + λ2
(
‖f‖2

2 + 2ε 〈f, h〉+ ε2 ‖h‖2
2

)
(2.50)

By using equation (2.50) and condition (2.49) we have

2 〈r,Kh〉+ 2λ2 〈f, h〉 = 0
⇐⇒

〈
KT r, h

〉
+ λ2 〈f, h〉 = 0

⇐⇒
〈
KT r + λ2f, h

〉
= 0 (2.51)

Since h is arbitrary, it follows from the equation (2.51) that KT r + λ2f = 0, then

KT (Kf − gδ2) + λ2f = 0
⇐⇒ KTKf + λ2f = KTgδ2

⇐⇒ (KTK + λ2In)f = KTgδ2 (2.52)

Hence the proof of (i) in equation (2.52). It follows also that f δλ is given by

f δλ = Rλg
δ
2 (2.53)
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where Rλ = (KTK + λ2In)−1KT . Using K = UΣV T , we have

Rλ =
(
V Σ2V T + λ2V InV

T )−1V ΣUT

=
[
V
(
Σ2 + λ2In

)
V T

]−1
V ΣUT

= V
(
Σ2 + λ2In

)−1
V TV ΣUT

=
p∑
i=1

(
σ2
i

σ2
i + λ2

1
σi

)
uTi vi

By inspection it is clear that Rλ −→ K−1 as λ −→ 0. Therefore, from (2.53) it follows that

f δλ = Rλg
δ
2 =

p∑
i=1

(
σ2
i

σ2
i + λ2

1
σi

)(
uTi g

δ
2

)
vi

=
p∑
i=1

σi(uTi gδ2)
σ2
i + λ2 vi

Moreover, the regularized solution f δλ given in (2.48) can be obtained by multiplying the
equation (2.45) with the regularization filter function known as Tikhonov filter function, [23]

ωλ(σ2
i ) = σ2

i

σ2
i + λ2 (2.54)

to dump out the smaller singular values in equation (2.45).

Proposition 2.4: The application of Tikhonov filter function ωλ(σ2
i ) to σ−1

i , ωλ(σ2
i )σ−1

i is
bounded by λ−1.

Proof : For fixed σ
ωλ(σ2)σ−1 = 1

σ + λ2

σ

(2.55)

now here we consider two cases where σ2 > λ2 and σ2 ≤ λ2 and we have the following the
following:

1. First case: For σ2 > λ2 we have σ > λ since σ and λ are positive numbers then
σ + λ2

σ
> λ and from (2.55) we have

ωλ(σ2)σ−1 = 1
σ + λ2

σ

<
1
λ

(2.56)

2. Second case: For σ2 ≤ λ2 we have σ ≤ λ, since σ and λ are positive numbers then
σ + λ2

σ
≥ λ, and also from (2.55) we have:

ωλ(σ2)σ−1 = 1
σ + λ2

σ

≤ 1
λ

(2.57)

Therefore, from (2.56) and (2.57) we conclude that ωλ(σ2)σ−1 ≤ λ−1.
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Remark 2.3: When we have a-priori information about the solution of inverse problem, the
equation (2.46) becomes

min
f∈X

{∥∥∥Kf − gδ2∥∥∥2

2
+ λ2 ‖Lf‖2

2

}
(2.58)

where L is a discritized differential n× n operator.

Therefore, (2.58) is known as generalized Tikhonov regularization form of the problem
K(f) = gδ2, [22, 23].

2.4.2 Parameter choice rule

From the Definition 2.5 we have seen that the family {Rλ} of continuous operator should
be chosen such that

∥∥∥Rλ(δ,gδ2)g
δ
2 −K−1g2

∥∥∥ → 0 as
∥∥∥gδ2 − g2

∥∥∥ ≤ δ → 0 that is f δλ = Rλg
δ
2 →

f = K−1g2. Intuitively, as the noise level δ tends to zero more information present in gδ2 can
be considered reliable, and should be used. Therefore the rule for selecting regularization
parameter λ should depend on δ and possibly on gδ2. Hence the following definition:

Definition 2.7: If the regularization parameter λ depends only the noise level, i.e, λ = λ(δ)
then λ(δ) is called a-priori parameter choice rule. While, if the regularization parameter
λ depend on noise level δ and the noisy data gδ2, i.e, λ = λ(δ, gδ2) then λ(δ, gδ2) is called
a-posteriori parameter choice rule.

