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abstract

The purpose of this thesis is to understand the connections between the
Catalan Numbers and Ribonucleic Acids (RNA) Secondary Structure. We
show in this thesis the mathematical wealth of the Catalan numbers from
several mathematical branches to one particular application in secondary
structure of RNA used in protein folding. The different ways codes folding
of RNA are represented. In particular, we show different representations of
the Catalan numbers from the aspect of traditional combinatorial counting
and generating functions as well as from classical function theory through
orthogonal polynomial system where linear algebra plays role in computa-
tion.
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Nomenclature

UR: University of Rwanda
LiU: Linköping University
RNA:Ribonucleic Acides
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Chapter 1

Introduction

We start this thesis by some brief presentations on the background of the
Calalan numbers and their properties and applications. We will also have a
short discussion on Ribonucleic acid.

1.1. Motivation and background of Catalan number

From various sources like books and Wikipedia we see that in combinatorial
mathematics, the Catalan numbers form a sequence of natural numbers that
occur in various counting problems, often involving recursively-defined ob-
jects such as polygon triangulation, balanced parentheses, mountain ranges,
diagonal avoiding paths and binary tree. They are named after the Belgian
mathematician Eugène Charles Catalan. Using zero-order numbering, the
nth Catalan number is given directly in terms of binomial coefficients by

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
(1.1)

It is not clear from this definition that the nth Catalan number Cn (n ≥ 0)
is a natural number [12]. Let us rewrite the formula defined by the relation
(1.1)

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!

= (2n)!

{
1

(n+ 1)!n!

}
= (2n)!

{
(n+ 1)− n
(n+ 1)!n!

}
= (2n)!

{
(n+ 1)

(n+ 1)!n!
− n

(n+ 1)!n!

}
= (2n)!

{
1

n!n!
− 1

(n+ 1)!(n− 1)!

}
=

{
(2n)!

n!n!
− (2n)!

(n+ 1)!(n− 1)!

}
=

(
2n

n

)
−
(

2n

n+ 1

)
.
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Clearly, the last expression tells us that Cn is a natural number.

1.2. Commonly used properties of Catalan numbers

Let us describe some property of Catalan numbers from various paper and
books such as [14]

i) C0 = 1 and Cn+1 =
∑n

k=0CkCn−k for n ≥ 0

ii) Cn = 1
n+1

∑n
k=0

(
n
k

)2
iii) C0 = 1 and Cn = 2(2n−1)

n+1 Cn−1

Proof. i) We use induction to prove that Cn satisfies the recursion. Clearly
C0 = 1 holds true. Now assume that for n, Cn satisfies the recursion for
n = l + 1, i.e., Cl+1 =

∑l
k=0CkCl−k. Now let C(x) be the generating

function of Cn, i.e. C(x) =
∑

n≥0Cnx
n. Then

C(x)2 =
∑
l≥0

l∑
k=0

CkCl−kx
l ⇔ xC(x)2 =

∑
l≥0

Cl+1x
l+1

From this we see that the coefficient of xn+1 is

Cl+2 =

l+1∑
k=0

CkCl+1−k

[3] as desired.

ii) By the Binomial Theorem

(1 + x)2n =

2n∑
k=0

(
2n

k

)
xk, (1 + x)n =

n∑
k=0

(
n

k

)
xk

So (1 + x)2n = (1 + x)n(1 + x)n imply that

2n∑
k=0

(
2n

k

)
xk =

2n∑
i=0

i∑
k=0

(
n

k

)(
n

n− k

)
xi.

Comparing the coefficients of xn yields(
2n

k

)
=

n∑
k=0

(
n

k

)(
n

n− k

)
=

n∑
k=0

(
n

k

)(
n

k

)
.

implying that

Cn =
1

n+ 1

n∑
k=0

(
n

k

)2

as given by [14]
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iii) By using the following two identities

Cn =
(2n)!

(n+ 1)!n!
(1.2)

Cn−1 =
(2(n− 1))!

(n− 1)!n!
(1.3)

we prove the property

Cn =
2(2n− 1)

n+ 1
Cn−1

obtained by dividing the equation 1.2 to equation 1.3 and we get

Cn
Cn−1

=
2(n− 1)

n+ 1
.

Therefore by using cross product we get

Cn =
2(n− 1)

n+ 1
Cn−1

Let us give an example that can illustrate the recursion

Cn+1 =

n∑
k=0

CkCn−k

Example 1.2.1. By calculating C5 using this recurrence relation above

C4 = 14, C3 = 5, C2 = 2, C1 = 1, C0 = 1

Then by replacing the values above

C5 = C0C4 + C1C3 + C2C2 + C3C1 + C4C0 = 42

Section 1.3 gives more examples that show clearly the property of Catalan
numbers. These examples help us to understand the behaviour of Catalan
numbers and how we can relate them to RNA secondary structure.

Definition 1.2.1. A Dyck word of length 2n is a string of n X’s and n Y ’s
with the property that each initial segment has at least as many X’s as Y ’s.
Here X’s are opening parentheses and Y ’s are closing parentheses. Then a
Dyck word is a properly formed expression in terms of parentheses [5].

3



Theorem 1.2.1. The number of Dyck words of length 2n is

Cn =
1

n+ 1

(
2n

n

)
.

Proof. Let cn denote the number of Dyck words of length 2n. By letting X =
+1 and Y = −1 we can write a Dick words as a sequences [d1, d2, d3, ..., d2n]
of n + 1’s and n − 1’s such that the partial sums d1 + d2 + d3, ...,+dk ≥ 0
for all 1 ≤ k ≤ 2n. Let also Un denote the number of sequences of n + 1’s
and n− 1’s which are not Dyck words we can get all sequences by choosing
n positions out of the 2n to make −1′s. Then we have:

Cn + Un =

(
2n

n

)
,

where

Un =

(
2n

n+ 1

)
Thus

Cn =

(
2n

n

)
−
(

2n

n+ 1

)
,

and therefore

Cn =
1

n+ 1

(
2n

n

)

Thus, the Catalan number Cn is the number of balanced parenthesis expres-
sions of length 2n over alphabet of terminals as seen in [3].

1.3. Some applications of Catalan numbers

There is a set of examples which illustrate 66 different sequences of sets with
the property that the nth set of each collection has the same number Cn of
objects, [18]. Here are some examples:

1 Let a binary operation on a set be given and let x1, x2 . . . xn be a word.
Then the number of parenthesizing of this word is given by the Catalan
number Cn.

2 Let An be a regular n polygon (n ≥ 3). Then Cn−2 is a number of possible
triangulation of An.

3 Non-nesting matching on 2n, i.e., ways of connecting 2n points in the
plane lying on a horizontal line by n arcs, each arc connecting two of
the points and lying above the points, such that no arc is contained
entirely below another.
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4 Ways of connecting 2n points in the plane lying on a horizontal line by
n vertex-disjoint arcs, each arc connecting two of the points and lying
above the points, such that the following condition holds: for every
edge e let n(e) be the number of edges e′ that nest e , and let c(e)
be the number of edges e′ that begin to the left of e and that cross e.
Then n(e)− c(e) = 0 or 1.

5 Ways of linking any number of points in the plane lying on a horizontal
line by non intersecting arcs lying above the points, such that the total
number of arcs and isolated points is n − 1 and no isolated point lies
below an arc.

6 Ways of connecting n points in the plane lying on a horizontal line by non-
crossing arcs above the line such that if two arcs share an endpoint p,
then p is a left endpoint of both the arcs.

7 Ways of relating n + 1 points in the plane lying on a horizontal line by
non crossing arcs above the line such that no arc connects adjacent
points and the right endpoints of the arcs are all distinct.

We see that the examples from 4 to 7 will help to understand the behaviour of
Catalan numbers, this behaviour is very closed to RNA secondary structure
as introduced in next section and more detailed later.