In fact, the regularization parameter λ should be chosen such that we are guaranteed that
regularized solution error Eλ, i.e, sum of the solution truncation error due to regularization
Etrunc
λ , and the noise amplification error Enoise

λ converge to zero as the noise level δ tends to
zero, [23]. By definition, the regularized solution error is given as

Eλ
def= f δλ − f (2.59)

Now, using equation (2.40) and (2.45) and Corollary 2.1 we have the following

Eλ =
n∑
i=1

ωλ(σ2
i )σ−1

i σiv
T
i f − (vTi f)vi +

n∑
i=1

ωλ(σ2
i )σ−1

i (uTi η)vi

=
n∑
i=1

(
ωλ(σ2

i )− 1
) (
vTi f

)
vi +

n∑
i=1

ωλ(σ2
i )σ−1

i (uTi η)vi

= Etrunc
λ + Enoise

λ

where

Etrunc
λ =

n∑
i=1

(
ωλ(σ2

i )− 1
) (
vTi f

)
vi (2.60)

Enoise
λ =

n∑
i=1

ωλ(σ2
i )σ−1

i (uTi η)vi (2.61)
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Since for any fixed σ the Tikhonov filter function given in (2.54) tends to 1 as λ tends 0 then
we can conclude from (2.60) that the solution truncation error Etrunc

λ due to regularization
goes to zero as regularization parameter λ goes to zero, that is

Etrunc
λ −→ 0 as λ −→ 0. (2.62)

Furthermore, using equation (2.41) and Proposition 2.4 we can see that the noise amplification
error defined in (2.61) is bounded by λ−1δ as follows: From (2.61) we have

∥∥∥Enoise
λ

∥∥∥2

2
≤ max

(
ωλ(σ2

i )σ−1
i

)2 n∑
i=1

(
uTi η

)2

≤
(
λ−1

)2
‖η‖2

2 = λ−2δ2

Thus, we have ‖Enoise
λ ‖2 ≤ λ−1δ. Therefore, if we choose λ = δp with 0 < p < 1 then

‖Enoise
λ ‖2 −→ 0 as δ −→ 0. Hence, one can have the following regularization priori parameter

choice rule
λ = λ(δ) = δp, 0 < p < 1 (2.63)

that will guarantee that Eλ −→ 0 as δ −→ 0 since Etrunc
λ + Enoise

λ . However, there is a-
posteriori parameter choice rule that has attained a widespread interest in the literature, for
instance in [9, 23, 25, 37], that is the discrepancy principle due to Morozov [38] where the
regularization parameter depends on both

∥∥∥Kf δλ − gδ2∥∥∥2
and the noise level, δ; that is

λ = λ(δ, gδ2) := sup
{
λ > 0|

∥∥∥Kf δλ − gδ2∥∥∥2
≤ δ

}
(2.64)

In addition, another a-posteriori parameter choice rule so-called L-curve criterion was ad-
vocated by Hansen, see [25, 39, 40], it consists of plotting in a double logarithmic scale the
norm or semi-norm

∥∥∥f δλ∥∥∥2
of the regularized solutions versus the residuals norm

∥∥∥Kf δλ − gδ2∥∥∥2
in which its graph is typically looks like the shape of the letter L as shown in the Fig.2.4,
and the method has been used for instance in [9, 23, 37].

Fig. 2.4: The generic form of L-curve, adopted from [25]
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The important feature basis for the L-curve criterion for choosing the regularization param-
eter, was proposed in [37, 39, 40] that a point on the graph near the corner of the L-curve
represents a reasonable compromise between minimization of

∥∥∥f δλ∥∥∥2
and

∥∥∥Kf δλ − gδ2∥∥∥2
and

hence the good regularization parameter λ is one that corresponds to a regularized solution
near the "corner" of the L-curve since in that region we achieve a small residual norm and
keeping the solution semi-norm reasonably small, i.e, we are looking a fair balance in keeping
both of these values small as possible; as well the algorithm for finding out the corner point
of L-curve was developed, see [37, 40].
Furthermore, for more details about L-curve method for analysis of discrete ill-posed prob-
lems, especially the convergence properties of L-curve regularization parameter selection and
its limitations, we refer to [41, 42] for the case of Tikhonov regularization.

2.4.3 Numerical experiments

In this part three numerical experiments are presented in order to illustrate the usefulness
of the Tikhonov regularization theory presented in Section 2.4.1 and the test problems have
been solved using MATLAB software3. The tests were constructed in the following way:
First we have selected boundary data T (0, t) = f(t) and T (1, t) = 0 for 0 ≤ t ≤ 1, and
calculate the data vector g = T (x = L2, t) by solving a well-posed boundary value problem
(2.34) on the interval 0 ≤ x ≤ 1, using the Crank-Nicloson implicit scheme as described in
Section 2.2, then we added a normally distributed perturbation η to data vector g to obtain
the noise data vector gδ = g + δ ∗ η to be used in estimation of surface temperature f from
Kf = gδ, where K is 1000× 1000 matrix obtained using Lemma 2.3 and description given in
equations (2.36-2.39), f and gδ are 1000× 1 vectors for all the following test problems Test
1, 2, and 3. Besides, the regularization parameters used were chosen according the L-curve
criterion presented in Fig.2.4.

Test 1: The problem (2.34) was solved using T (0, t) = f(t) shown in Fig.2.5(a) as the
exact solution with variable coefficient function,

a(x) = 1 + 0.3 cos(x2); 0 ≤ x ≤ 1 (2.65)

Also we used the data vector gδ shown in Fig.2.5(b) whose length of 1000 which included a
normally distributed perturbation of variance δ = 10−3. The results from this test are shown
in Fig.2.9(b).

Test 2: We solved the problem (2.34) using the function T (0, t) = f(t) shown in
Fig.2.6(a) as the exact solution with variable coefficient,

a(x) = 1 + (1− x2), 0 ≤ x ≤ 1 (2.66)
3The MATLAB solver used in numerical computation can be obtained from the author by the request

on the following e-mail address: pingenda9@gmail.com

pingenda9@gmail.com


2. Estimation of surface temperature 29

and the data vector g = T (0.8, t) whose length of 1000 which included a normally distributed
perturbation of variance of 8 ∗ 10−4 shown in Fig.2.6(b) was used. The results from the test
are presented in Fig.2.9(d).

(a) (b)

Fig. 2.5: The left subplot is the exact solution data function T (0, t) = f(t) with 0 ≤ t ≤ 1, and the right
subplot is its corresponding noisy data vector T (0.7, t) = g(t) which added some noise data with
noise level δ = 10−3.

(a) (b)

Fig. 2.6: The left subplot is the exact solution data function T (0, t) = f(t) with 0 ≤ t ≤ 1 and the right
subplot is its corresponding noisy data vector T (0.8, t) = g(t) which added some noise data with
noise level δ = 8 ∗ 10−4.

Test 3: The problem (2.34) was solved using T (0, t) = f(t) shown in Fig.2.7(a) as the
exact solution with variable coefficient

a(x) = 0.5 + 0.5(1− cos(x))2, 0 ≤ x ≤ 1 (2.67)

with the data vector g = T (0.3, t) whose length of 1000 which added a normally distributed
perturbation of variance of 10−3 displayed in Fig.2.7(b) and the the results from the test are
given in Fig.2.9(f).
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(a) (b)

Fig. 2.7: The left subplot is the exact solution data function T (0, t) = f(t); 0 ≤ t ≤ 1 with oscillation
frequency of 4π and the right subplot is its corresponding noisy data vector g = T (0.3, t) which
added some noise data with noise level δ = 10−3.