1.4. Ribonucleic acid

The Ribonucleic Acid (RNA) is the workhorse chemical in the body. It is in
charge for making the proteins and other biochemicals that the body needs
to function. Thus RNA is a single stranded compound of nucleic acids held
together on a backbone of polysaccharides. See in [7]. A secondary structure
is single stranded, these long RNA molecules that can bend without crossing
over and attach to themselves.

RNA molecules are particularly interesting since they represent both geno-
typic legislative via their primary sequence and phenotypic executive via
their functionality associated to 2D or 3D-structures, respectively, [7]. Ac-
cordingly, it is believed that RNA may have been instrumental for early
evolution-before proteins emerged. The primary sequence of an RNA molecule
is formed by the sequence of nucleotides A,G,C,U which is paired like
(A−U,G−C) and (U −G) according Watson-Crick. Single stranded RNA
molecules form helical structures whose bonds satisfy the above base pairing
rules and which, in many cases, determine their function. For instance, RNA
ribozymes are capable of catalytic activity, cleaving other RNA molecules.
RNA secondary structure prediction is of polynomial complexity [22] which
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is the result from the fact that in secondary structures no two bonds can
cross.

For better understanding RNA let us define the following terms as it is given
in [14]

1. An RNA molecule is a sequence of nucleotides of four possible types,
denoted by the letters A,C,G and U, connected by a backbone and is
called RNA Primary Structure.

2. Two nucleotides that are connected via hydrogen bonds are called a
base pair. In the Watson-Crick base pairing, A always forms a base
pair with U , as does G with C. In the Wobble base pairing, G forms
a base pair with U .

3. An RNA structure is a set S of base pairs i.j for 1 < i < j < n such
that for an i1.j1, i2.j2 ∈ S : i1 = i2 ⇔ j1 = j2

4. The set S is called secondary structure if for all i1.j1, i2.j2 ∈ S they
are nested, i.e., i1 < i2 < j2 < j1, or disjoint, i.e., i1 < j1 < i2 < j2.

The definition bellow helps us for understanding the difference between
Watson-Crick base pair and Wobble base pair [14].

Definition 1.4.1. A Wobble base pair is a pairing between two nucleotides
in RNA molecules which do not respect Watson-Crick base pairing rules.
The four main Wobble base pairs are guanine-uracil (G−U), hypoxanthine-
uracil (I − U), hypoxanthine-adenine (I − A), and hypoxanthine-cytosine
(I − C)

Those properties and definitions of Catalan numbers and RNA give us the
impression of dealing with the most important problem as given in Statement
of the problem

1.5. Statement of the problem

The theoretical biophysics nowadays has the most important problem and
the greatest challenge of deciphering the code that transforms sequences of
biopolymers into spatial molecular structures. Those sequences are prop-
erly visualized as a string of symbols which together with the environment
encodes the molecular architecture of the biopolymer, one of the particular
class of biopolymers, the ribonucleic acid (RNA) molecules, decoding of in-
formation stored in the sequence can be properly decomposed into two steps
such us the transformation of the string into a planar graph and folding of the
string into a three-dimensional structure under conservation of the neighbor-
hood relation determined by the graph. Our main objective is the represen-
tation of a secondary structure ribonucleic acid in the sequence of the string

6



into planar graphs and folding of the string into a three-dimensional struc-
ture without changing any of its property. we achieve the objective first of
all proving some identities leading to Catalan number by using power Series.

The rest of thesis is organized as follows. In the second chapter we discuss
and give some theorems, definitions, proofs and representation of some RNA
secondary structure from literature that will help us understand the relation
to the Catalan numbers. In chapter 3 we turn to mathematical treatment
of the Catalan numbers from different perspective to show possible research
directions. Then we study RNA secondary structure and deciphering the
code in chapter 4. We conclude the thesis by some further discussions.

7



Chapter 2

Literature Review on RNA
structure

In this section we introduce definitions, state theorems and proofs done in
the literature. Also we give the representation of some ribonucleic acids
secondary structure that will help us to achieve the objectives seat. We in-
troduce the characteristic equations and the inequalities that relates to the
sequence of RNA secondary structure. We deal also with graph-theoretic
properties of secondary structure with no consideration of specific pairing
rule or properties of a specific single strangled nucleic acid, anywhere the
object is to give a precise definition of secondary structure and of the com-
ponent secondary structure for an arbitrary sequence of length n. The total
number of secondary structure for a sequence of length n is considered.

2.1. The concept of secondary structure

The concept of secondary structures is given in various ways.

Definition 2.1.1. A secondary structure is a graph of the set of n labeled
point 1, 2, ..., n such that the adjacency matrix A = (aij) has the following
three properties:

i) (ai,i+1) = 1 for 1 ≤ i ≤ n− 1.

ii) For each fixed i,1 ≤ i ≤ n there is at most one (aij) = 1 where j 6= i± 1

iii) if (aij) = (akl) = 1, where i < k < j then i ≤ l ≤ j. if (aij) = 1, i and
j are said to be bonded

We explain each part in Definition 2.1.1. Item i) requires adjacent point to
be bonded. Item ii) says that each point can be bonded to at most one other
point. Then item iii) assures that if i and j are bonded then all bonding of
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the points i < k < j is with points l between i and j. Item iii) is a crucial
point of the definition as it keeps the structure form ”folding” and becoming
three-dimensional or tertiary structure.

The couple (i, j) is an edge which is bond or base pair if and only if |i−j| 6= 1.
A vertex i connected only to i−1 and i+ 1 is called unpaired while a vertex
i is said to be interior to the base pair (k, l) if k < i < l as illustrated by
Waterman [22] and by [8].

More explanation on Definition 2.1.1 is given by Waterman as shown bellow.

Theorem 2.1.1. Let S(n) be the number of secondary structures for n
points. Then S(1) = S(2) = 1 and for n > 2, S(n) satisfies

S(n+ 1) = S(n) +
n−2∑
k=0

S(k)S(n− k − 1), (2.1)

where S(0) ≡ 1. Also S(n) ≥ 2n−2 For n ≥ 2.

Proof. Let us prove the theorem by induction. By definition the only sec-
ondary structures for n = 1, n = 2 are

1 1 2
· ·——·

(n = 1) (n = 2)

Obviously S(1) = 1, S(2) = 1. Assume we know S(k) for all 1 ≤ k ≤ n. We
want to show that

S(n+ 1) = S(n) +
n−2∑
k=0

S(k)S(n− k − 1).

To this end we argue how a sequence of n+1 points can be paired. There are
two scenarios: n+1 is not paired or n+1 is paired with j for j = 1, ..., n−1. In
the first case n points from 1 to n can form all possible secondary structures.
In the second case, each of the points 1 to j − 1 and j + 1, ..., n can form all
possible secondary structures. All together they form secondary structures
for n + 1 points from 1 to n + 1 by the definition. Now we can count how
many possible secondary structure there are:

S(n+ 1) = S(n) + S(n− 1) + S(1)S(n− 2) + . . .+ S(n− 2)S(1)

we know that S(0) = 1, so equation above takes the form for (n ≥ 2) of

S(n+ 1) = S(n) +
n−2∑
k=0

S(k)S(n− k − 1).

9



This is the proof of the first part.

After one more iteration we obtain

S(n+ 1) = S(n) + S(n− 1) +
n−2∑
k=1

S(k)S(n− k − 1)

and equivalent to

S(n+ 1) = S(n) + S(n− 1) +
n−3∑
k=0

S(k)S(n− k − 2)

by shifting the index in the sum. Since S(k + 1) ≥ S(k),

S(n+ 1) ≥ S(n) + S(n− 1) +

n−3∑
k=0

S(k)S(n− k− 2) = S(n) + S(n) = 2S(n).

Now S(2) = 1 so that the above inequality implies that S(n) ≥ 2n−2, com-
pleting the proof.

Next we need to show that 2n−2 is an unsatisfactory bound. To this end , we
assume that λ2α

n ≤ S(n) < λ1α
n where λ2>0, then we have the following

inequalities

λ1α
n+1 ≥ λ2

(
αn + λ2

n−1∑
k=0

αn−1
)

(2.2)

= λ2

(
αn + λ2(n− 2)αn−1

)
and

(λ1/λ2)α
2 ≥ α+ λ2(n− 2)

which is a contradiction. This shows that the rate of growth of S(n) is not
geometric. therefore it will be shown that S(n) is bounded by a geometric
growth rate. Let us consider φ(x) as generating function, defined by φ(x) =∑∞

n=0 S(n)xn,the recursion formula in Theorem 2.1.1 can be multiplied by
xn+1 and gives

x2φ2(x) + (x− 1− x2)φ(x) + 1 = 0.

This equation can be solved and the solution is

φ(x) =
x2 − x+ 1− [1 + x(x3 − 2x2 − x− 2)]1/2

2x2
.

Corollary 2.1.1.1. For n ≥ 2 there is a fixed M > 0 such that

2n−2 ≤ S(n) ≤M4n.

10



Proof. Note that we have already proved the first inequality. It remains to
show the second inequality.

Let S(n+ 1) ≤
∑n

k=0 S(k)S(n+ 1− k) so that if g(0) = g(1) = 1 and

g(n) =
n−1∑
k=0

g(k)g(n− k)

therefore

S(n) ≤ g(n)⇒ g(n) =
1

2n−1

(
2n

n

)
= O(4n)

as shown in [22].

This shows several of the features that can be identified from the adjacency
matrix.

Definition 2.1.2. A secondary structure deals with the following structure
elements

i) A stack consists of subsequent base pairs (p−k, q+k), (p−k+ 1, q+k−
1),. . . ,(p, q) such that neither (p− k− 1, q+ k+ 1) nor (p+ 1, q− 1) is
a base pair. k+1 is the length of the stack,(p−k, q+k) is the terminal
base pair of the stack.

ii) A loop consists of all unpaired vertices which are immediately interior
to some base pair (p, q)

iii) An external vertex is an unpaired vertex which does not belong to a
loop. A collection of adjacent external vertices is called an external
element. If it contains the vertex 1 or n it is a free end, otherwise it
is called joint.

The following lemma gives an additional result of secondary structure.

Lemma 2.1.1. Any secondary structure S can be uniquely decomposed
into stacks, loops, and external elements.

Definition 2.1.2 and proof bellow is given in [8]

Proof. Each vertex which is contained in a base pair belongs to a unique
stack. Since an unpaired vertex is either external or immediately interior to
a unique base pair the decomposition is unique: Each loop is characterized
uniquely by its ”closing” base pair.

Definition 2.1.3. Suppose A is the adjacency matrix for a secondary struc-
ture on (1, 2, . . . , n)

11



i) The point j is said to be paired if there is some point i 6= j ± 1 such that
aij = 1.

ii) The region (i+ 1, i+ 2, . . . , (j − 1)) is a loop if i+ 1, i+ 2, . . . , j − 1 are
all unpaired and aij = 1. The pair (i, j) is said to be the foundation
of the loop.

iii) The sequence (i+1, i+2, . . . , (j−1)). is a bulge if (i+1, i+2, . . . , (j−1))
are all unpaired, i and j are both paired, and aij 6= 1

iv) An interior loop is two bulges (i + l, i + 2, . . . , (j − 1)) and (k + 1, k +
2, . . . , (l − 1)) such that ail = 1 and ajk = 1 (Here i < j < k < l.)

v) A join is a bulge i, i + 1, . . . , j such that akl = 1 for k < i implies l ≤ i
and akl = 1 for k > j implies l ≥ j.

vi) A tail is a sequence (1, 2, . . . , j) where 1, 2, . . . , j are unpaired and j+ 1
is paired.

vii) A ladder is two sequences (i+1, i+2, . . . , i+j) and (k+1, k+2, . . . , e−
k + j) such that i + j + 1 < k, ai+1,k+j−l+1 = 1 for 1 ≤ l ≤ j and
ai,k+j+l = ai+j+l,k=0. . I f i + j + 3 = k + 1,this last requirement is
dropped

viii) A hairpin is the longest sequence (i+1−i+2− . . .−(j−1)) containing
exactly one loop such that ai+1,j−1 = 1 and ai,j = 0. The paired points
i + 1 and j − 1 will be called the foundation of the hairpin. We find
this definition in [22].

The definition of secondary structure given above in Definition 2.1.3 is good
enough to include the elementary structures. The structure can be easily
identified from the graph or from the adjacency matrix. It has been the
basis of algorithm to predict secondary structure therefore these algorithms
rely on the examination of all possible secondary structure.

The next theorem gives full information on decomposition of secondary
structure and the meaning of the above definition.

Theorem 2.1.2. Any secondary structure can be uniquely decomposed into
loops, ladders, bulges, and tails.

Proof. If aij = 1 where i 6= j ± 1 then i and j are members of sequences
which are a ladder. Thus, assume i is an unpaired point.
Then let (i − j), . . . , i, . . . , i + k be the longest sequence of unpaired point
that i is the member off. if i − j = 1 or i + k = n then i belongs to a tail.
Elsewhere i − j − 1 and i + k + 1 are paired. If ai−j−1,i+k+1 = 1 then i
belongs to a loop. If ai−j−1,i+k+1 = 0 then i belongs to a bulge.

12



From above theorem we see that the ladders of two sequences making up
the ladder does not make a new sequence. Since there are a finite number of
ladders and every paired point belongs to a ladder then there exists a ladder
such that the non-empty sequence of points between the two sequences,
for making up the ladder has the property that they are all unpaired. By
definition this sequence is a loop [22].

The following definition deals with the loops and degrees.

Definition 2.1.4. The degree of a loop is given by 1 plus the number of
terminal base pairs of stacks which are interior to the closing bond of the
loop. A loop of degree 1 is called hairpin (loop), a loop of a degree larger
than 2 is called multi-loop. A loop of degree 2 is called bulge if the closing
pair of the loop and the unique base pair immediately interior to it are
adjacent; otherwise a loop of degree 2 is termed interior loop seen in [22].
More recursion formula of this definition is given in 2.3.3 subsection.

Definition 2.1.5. Let S an arbitrary secondary structure. For all S let us
denote by ω(S) the unique secondary structure which is obtained from S
the following procedure:

(i) For each hairpin, open its stack and add the corresponding bases to the
hairpin loop.

(ii) If a bulge or interior loop follows, then add its digits also to the hairpin
and continue by opening its stack.

(iii) If a multi-loop or a joint follows, then add the now unpaired digits to
the multi-loop and stop.

From this definition Waterman [22] deduce that Ω(S) is the order of a sec-
ondary structure as the smallest number of repetitions of Ω necessary to
obtain the open structure. Thus the open structure has order Ω = 0 and
any structure without a multi-loop has order Ω = 1. In the following sub-
section we deal with the representation of secondary structure.

2.2. Biological motivation: RNA secondary structures

Latest discoveries emphasize the important regulatory and catalytic func-
tion performed by RNA molecules, their traditional role in mediating the
production of protein from DNA to RNA as illustrated by Christine [7]. Like
proteins, the functionality of an RNA molecule is determined by its overall
three-dimensional structure. The primary structure of an RNA molecule is
is oriented in biochemical chain of sequence of nucleotides or bases of which
there are four types: Adenine (A),Guanine (G), Cytosine (C) and Uracil
(U). Thus the chemically distinct ends called the 5

′
and 3

′
When an RNA
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molecule folds, bonds may form between certain pairs of bases, where each
base may pair with at most one other base. The resulting structure depends
on environmental conditions, such as temperature and salt concentration of
the solution in which the molecule resides.