Fig. 2.8: The left top subplot shows the distribution of singular values σi of matrix K and the right top
subplot is semilogy plot of singular values of matrix K, the bottom left and right subplots are right
singular vectors v1 and v1000 corresponding to largest singular value σ1 and smallest singular value
σ1000 of matrix K respectively.

The Fig.2.8 represents graphically the distribution of singular values σi of matrix K from
Test 1 and it is clear that they are decaying gradually to zero which result in high condition
number κ(K) = 1.1593e+ 17 and also we can see that the right singular vectors of matrix K
have more sign changes in their elements as the σi decreases, then the problem of computing
f from Kf = gδ is an ill-posed and regularization is needed. Furthermore, the test problems
Test 2 and Test 3 are ill-posed.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.9: The top, middle and bottom left subplots show respectively the L curves for test problems Test 1,
Test 2, and Test 3. And also the top, middle, and bottom right subplot show the regularized solution
(solid-line) for Test 1, Test 2, and Test 3 with regularization parameters λ = 0.0032, 0.0100, and
0.0100 respectively obtained from L-curve analysis, and also the exact solution(dashed-line) are
displayed for each test problem.

2.5 Extension to multiple measurements

In this section we seek to improve the accuracy of the solution of the test problem Test 1
shown in Fig.2.9(b) and stability of the inverse problem by include more additional data in
estimation of surface temperature as follows: we solved the well posed problem (2.34) using
Crank-Nicloson implicit scheme with some given T (0, t) = f(t) and T (1, t) = 0 as boundary
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conditions to find the temperature distribution T (x, t) inside the material and thereafter the
temperature measured at location x = Li, T (Li, t) = gi(t) with 0 < Li < 1 for i = 1, 2, · · · ,m
as shown in Fig.2.10 were used in estimation of surface temperature T (0, t) = f(t) from the
problem (2.1), that is for m measurement points we have g(t) = (g1(t), · · · , gm(t)).
For given equidistant grid domain Ω = {0 = x1 < x2 · · · < xn = 1} and time computational
grid domain Ω′ = {0 = t1 < t2 · · · < tN = 1}, we have f = [f(t1), f(t2), f(t3), · · · , f(tN)]T

and g = [(g1(t1), · · · , g1(tN)), · · · , (gm(t1), · · · , gm(tN))]T and thus the problem (2.34) can be
written as system of linear equation Kf = g where f and g are N × 1, m ∗ N × 1 vectors,
respectively and K is the operator defined in Definition 2.8 below.

Fig. 2.10: Measurement points inside the material

Definition 2.8: We define the operator K : C0([0, 1]) −→ (C0([0, 1]))m that maps f(t) to
g(t) = (g1(t), g2(t), · · · , gm(t)) with gi(t) = T (Li, t) for i = 1, · · · ,m where T (x, t) satisfies
the problem (2.34) and 0 < Li < 1, that is (Kf) (t) = g(t). Where f and g are continuous
functions over [0, 1], and (C0([0, 1]))m is the product space of m C0([0, 1]).

Remark 2.4: The operator K defined in Definition 2.8 satisfies the Lemma 2.2, Proposition
2.1 and Proposition 2.2. That is the operator is linear, there exist unique T (Li, t) and the
operator is shift invariant in time.

Thus, for each i = 1, · · · ,m and j = 1, · · · , N the problem (2.34) is written as

Kif(tj) = gi(tj) (2.68)

where f and gi are N × 1 vectors and Ki is N ×N matrix obtained by using Lemma 2.4 and
Proposition 2.2 for each measurement point x = Li.