A secondary structure R is a set of pairs i, j , 1 ≤ i ≤ j ≤ n such that
no index occurs in more than one pair. However, the unlike the canonical
double stranded DNA helix or protein or the protein substructures created
by more subtle amino acid interactions, a single stranded RNA molecule
self bonds to create a set of intra molecule or base pairs called secondary
structure, a function of single stranded RNA molecules are significantly
related to be base pairing of their structure, by making the design, analysis
and prediction of RNA secondary structure vital problems in computational
molecular biology.

Mathematically, we treat an RNA sequence as a string R of consecutive
symbols from the four letters A,C,G,U . For our purposes, we define a
nested secondary structure of R as a set of intra-sequence base pairs, al-
though a more standard definition includes additional constraints based on
the energetic of RNA base pairing as said Christine [7]. Let us give a full
definition:

Definition 2.2.1. Let R = b1b2 . . . bn ∈ (A,C,G,U)+. Denote the pairing
of base bi with bj by bi − bj for 1 ≤ i < j ≤ n. A nested secondary
structure of R is a set of base pairs S(R) = bi − bj |1 ≤ 1 ≤ n such
that either i < j < i′ < j′ or i < i′ < j′ < j, for any two base pairs
bi − bj , b′i − b′j ∈ S(R).

We see that the absence of base triples and of pseudo-knots, or base pairings
with i < j < i′ < j′ , are fundamental assumptions in the current thermo-
dynamic model of RNA base pairing. A nested RNA secondary structure
decomposes into local substructures with nearest neighbor energetic inter-
actions is determined by experimental researchers such as the Turner group
[17]. For instance, the energy value assigned to a single-stranded region, or
loop, is a function of the number and type of base pairs contained in the
loop.

2.3. RNA Representation of Secondary Structure

The existence of RNA secondary structure will help us to deduce the three
dimension representation

2.3.1. The graphs

A graphical representation of secondary structure S can be translated into
a rooted ordered tree Υ by introducing an auxiliary root and representing

14



a base pair (p, q) by a vertex x such that the sons Y1, ..., Yk of x correspond
to the base pairs (p1, q1)...(pkqk) immediately interior to (p, q)[6].

The researchers like Waterman found that the property of secondary struc-
ture is best understood by considering a structure as diagram, which is
obtained as follows: To draw the primary sequence of nucleotides horizon-
tally and ignores all chemical bonds of backbone. For other side one draws
all bonds satisfying the Watson-Crick base pairing rules (and G− U pairs)
as arcs in the upper half plane. In this representation we identify the RNA
secondary structures have the following property: there exist no two arcs
(i1, j1), (i2, j2), where i1 < j1 and i2 < j2 with the property i1 < i2 < j1 < j2
and all arcs have at least length 2. Thus there exist no two arcs that cross
in the diagram representation of the structure as shown in the following
representation given in [6]. in the figure bellow

Figure 2.1: RNA secondary structures.

The are many types of representation like circular, Tree and no-crossing
representation as shown by the matlab code in appendix from [10]. The
figure are given from (2.3.1-2.3.1).

2.3.2. RNA Secondary Structure Design

A basic assumption underlying current understanding secondary structure
is that the base sequences fold minimizes free energy. Under this hypothesis,
the fundamental problem with RNA secondary structure design is to ensure

Figure 2.2: tree
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Figure 2.3: Non crossing

Figure 2.4: circular

Figure 2.5: linear
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the desired minimal free energy configuration of the constructed sequence.
Intuitively, a sequence will fold to a configuration which minimizes loop costs
while maximizing the beneficial stacked pairs.

Combinatorial design efforts have focused on precluding alternative config-
urations by ensuring that any improvement in loop energies is offset by the
penalty of lost base pairs. These results employed a simple design strategy
which still captured many essential aspects of this difficult problem.

To overcome this problem there are two algorithm solutions to the standard
hypothesis excluding pseudoknots from RNA secondary structure. First
way is to restrict the generating sequences which satisfy the loop-protecting
property. This consists of maintaining the unpaired in any alternate config-
uration. This is done by enforcing restriction to a three alphabets [A,C,G]
and assigning A exactly to the unpaired segments. The second algorithmic
solution is that the design must be sufficiently good to preclude any alter-
nate minimal energy configurations from a particular subclass of structures
as shown in [7].

In the loop-protecting RNA model, there can be no interaction between the
intended A loop segments and the C−G, G−C base pairs forming the helical
stretches. Using two algorithmic solutions we may get possible secondary
structure configurations.

2.3.3. RNA recursion

Based on above definitions 2.1.1-2.1.5 of RNA and Catalan number proper-
ties we have the basic recursion such that: A secondary structure on n+ 1
digits may be obtained from a structure on n digits either by adding a free
end at the right hand or by inserting a base pair 1 ≡ k + 2, [8].

In the second case the substructure enclosed by this pair is an arbitrary
structure on k digits, and the remaining part of length n − k − 1 is also
an arbitrary valid secondary structure. It can be obtained by the following
recursion

Sn+1 = Sn +
n−2∑
k=1

S(k)S(n− k − 1) n ≥ m+ 1 (2.3)

where

S0 = S1 = . . . = Sm+1 = 1

while the secondary structure with certain property is given by the recursion

Jn+1(b) = Jn(b) +

n−2∑
k=1

SkJn−k−1(b− 1) b > 0, n > m+ 1, (2.4)

Jn(b) = 0, b > 0, n ≤ m+ 1, Jn(0) = 1, n ≥ 0
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where we denote Jn(b) the number of structure with exact b.

Adding an unpaired digits to a structure on n digits does not affect the
number of the components while introducing an added bracket makes the
bracketed part of length k a single component and does not affect the re-
mainder of the sequence. By consider the number of structures with exactly
b base pair (bonds)on n vertices Hn(b)

Hn+1(b) = Hn(b) +
n−1∑
k=m

b−1∑
l=0

Hk(l)H(n−k−1)(b− l − 1) b > 0, n ≥ m+ 1

(2.5)

Hn(b) = 0, b > 0, n ≤ m+ 1, Hn(0) = 1, n ≥ 0

for special cases of m = 1 the number of structure with exact number b was
established in [15]:

Hn(b) =
1

b

(
n− 1

b+ 1

)(
n− b− 1

b− 1

)
To obtain the number of of structures with b external digits En(b) we have

En+1(b) = En(b− 1) +
n−1∑
k=m

SkEn−k−1(b) b ≥ 0, n ≥ m+ 1 (2.6)

En(n) = 1, En(b) = 0.b 6= n,≤ m+ 1, En(−1) = 0.

The recursion for the number Nn(b) of the sequence with given number of
stacks is obtained by introducing the auxiliary variable Zn(b) denoting the
number of secondary structure with exactly b stacks given that it 3′ and 5′

end are paired, then we obtain

Nn+1(b) = Nn(b) +
n−1∑
k=m

b∑
l=0

Zk+2(l)En−k−1(b− l) b ≥ 0, n ≥ m+ 1

(2.7)

Nn(n) = 1, Nn(b) = 0, b 6= n,≤ m+ 1

The auxiliary variable will be obtained by

Zn(b) = Zn−2(b) +Nn−2(b− 1)− Zn−2(b− 1), Z0(b) = Z1(b) = 0
(2.8)

The structure with exactly hairpins is given by

An+1(b) = An +
n−1∑
k=m

[ b∑
l=1

Ak(l)An−k−1(b− l) +An−k−1(b− 1)
]

(2.9)
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n ≥ m+ 1, An(b) = δ0,b, n ≤ m+ 1

where δ0,b is Kronecker’s symbol, i.e., δ0,0 = 1 and δ0,b = 0, b 6= 0. This
important recursion formula is given in [8].