Lemma 2.4: Matrix Ki is lower triangular Teopltiz, and it can be obtained from the standard
basis, {ej} of the space RN and shift invariance property, Proposition 2.2.
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Proof : We write f as f = ∑N
j=1 f(tj)ej then 2.68 becomes

Ki

 N∑
j=1

f(tj)ej

 = gi(tj) (2.69)

N∑
j=1

Kj (f(tj)ej) = gi(tj) (2.70)

N∑
j=1

f(tj)Ki(ej) = gi(tj) (2.71)

Since Ki(ej) = Ki(:, j) then the equation 2.71 can be written as system of equation

[
Ki(:, 1), · · · , Ki(:, N)

] 
f(t1)
...

f(tN)

 =


gi(t1)

...
gi(tN)


where Ki(:, 1) is T (x = Li, t) with T (x, t) is the solution of the well posed problem (2.34)
obtained using Crank-Nicloson implicit scheme with T (0, t) = e1 and T (1, t) = 0 as boundary
conditions where e1 = [0, 1, 0, · · · , 0]T ; and then due the shift invariant property, for obtained
Ki(:, 1) = [k1, k2, · · · , kN ]T we have

Ki =



k1 0 0 0 · · · 0
k2 k1 0 0 · · · 0
k3 k2 k1 0 · · · 0
... ... ... . . . . . . ...

kN−1 kN−2 kN−3
. . . . . . 0

kN kN−1 kN−2 · · · · · · k1


(2.72)

that can be computed by using the same solver2 as for matrix given (2.39). Therefore, for m
measurement points the operator K defined in Definition 2.8 is m ∗N ×N matrix written as

K = [K1;K2; · · · ;Km] (2.73)

such that Kf = g, where f and g are N × 1, m ∗N × 1 vectors.

2.5.1 Numerical experiments

Test 4: The well posed problem (2.34) was solved using T (0, t) = f(t) shown in Fig.2.5(a)
as the exact solution with the same variable coefficient function as in (2.65) to have the
temperature distribution T (x, t) inside the material. In addition, to improve the accuracy of
the solution for one measurement presented in Fig.2.9(b) and stability of the inverse problem,
two additional measurement points, x = 0.5, and x = 0.6 were used to create the data
vector g = [T (x = 0.5, t), T (x = 0.6, t), T (x = 0.7, t)]T whose length of 3000 and added some
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normally distributed perturbation of variance δ = 10−3 to have the data vector with noise gδ

to be used in recovering f from discrete linear problem Kf = gδ; where K = [K1;K2;K3] is
3000× 1000 matrix that is computed based on Lemma 2.4 and equation (2.73) with K1, K2,
and K3 are matrices corresponding to the measurement x = 0.5, 0.6, and 0.7, respectively
as it was described from equations (2.68-2.72). The computational results 3 are presented in
Fig.2.12(b).

Moreover, the singular values and some singular vectors are represented graphically in
Fig.2.11 which shows that the singular values σi of matrix K resulting from three mea-
surement points are also decaying gradually to zero which result in high condition number
κ(K) = 3.0778e+16 and both singular vectors of K have more sign changes in their elements
as the σi tend to zero; then the problem of computing f from Kf = gδ is an ill-posed and
thus the regularization is needed.

Fig. 2.11: The left top subplot shows the distribution of singular values σi of matrix K and the right top
subplot is semilogy plot of singular values of matrix K, the middle left and right subplots are left
singular vectors u1 and u1000 corresponding to largest singular value σ1 and σ1000 of matrix K,
and the bottom left and right subplots are right singular vectors v1 and v1000 corresponding to
largest singular value σ1 and smallest singular value σ1000 of matrix K respectively.

Even though the test problem Test 4 is ill-posed, it is more stable than the test problem
Test 1 since the corresponding matrix K has small condition number κ(K) = 3.0778e + 16
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comparing to the test problem Test 1 for one measurement point whose its corresponding
matrix K has condition number κ(K) = 1.1593e+ 17.

Test 5: We solved the problem (2.34) using T (0, t) = f(t) shown in Fig.2.5(a) as
the exact solution with the same variable coefficient function as in (2.65) and also five
measurement points, x = 0.8, 0.85, 0.9, 0.95, and 1 were used to create the data vector
g = [T (x = 0.8, t), T (x = 0.85, t), T (x = 0.9, t), T (x = 0.95, t), T (x = 1, t) = 0]T whose length
of 5000 and added some normally distributed perturbation of variance δ = 10−3 to obtain
noisy data vector gδ to be used in estimation f from discrete linear problem Kf = gδ;
where K = [K1;K2;K3;K4;K5] is 5000×1000 matrix that is computed based on Lemma 2.4
and equation (2.73) with K1, · · · , K5 are matrices corresponding to the measurement points
x = 0.8, 0.85, 0.9, 0.95 and 1, respectively as it was described from equations (2.68-2.72).
The computational results3 are shown in Fig.2.12(d).

(a) (b)

(c) (d)

Fig. 2.12: The top, and bottom left subplots show respectively the L-curves for test problems Test 4, and Test
5 whose corresponding matrix K has condition number, κ(K) = 6.6248e + 16. And also the top,
and bottom right subplots show the regularized solution (solid-line) for Test 4, and Test 5 with
regularization parameters, λ = 0.0100, and 0.0032 respectively obtained from L-curve analysis,
and also the exact solution(dashed-line) are displayed for each test problem.

Furthermore, more measurement points were included in the experiment to investigate the
impact of using the additional data on the estimate of the surface temperature and the sta-
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bility of the inverse problem. The results shown in Fig.2.13 are the norm of the solution
errors,

∥∥∥f − f δλ∥∥∥2
and the residuals norm,

∥∥∥Kf δλ − gδ∥∥∥2
from nine experiments, where different

number of measurement points were taken into consideration, the results reveal that the more
you include more data the more the solution errors goes to zero, see Fig.2.13(a) and hence
the more the problem is stable, and also the residuals tends to zero as the regularization
parameter λ tends to zero, see Fig.2.13(b).

(a) (b)

Fig. 2.13: The left subplot shows the distribution of error between the exact and regularized solutions,∥∥fδλ − f∥∥2 from different nine numerical experiments, and right subplot shows the semilogx of
residuals,

∥∥Kfδλ − gδ∥∥2 and against regularization parameter, λ for different measurement points
used in estimation of surface temperature, T (x = 0, t) = f(t).



3. TEMPERATURE ESTIMATION ON A STEEL SURFACE

In this chapter we present an example from an industrial problem where the regularization
method presented in previous chapter is used to investigate the useful of an inverse method to
compute the surface temperature in a high temperature heating application. The usefulness
of the method is demonstrated by using the exact data of measured temperatures during an
experiment which was conducted and presented in [12].

3.1 Experimental setup

(a) A photograph of the
test furnace

(b) The dimensions of the test furnace and the po-
sition of the slabs

Fig. 3.1: Test furnace and its dimensions, adopted from [12]

A fuel fired test furnace and its dimensions used in experiment and the total of eight steel
slabs initially at 25oC with dimensions 100×80×22mm were heated in the test furnace shown
in Fig.3.1(a) where the temperature was approximately 1250oC with total inner volume of
0.39m3, and also the composition of the material of the steel slabs used are shown Tab
3.1. In addition, the furnace was equipped with a burner that produces heat at position F
and thermocouples at positions A, B, C, D and E respectively, see Fig.3.1(b). Lastly, to
take the measurements of the flue gas composition, the gas analyzers were also positioned
at acceptable positions. The maximum allowed heat density in the furnace was 200kW/m3

which allowed for a burner capacity of 78kW .
Moreover, to be able to read the temperature histories that were recorded by data acquisition
system, three thermocouples TC1, TC2, and TC3 were installed under the surface, i.e x = 0
at positions x = x1, x = x2 and x = x3 respectively in the center of the slab that is pointed,
see Fig.3.1(b) along the x-axis orthogonal to the top surface as shown in Fig.3.2.
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Fig. 3.2: The dimensions of the test slab equipped with thermocouples. The surface of the slab is positioned
at x = 0, adopted from [12]

Tab. 3.1: The composition of the steel used for these investigations, adopted from [12]

Element C Si Mn S P Cr Ni Mo Cu Al
Wt.% 0.06 0.01 0.38 0.035 0.017 0.022 0.055 0.030 0.08 0.001

3.2 Data and computational results

The industrial experiment presented in this thesis, thermocouples TC1, TC2, and TC3 were
positioned at locations x1 = 5mm, x2 = 25mm and x3 = 45mm below the surface and those
thermocouples gave the temperature histories gi=1,2,3(t), see Fig3.3(a), for 0 ≤ t ≤ 93.7s,
and the sampled data vectors of length 937 of the measured temperature histories at those
locations are displayed in Fig.3.3(b) where the time interval [0, 93.7] was scaled to [0, 1].