Normally there are two main approaches to the folding problem; first is to
predict RNA structure based on thermodynamics stability of the molecule
and look for a thermodynamics optimum. The second approach is based
on probabilistic models which try to find the state of RNA molecule in
probabilistic optimum.
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Chapter 3

Study of some properties of
Catalan numbers

Very often we have to determine difficulty-looking sum or prove such iden-
tities. With generating function we can make it much easier. A generating
function f(x) is a formal power series

g(x) =
∑
n≥0

anx
n

for given sequence {a0, a1, a2, ...}. Note that we do not discuss the issues
like convince and convergence region in this thesis.

Here are some examples of generating function.

1. For the sequence {0, 1, 1, ...} we have the generating function

g(x) = x+ x2 + x3 + · · · = x(1 + x+ x2 + · · · ) = x · 1

1− x
=

x

1− x
.

2. The sequence {1, 1, 2, 3, 5, ...} (the Fibonacci number sequence) has the
generating function

F (x) =
1

1− x− x2
using the recursive of the sequence Fn = Fn−1 + Fn−2 because

F (x) =
∑
n≥0

Fnx
n = 1 + z +

∑
n≥2

(Fn−1 + Fn−2)x
n

= 1 + x+ x
∑
n≥1

Fnx
n + x2

∑
n≥

Fnx
n

= 1 + x+ x(F (x)− 1) + x2F (x) = 1 + xF (x) + x2F (x).

Solving this equation we obtain the desired function.
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3. The generating function for the Catalan numbers {C0, C1, C3, ...} is

C(x) =
1−
√

1− 4x

2x
=

2

1 +
√

1− 4x
.

We want to determine the function C(x) through the series
∑

n≥0Cnx
n.

Note that

Cn =

n−1∑
n=0

CkCn−1−k.

Then

C(x) =
∑
n≥0

Cnx
n =

∑
n≥0

n−1∑
k=0

CkCn−1−kx
n

= 1 +
∑
n≥1

n−1∑
k=0

CkCn−1−kx
n = 1 + x

∑
n≥0

n∑
k=0

CkCn−kx
n

= 1 + x

∑
k≥0

Ckx
k

 ∑
n−k≥0

Cn−kx
n−k

 = 1 + xC(x)2.

This shows that

C(x) =
1±
√

1− 4x

2x

To determine which sign we should take we note that

lim
x→0

C(x) = lim
x→0

∑
n≥0

Cnx = C0 = 1.

So we have to take the negative sign.

If we want to have the closed closed forms for Fn and Cn respectively, we
meet with a problem to find the function that has the power series with the
given sequence. So we see that it will be helpful if we can recognize some
power series. For our purpose we list some power series

1

1− x
=
∑
n≥0

xn (3.1)

(1 + x)α =
∑
n≥0

(αn)xn (3.2)

1

(1− x)k+1
=
∑
n

(
n+ k

n

)
xn (3.3)

xk

(1− x)k+1
=
∑
r≥0

(
r

k

)
xr (3.4)
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C(x) =
1

2x
(1−

√
1− 4x) =

∑
n≥0

Cnx
n (3.5)

1√
1− 4x

=
∑
n≥0

(
2n

n

)
xn (3.6)

1√
1− 4x

(1−
√

1− 4x

2x

)k
=
∑
n

(
2n+ k

n

)
xn (3.7)

(1−
√

1− 4x

2x

)k
=
∑
n≥0

k(2n+ k − 1)!

n!(n+ k)!
xn k ≥ 1 (3.8)

3.1. Generating function approach to some identities involving
Catalan numbers

First we have the following proposition for the operations of differentiation
and integration of the generating function, which can be found in any com-
binatoric text book. Again we do not discuss the interchange of the limit
processes here. The identities dealt with in this section are taken from the
literature1 I have studied, but could not recall exact source at the writing
moment.

Proposition 3.1.1. Let {a0, a1, a2, . . .} be a given sequence and

A(x) =
∑
n≥0

anx
n

be its generating function. Then

(i) The generating function for {nan}∞n=0 is x d
dx(A(x)).

(ii) The generating function for

{
an
n+ 1

}∞
n=0

is

∫ x

0
A(t)dt.

Let us show the usefulness of these simple observations in computing difficulty-
looking sums.

Example 3.1.1. Compute
∑n

k=0
1

k+1

(
n
k

)
.

Note that this is a less difficulty-looking one but we illustrate how generating
function can be effectively applied to solve the problem. Note also that we
can think of this sum as the value of the function

f(x) =

n∑
k=0

1

k + 1

(
n

k

)
xk

1In the revision I added now the reference [23] which I was not aware of. This book
was mentioned by the reviewer who pointed out that some of identities below are in this
book.
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at x = 1. Clearly
∑∞

k=0
1

k+1

(
n
k

)
xk is integral of

n∑
k=0

(
n

k

)
xk = (1 + x)n

Thus

n∑
k=0

1

k + 1

(
n

k

)
xk =

∫ x

0
(1 + t)ndt

=
(1 + x)n+1 − 1

n+ 1

Set x = 1 we have
n∑
k=0

1

k + 1

(
n

k

)
=

2n+1 − 1

n+ 1

Remark: Since we have to deal with the binomial coefficients and sums often
we make the following conventions and the range of summation variables:
(i)
(
x
m

)
= 0 if m < 0 or if x is a nonnegative integer less than m; (ii) a

summation variable whose range is not explicitly stated is understood to be

summed from −∞ to ∞. For example
∑
k

(
n

k

)
= 2n should be understood

in the sense that the sum ranges over all positive and negative and 0 values
of k, the summand vanishes unless 0 ≤ k ≤ n, and the sum has the value 2n.
Occasionally we will also use the notation [xn]f(x) =: fn for the coefficient
of xn. We will also use the following identities:(

n

r

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
n ≥ r (3.9)(

−n
r

)
= (−1)

r

(
n+ r − 1

r

)
(3.10)

Now we prove some properties of Catalan number using generating function
provided that we can recognize to which function a power series is associated.
To this end we need some conventions about binomial coefficients and the
range of summation variables:

Proposition 3.1.2.

nCn =
n−1∑
j=0

Cj

(
2n− 2j − 1

n− j

)
in other words

n−1∑
j=0

1

j + 1

(
2j

j

)(
2n− 2j − 1

n− j

)
=

n

n+ 1

(
2n

n

)
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Proof. Let

fn =

n−1∑
j=0

Cj

(
2n− 2j − 1

n− j

)
.

Consider its generating function
∑

n≥1 fnx
n Note that(

2n− 2j − 1

n− j

)
=

(
2n− 2j − 1

n− j − 1

)
so

fn =

n−1∑
j=0

Cj

(
2n− 2j − 1

n− j − 1

)
multiply this equation by xn and sum over n ≥ 1 we have

n−1∑
j=0

(
Cj

(
2n− 2j − 1

n− j − 1

))
xn

=
∑
j

Cjx
j+1
∑
n≥1

(
2n− 2j − 1

n− j − 1

)
xn−j−1 (by (3.10))

=
∑
j

Cjx
j+1
∑
n

(−1)n−j−1
(
−n+ j − 1

n− j − 1

)
xn−j−1

=
∑
j

Cjx
j+1 1

(1− x)n−j−1

=
x

(1− x)n+1

∑
j≥0

Cjx
j(1− x)j

=
x

(1− x)n+1

∞∑
j≥0

Cj(x(1− x))j

=
x

(1− x)n+ 1
C(x(1− x))

=
x

(1− x)n+1

1−
√

1− 4x(1− x)

2x(1− x)

=
1−

√
1− 4x(1− x)

2(1− x)n+2

What we need is the (n+ 1)th coefficients of this function. Note that

1−
√

1− 4x(1− x)

2
= 1 +O(xn)

for any m ≥ 0. So the (n − 1) coefficient is the same as the (n − 1)-th
coefficient of 1

(1−x)n+2 . It is

(−1)n−1
(
−(n+ 2)

n− 1

)
=(−1)n−1(−1)n−1

(
2n

n− 1

)
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=

(
2n

n− 1

)
=

(
2n

n

)
n

n+ 1

as desired.

Proposition 3.1.3.
n∑
k=0

(−1)k
(
n+ k

2k

)
Ck = 0

for all positive integers n.

Proof. We multiply the sum by xn and sum over n. Then

∑
n≥0

n∑
k=0

(−1)k
(
n+ k

2k

)
Ckx

n =
∑
k≥0

(−1)kCkx
k
∑

n−k≥0

(
n+ k

n− k

)
xn−k {r := n− k}

=
∑
k≥0

(−1)kCkx
k
∑
r≥0

(
r + 2k

2k

)
xr (by (3.3))

=
∑
k≥0

(−1)kCkx
k 1

(1− x)2k+1

=
1

(1− x)

∑
k≥0

Ck

( −x
(1− x)2

)k
=

1

1− x
C
( −x

(1− x)2

)
=

1

1− x

1−
√

1− 4( −x
(1−x)2 )

2( −x1−x)2

=
1

1− x
1− 1+x

1−x
2(− x

(1−x)2 )

=
−2x

−2x
= 1

From this we see that the generating function is identically 1. So all the
coefficient with the index larger than 0 is 0. This is indeed the required
statement.

Proposition 3.1.4.∑
k

(−1)k
(
n+ k

m+ 2k

)
Ck =

(
n− 1

m− 1

)
(m,n ≥ 0)
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Proof. Consider the generating function

f(x) =
∑
n≥0

(∑
k

(−1)k
(
n+ k

m+ 2k

)
Ck

)
xn

=
∑
k

(−1)kCkx
−k
∑
n≥0

(
n+ k

m+ 2k

)
xn+k {r := n+ k}

=
∑
k

(−1)kCkx
−k
∑
r≥k

(
r

m+ 2k

)
xr (by (3.4))

=
∑
k

(−1)kCkx
−k xm+2k

(1− x)m+2k+1

=
xm

(1− x)m+1

∑
k

(−1)kCkx
k

(1− x)2k

=
xm

(1− x)m+1

∑
k

Ck

( −x
(1− x)2

)k

=
xm

(1− x)m+1
.
1−

√
1− 4( −x

(1−x)2 )

2( −x1−x)2

=
−xm−1

2(1− x)m−1

(
1−

√
1 +

4x

(1− x)2

)
=

−xm−1

2(1− x)m−1

(
1− 1 + x

1− x

)
=

xm

(1− x)m

so the coefficient of xn in this last function is the original sum which is(
n−1
m−1

)
, since the coefficient of xn−1 in xm−1

(1−x)(m−1)+1 is
(
n−1
m−1

)
.

The main reason for looking at above identities came from a desire of proving
the following identity [14] where there is no proof.

Proposition 3.1.5. ([14]) For Ck, k = 1, 2, . . . we have

t−1∑
k=3

(
k − 1

k − 2

)
Ct−kCk−2 =

(
t− 3

1

)
Ct−2.

Proof. The left hand side is the coefficients of those from convolution of two
series. To include c0 we rewrite the LHS as follows:

t∑
k=2

(
k − 1

k − 2

)
Ct−kCk−2 − Ct−2 − (t− 1)Ct−2 =

t∑
k=2

(
k − 1

k − 2

)
Ct−kCk−2 − tCt−2

Now we compute the first term by looking at the series∑
t≥2

t−1∑
k=3

(
k − 1

k − 2

)
Ct−kCk−2x

t
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= x2
(∑
k≥2

(
k − 1

k − 2

)
Ck−2x

k−2
)(∑

t≥k
Ct−kx

t−k
)

= x2
( 1√

1− 4x

)(1−
√

1− 4x

2x

)
= x2

∑
n≥0

(
2n+ 1

n

)
xn =

∑
n≥0

(
2n+ 1

n

)
xn+2 (by (3.7))

Since we want the to pick up the coefficient from the term xt i.e n = t− 2,
the desired sum should be(

2(t− 2) + 1

t− 2

)
=

(
2t− 3

t− 2

)
Finally

t∑
k=2

(
k − 1

k − 2

)
Ct−kCk−2

=

(
2t− 3

t− 2

)
− tCt−2

=
(2t− 3)(2t− 4)!

(t− 2)!(t− 1)!
− tCt−2

= (2t− 3)Ct−2 − tCt−2
= (t− 3)Ct−2

That is the proof of the desired identity.

3.2. Relation between the Catalan number and the Chebyshev
polynomials

Let us consider the following path graph on n nodes

• — • — • — · · · • — •
1 2 3 n− 1 n

Define the adjacency n× n matrix An = (aij) by aij = 1 if (i, j) is the edge
and aij = 0 otherwise, that is,

An =


0 1 0 0 . . . 0
1 0 1 0 . . . 0
0 1 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 0
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Let Pn(λ) is the Characteristic polynomial of A. Then by determinant
expansion by first row, we obtain the following three-term recurrence2{

Pn+1(λ) = λPn(λ)− Pn−1(λ)

P0(λ) = 1 P1(λ) = λ
(3.11)

We recognize immediately the following fact: This recurrence is related to
the Chebyshev polynomials of the second kind by variable change Un(λ) :=
Pn(2λ). Un satisfies {

Un+1(λ) = 2λUn(λ)− Un−1(λ)

U0 = 1 U1(λ) = λ
(3.12)

It is not difficult to show that Un satisfies

Un(cos θ) =
sin((n+ 1)θ)

sin θ
.

Now we compute the generating function for the sequence {P0(λ), . . . Pn(λ), . . .}

F (x, y) =

∞∑
n=0

Pn(x)yn.

The recurrence relation for Pn(x) yields

F (x, y) = xyF (x, y)− y2F (x, y).

Solving for F (x, y) we have the generating function

F (x, y) =
1

1− xy + y2
.

Next we will relate Chebyshev polynomial to Catalan numbers. Remem-
ber that the generating function C(x) of the Catalan numbers satisfies the
relation

C(x) = 1 + xC(x)2

we can therefore iterate C(x) in the following manner

C(x) =
1

1− xC(x)

=
1

1− x
1−xC(x)

2After I got the reviewer’s advice [23] I noticed that three-term recursion is treated in
this book.
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=
1

1− x
1− x

1− x
1− x

1−...

The convergents to this continued fraction are defined by the recurrence

Q0(x) = 1, Qn(x) =
1

1− xQn−1(x)
, n ≥ 1.

Assume for some polynomials qn(x) satisfying{
qn+1(x) = qn(x)− xqn−1(x)

q0(x) = q1(x) = 1
(3.13)

we have

Qn(x) =
qn−1(x)

qn(x)
.

In particular qn(−1) = Fn, the Fibonacci sequence, and Fn−1

Fn
are convergents

to the continued fraction expression of golder ratio

φ = C(−1) =
1 +
√

5

2.

Associate {qn(x)} to the generating function

G(x, y) =
∞∑
n=0

qn(x)yn

we have
G(x, y) = yG(x, y)− xy2G(x, y),

i.e., the generating function for qn(x) is

G(x, y) =
1

1− y + x2

Make substitution x = 1
u2
, y = uv we then relate the generating function

F (u, v) to the sequence {pn(x)} and the generating function G(x, y) for the
sequence qn(x) as follows

G

(
1

u2
, uv

)
= F (u, v)

This implies that

pn(u) = unqn

(
1

u2

)
.

Since qn(x) are related to the convergents of Catalan’s continued fraction and
pn(x) are related to the Chebyshev polynomials of the second kind (which
are related to the Chebyshev polynomials of the first kind), we obtain the
relation between the Catalan number and Chebyshev polynomials.
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Remark 3.2.1. The Chebyshev polynomials are orthogonal polynomials.
They have wide applications ranging from classical function theory to nu-
merical analysis and modern control theory and engineering. More about
relation between the Catalan numbers and orthogonal polynomial systems
are discussed in next section.