(a) (b)

Fig. 3.3: (a) shows the positions of the thermocouples TC1, TC2, and TC3 inside the material. and (b)
shows from the top, middle, and bottom the measured temperature histories inside the slab at
position x = 5mm, 25mm, and 45mm, respectively as shown in Fig.3.2.

To illustrate the useful of inverse method in estimation of surface temperature in real in-
dustrial application, the heat conduction equation in original problem (1.11) is rewritten
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as
Tt(x, t) = αTxx(x, t), α = κT0/cpρL

2 (3.1)

where α is the thermal diffusivity of the material, with T0 is the total time for the heating
experiment, and L is the distance to thermocouple from the surface, [43]. The thermal
conductivity, density, and specific heat capacity of the used material are κ = 30W/mK,
ρ = 7500kg/m3, and cp = 680Ws/kgK respectively and also the total time for the heating
experiment, T0 = 93.7s. In addition, the distance between the surface at x = 0mm and the
thermocouple TC1 is L1 = 5mm and the distance between the thermocouple TC1 at x = x1

and thermocouple TC2 at x = x2 is L2 = 20mm.
Even if, the purpose of the thesis is to estimate the surface temperature, T (x = 0, t)

we first test our developed method by comparing the measured and the calculated temper-
ature histories at position x1 = 5mm, where the temperature gradients at that position
x = x2 = 25mm, see Fig.3.4(c) was used to compute the heat fluxes shown in Fig.3.4(d)
at the same location, which served as boundary data for the inverse problem and it was
obtained by solving a well-posed boundary problem in the interval [x2, x3], the results from
comparison are given in Fig.3.5(b).

(a) (b)

(c) (d)

Fig. 3.4: The top left, and right subplots show respectively, the calculated temperature gradients and heat
fluxes at x1 = 5mm below the surface, and the bottom left, and right subplots show respectively, the
calculated temperature gradients and heat fluxes at x2 = 25mm below the surface.

Finally, to estimate the surface temperature, T (0, t) of the slab; the data recorded by ther-
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mocouples at position x = x1 and x = x2 have been used. The temperature gradients shown
in Fig.3.4(a) were used to calculate the heat fluxes shown in Fig.3.4(b) at position x = x1

which have been used as boundary data for inverse problem; and also more additional data,
heat fluxes at position x = x2 was included so that two data vectors, i.e, heat fluxes at
position x = x1 and at x = x2 have been used to estimate surface temperature T (0, t), the
results are displayed in Fig.3.6.

(a) (b)

Fig. 3.5: The left subplot is the L-curve, where the regularization parameter is λ = 0.0032, and the right
subplot shows the measured temperature histories (dashed-line) at x1 = 5mm below the surface of
the slab and the calculated temperature (solid-line) at x1 = 5mm below the surface of the slab.

The result from the comparison of the calculated and measured temperature by thermocou-
ple TC1 positioned at x1 = 5mm below the surface of the slab revealed that the average
difference between the measured and the calculated value is 4.9oC which is a very good result,
since the temperature histories ranged between 20oC to 800oC.

Fig. 3.6: The dashed-line is the estimated surface temperature, T (0, t), using the measured temperature
histories at one measurement point x1 = 5mm below the surface and the solid-line is the estimated
surface temperature, T (0, t), using the measured temperature histories at two measurement points,
x1 = 5mm and x2 = 25mm below the surface of the slab.