3.3. Some Hankel Determinants

Let

H0
n =


C0 C1 C2 . . . Cn
C1 C2 C3 . . . Cn+1

C2 . . . . . . . . . . . .
...

...
...

. . .
...

Cn Cn+1 Cn+2 . . . C2n

 H1
n =


C1 C2 C3 . . . Cn+1

C2 C3 C4 . . . Cn+2

C2 . . . . . . . . . . . .
...

...
...

. . .
...

Cn+1 Cn+2 Cn+3 . . . C2n+1


be the Hankel matrices (of order 0 and 1, respectively) of the Catalan num-
bers {C0, C1, . . .}. In [11] it is shown, by a counting result for disjoint path
system in acyclic directed graphs that

detH0
n = detH1

n = 1.

However, we will not follow this counting argument. Instead we give a
matrix theoretic approach, in the same spirit as those in [4]. The reason is
to use the orthogonal polynomials introduced above and avoid more graph
theory due to the limitation of the volume of the current thesis.

Our starting point is the three-term recurrence. Given two sequences

{s0, s1, s2, . . .}, {t1, t2, . . .} and ti 6= 0, for all i.

Define the matrix A = (an,k) recursively by{
a0,0(x) = 1 a0,k = 0 (k > 0)

an,k = an−1,k−1 + an−1,k−1 (n ≥ 1)
(3.14)

(aij = 0, when some index is negative). Explicitly we can see the Catalan
number in this matrix

n/k 0 1 2 3 4 5 6

0 1
1 0 1
2 1 0 1
3 0 2 0 1
4 2 0 3 0 1
5 0 5 0 4 0 1
6 5 0 9 0 5 0 1
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Then we would guess that Cn = a2n,0. Obviously

Observation 3.3.1. A is a lower triangular matrix with diagonal equal to
1

Observation 3.3.2. For si = 0, ti = 1 ∀i, A includes the Catalan numbers
in the first column at even position i.e Cn = a2n,0

The proof is postponed to later discussion.

Observation 3.3.3. an+1,n = s0 + s1 + . . .+ sn.

Proof. For n = 0, we have

a1,0 = a0,−1 + s0a0,0 + t1a0,1 = s0.

Assume the equality holds for n = l− 1, i.e., al,l−1 = s0 + · · ·+ sl−1. Then,
for n = l,

al+1,l = al,l−1 + slal,l + tl+1al,l+1 (by the induction assumption)

= (s0 + · · ·+ sl−1) + sl · 1 + tl+1 · 0 = s0 + · · ·+ sl

as required.

Given t1, . . . , tn, we define T0 = 1, Tn = t1·t2 · · ··tn for (n ≥ 1). We will show
the following theorem which will be the key to prove detH0

n = detH1
n = 1.

Denote bn := an,0.

Theorem 3.3.4. Let A = (an,k) be defined by (3.3.3). Then for all m,n
the following equality holds∑

k

am,kan,kTk = am+n,0 = bm+n

In matrix form, it is equivalent to ATAt = H where At is the transpose of
A, T = diag(T0, T1, . . . , Tn, . . .) and H = (bi+j)

∞
i,j=0

Proof. For n = 0 and any m, we have∑
k

am,ka0,kTk = am,0,

since a0,k = 0 except a0,0 = 1, and T0 = 1. Now assume it is true for n− 1
and any m then∑

k

am,kan,kTk

=
∑
k

(an−1,k−1 + skan−1,k + tk+1an−1,k+1)am,kTk
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Changing index in the first term by k − 1 to k and in the last k + 1 to k
together with Tk+1 = tk+1Tk yield∑

k

am,kan,kTk

=
∑
k

an−1,k(an,k+1tk+1 + skam,k + am,k−1)Tk

=
∑
k

an−1,kam+1,kTk+1 (by induction assumption)

= an+m,0.

Similarly we can show this formula for arbitrary n and use induction on
m.

Note that det(A) = 1 we have detHn = T0T1T2 · · ·Tn 6= 0 provided that
Ti 6= 0 for all i.

Corollary 3.3.4.1. The matrix A be defined recursively as above if and only
if ATAt = H with Tn 6= 0 for all n,T0 = 1. The sequences {s0, s1 . . . , sn, ...}
and {t1, t2, ...} are given by

sk = ak+1,k − ak,k−1, tk =
Tk
Tk−1

.

Corollary 3.3.4.2. bn = an,0 if and only if detHn 6= 0, ∀n, where {an,0}
are defined recursively by (3.14).

Since A is invertible, we consider V = A−1 = (vij) which is still a lower
triangular matrix with diagonal equal to 1. We can prove that{

v0,0(x) = 1 v0,k = 0 (k > 0)

vn+1,k = vn,k−1 − snvn,k − tnvn−1,k (n ≥ 0)
(3.15)

Let pn(x) =
∑n

k=0 vn,kx
k. Then pi satisfies{

p0(x) = 1

pn+1(x) = (x− sn)pn(x)− tnpn−1(x) (n ≥ 0).
(3.16)

Therefore we obtain the following equivalent statements:

A is recursively by (3.14) ⇔ ATAT t = H
m m

pn+1(x) = (x− sn)pn(x)− tnpn−1(x) V HV t = T

Then we have shown
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Corollary 3.3.4.3. {pn(x)} satisfies (3.16) if and only if V HV t = T for
some Hankel matrix.

What does V HV t = T mean in terms of the polynomial sequence {pn(x)}?
The answer can be found in the theory of orthogonal polynomial systems.

Definition 3.3.1. A sequence of real polynomial {pn(x)} with degree n,
for all n, is said to be orthogonal system if there exists a linear functional
R[x]→ R and numbers Tn 6= 0 (n ≥ 1), T0 = 1 such that

L(pm(x)pn(x)) = δmnTn.

Suppose V HV t = T Which H being the Hankel matrix of the sequence
{bn}. Define

L : Xn → bn, for all n.

Then

V HV t = T ⇔
∑
ik

vm,ivn,kbi+k = δmnTn

⇔ L((
∑
i

vm,ix
i)(
∑
k

vn,kx
k)) = δmnTn

⇔ L(pm(x)pn(x)) = δmnTn ∀m,n

This implies that {pn(x)} forms an orthogonal polynomial system. The
converse can also be established easily. Hence we have shown

Corollary 3.3.4.4. A sequence {pn(x)} forms an orthogonal system if and
only if {

pn+1(x) = (x− Sn)pn(x)− tnpn−1(x) (n ≥ 0)

p0(x) = 1
(3.17)

for some pair of sequences {sk},{tk}.

For more studies in this direction we refer to the reference for example [2].

Example 3.3.1. Let si ≡ 0, ti ≡ 1. Then Tn = 1, ∀n . Therefore

detHn = det(bi+j)0<i.j≤n = 1.

by (3.16) {
pn+1(x) = xpn(x)− pn−1(x)

p0(x) = 1
(3.18)

This was discussed in the previous subsection.

As we observed, not yet proved, that a2n,0, generated by the three-term
recurrence, are Catalan-numbers for lower values of n. Now we will show
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that this is indeed true in general. We are also going to look for the Catalan
numbers in the sequence generated by the three-term recurrence to compute
the determinants of the Hankel matrix (Ci+j)0≤i,j≤n because we have already
obtained the determinant of the Hankel matrix for (bi+j)0≤i,j≤n. To this end
we consider a special case of parameters sk, tk. Let s0 = a, sk = s and tk = 1
for all k. Then the three-term recursion is{

an,k = an−1,k−1 + skan−1,k + an−1,k+1, n ≥ 1

a0,0 = 1, a0,k = 0
(3.19)

Consider the k-th generating function Ak(x) associated with {an,k} for
k ≥ 0. Let

Ak(x) :=
∑
n≥0

an,kx
n.