4. DISCUSSION AND CONCLUSION

The main objective of the thesis was to estimate the surface temperature of a steel slab
by solving an inverse heat conduction problem. However, in application, the surface itself is
inaccessible for direct measurements or locating a measurement device such as a thermocouple
on the surface would disturb the measurements so that an incorrect temperature measurement
is recorded. In this situation, we are restricted to interior measurements, from which we
approximated the surface temperature by solving an inverse heat conduction problem in
the region between the surface and a measurement point, because this process is strongly
influenced by the time dependent temperature and heat-flux close to the surface.

Thus, the Crank-Nicloson implicit scheme was used to compute temperature distribution,
T (x, t), inside the material, by treating the discritization both in space and in time of

(a(x)Tx)x = Tt, x, t ∈ [0, 1]

where a(x) is theoretical thermal diffusivity of the material, and the problem (2.6) was for-
mulated as linear discrete problem (2.35), Kf = gδ with K, f , and gδ are matrix and vectors
described in Section 2.3 and 2.5. Finally, Tikhonov regularization method given in Section
2.4.1 was implemented to recover the theoretical function f(t) from numerical experiments
in test problems Test 1 up to Test 5. Some results are summarized here in Fig.4.1 below.

In addition to numerical examples given in test problems Test 1, Test 4 and Test 5, other
numerical example was performed by using nine measurement points, x = 0.1, 0.2, · · · , 0.8, 0.9
to see the effect of using more interior measurement points and the effect of using the points
far from the surface, x = 0mm in estimation surface temperature, T (0, t). The norm errors
between the exact and the estimated solutions,

∥∥∥f − f δλ∥∥∥2
are 1.9375, 1.5752, 2.3123 and

0.5036 for the results displayed in Fig.4.1(a) to Fig.4.1(d). From this results we see that in
general the more we increase the number of measurement points in estimation of T (0, t), the
more we get the accurate results, the same conclusion can be made from results presented in
Fig.2.13(a).
However, from Test 5 where four measurement points x = 0.8, 0.85, 0.9, 0.95 including the
point where temperature is zero, x = 1, the high error of 2.3123 was observed. The physical
meaning of that result in heat treatment of steel is that the distance L to the measurement
point closest to the surface is the most important thing to consider in heat treatment of
steel, since L represents the amount of material that needed to be heated before a change in
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(a) (b)

(c) (d)

Fig. 4.1: The (a)-(c) subplots show the results from the numerical examples Test 1, Test 4 and Test 5. The
subplot (d) is the results obtained by using nine measurement points.

surface temperature is seen at the thermocouple. Thus, the larger L is, the more energy is
required to heat the material before the change in temperature is visible. Therefore, we can
conclude that using more measurement points improve the results, but it would be better if
the measurement points are closer to the surface.

Moreover, the developed method for estimation of surface temperature, T (x = 0, t) was
applied to a real industrial problem where the measured temperature histories inside the
steel slab at three position x1 = 5mm, x2 = 25mm and at x3 = 45mm, were taken during an
industrial steel quenching process published in [12]. In Section 3.2 the developed method was
used to calculate the temperature histories at x = 5mm below the surface, the result were
compared with the actual measured temperature at the same location and are presented in
Fig.3.5(b). Finally, T (x = 0, t) was estimated using the heat fluxes calculated at x1 = 5mm
and again using both heat fluxes calculated at x1 = 5mm and at x2 = 25mm as boundary data
of inverse problem, the results are shown in Fig.3.6. Even though, the measurements taken
inside the slab have some random noise, those random noise was dealt with the Tikhonov
regularization property of the inverse method.

Therefore as conclusion, based on the results obtained from all numerical experiments
presented and comparison between calculated and measured temperature from industrial
application, we can conclude that the Tikhonov regularization method works well, and it
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can be applied to the problems with variable coefficients. We also conclude that using more
additional measurement points improved the accuracy of the solution in estimation of surface
temperature as well as improving the stability of the inverse problem. Finally, we recommend
that the developed method can be used in similar industrial applications where the surface
itself is inaccessible for direct measurements or locating a measurement device for some
reasons in steel industries.
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