By the recurrence (3.19), for k ≥ 1,

Ak(x) =
∑
n≥0

(an−1,k−1 + san−1,k + an−1,n+1)x
n

= x
∑
n−1≥0

an−1,k−1x
n−1 + sx

∑
n−1≥0

an−1,kx
n−1 + x

∑
n−1≥0

an−1,k+1x
n−1

= x(Ak−1(x) + sAk(x) +Ak+1(x)) and

A0(x) = x(aA0(x) +A1(x)) + 1.

So we have the following equations{
Ak(x) = x(Ak−1(x) + sAk(x) +Ak+1(x)), k ≥ 1,

A0(x) = x(aA0(x) +A1(x)) + 1.
(3.20)

Now we claim that Ak(x) = f(x)kA0(x) where f(x) is the generating func-
tion satisfying

f(x) = x(1 + sf(x) + f(x)2).

By (3.20) we have

f(x)kA0(x) = x(f(x)k−1A0(x) + sf(x)kA0(x) + f(x)k+1A0(x))

That is f(x)k satisfied the recursion (3.20). So we have found solution

Ak(x) = f(x)kA0.

It remains to determine the function A0(x). From the definition for the
generating function f(x) above we can easily find that

f(x) =
1− sx−

√
1− 2sx+ (s2 − 4)x2

2x
.

34



Substituting the formula into the relation to A0(x)

A0(x) = x(aA0(x) + f(x)A0(x)) + 1

gives the

A0(x) =
1− (2a− s)x−

√
1− 2sx+ (s2 − 4)x2

2(s− a)x+ 2(a2 − as+ 1)x2
.

Hence we have proved

Proposition 3.3.1. Let bn(a, s) := bn = an,0 are the numbers generated by
the (3.20) corresponding to the sequences. The generating function for the
sequence of bn(a, s) is given by

A0(x) =
1− (2a− s)x−

√
1− 2sx+ (s2 − 4)x2

2(s− a)x+ 2(a2 − as+ 1)x2

Remark: The numbers bn(a, s) are called Catalan-like numbers, introduced
by Aigner [1]. Note that we only work on the Catalan number’s so we do a
special case.

Now it is apparent that

1. For a = s = 0, the generating function is A0(x) =
1−
√

1− 4x2

2x2
=

A0(x
2), resulting the numbers

{C0, 0, C1, 0, C2, 0, C3 . . .}.

i.e. the observation 2 is proved.

2. For a = 1, s = 2 the generating function is A0(x) =
1−
√

1− 4x

2x
=:

C(x), the generating function of the Catalan numbers so the resulting
sequence is

{C0, C1, C3, ...}.

For other special sequences depending on other choices of s and a, we refer
to [1].

Note that {Cn} (i.e. {an,0}) is generated by

an,k = an−1,k−1 + 2an−1,k + an−1,k+1, n ≥ 1, k ≥ 1

an,0 = an−1,0 + an−1,1, n ≥ 1, k = 0

a0,0 = 1, a0,k = 0

As before we write this in matrix form

AAt = (Ci+j)i,j≥0
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and truncate it at n, then it takes the form

AnA
t
n = (Ci+j)0≤i,j≤n.

Obviously
det((Ci+j)0≤i,j≤n) = 1 ∀n ≥ 0,

since the matrix An is triangular matrix with diagonal equal to 1.

Next we try to compute det((Ci+j+1)0≤i,j≤n). Let σ be the shift operator
with the matrix representation

0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...


From the above matrix form for our iteration, it is clear that

σ(A)At = (Ci+j+1)i,j≥0

Again truncate this at n we get

det((Ci+j+1)0≤i,j≤n) = det((σ(A))n).

By inspection of of the recurrence we have

σ(A) = AJ

where J =


1 1
1 2 1 0

1 2 1

0
. . .

. . .
. . .


So

det((σ(A))n) = det(Jn) = 1.

Hence we have proved, as in M.E Mays and J. Wojchiechowski or [1],

Theorem 3.3.5. The determinants of the Hankel matrix of order 0 (Ci+j)0≤i,j≤n
and of order 1 resulted from the Catalan numbers (Ci+j+1)0≤i,j≤n are 1, i.e.

det((Ci+j)0≤i,j≤n) = det((Ci+j+1)0≤i,j≤n) = 1, for all n ≥ 0.

In fact the Catalan numbers are uniquely determined by these two determi-
nants, a new way of presenting the Catalan numbers. See [1] for details.

Remark: We can further compute the determinants of higher order Hankel
matrices. For example by observation σ(A)(σ(A))t = (Ci+j+2)i,j≥0. How-
ever we leave it as it is.
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Chapter 4

RNA secondary structure

4.1. RNA folding problem

This section deals with predicting the secondary structure of the RNA by
transforming sequences of biopolymers into spatial molecular structure. We
would like to find the the optimal structure using dynamics programming
as done in [9]. To this end we would need a scoring scheme, then we need to
create a structure with minimum free energy. We achieve our goal by using
two known algorithms such as the Nussinov and Zucker.

Let us start with the Nussinov’s algorithm, the recursion formula for this
problem is first described by Nussinov in 1978 and the name of algorithm is
derived from him. the algorithm is based of calculation the best substruc-
ture for the subsequences till it finds the structure of the whole structure
of the whole sequence. The two cases to get from one step to the next in
the recursion are based eiher by newly added base to unpaired or is based
with base k. For the latter case the base pair (i, j) divided the problem into
subproblem which can be then recursively solved in the same way.

We calculate the minimum free energy that is interested in the sequence
corresponding to this particular energy a helper matrix is filled to back-
tracking over the sequence we find the codes bellow

Eij = min
{
Ei+1,j ,mink,uik=1{Ei+1,k−l + Ek+1,j + βik}

}
Where Eij : minimum energy of subsequence i, ..., j βik energy contribution
of pair (i, j) uik is 1 if the bases i and j can pair and 0 otherwise. The
recursion formula for Nussinov algorithm along with a graphical depiction
of how it works.

The helper array Kij is filled when the recursion that holds the optimal
secondary structure when k is paired with i for a sub-sequence i, j. If i is
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unpaired in the optimal structure structure Kij = 0 The Zucker algorithm
is also the most important for this section.

The Zucker algorithm is a variance of Nusssinov which includes stacking
energy to calculate the RNA structure. Some modern RNA folding algo-
rithm for RNA structure prediction. In Zucker algorithm we have four cases
to deal with: The procedure requires four matrices such as: Fij contains
the free energy of the overall optimal structure of the sub-sequence xij . The
newly added base can be unpaired or paired. For the latter case, we in-
troduce the helper Matrix Cij that contains the free energy of the optimal
substructure of xij under the constraint that i and j are paired. This struc-
ture closed by a base-pair can either be a hairpin, an interior loop or a
multi-loop as given in [13].

µij holds the free energy of the optimal structure of xij under the constraint
xij that i and j is part of a multi-loop with at least one component. µ1ij
holds the free energy of the optimal structure of xij under the constraint
that xij is part of a multi-loop and has exactly one component closed by
pair (i; k) with i < k < j. The ideal behind is to decompose a multiloop
into in two arbitrary parts of which the first is a multi-loop with at least
one component and the second a multi-loop with exactly one component
and starting with a base-pair. These two parts corresponding to µ and
µ1 can further be decomposed into substructures that we already know,
i.e. unpaired intervals, substructures closed by a base-pair,or multi-loops.
In reality, in room temperature RNA is not actually in one single state,
but rather it varies in a Thermodynamic ensemble of structure. Base pairs
can break their bonds quite easily, and although we might find an absolute
optimum in terms of free energy, it might be the case that there is another
sub-optimal structure which is very different from what are predicted and
has an important role in the cell also is stated by [13].

To fix the problem we can calculate the base pair probabilities to get the
ensemble of structures, and t en we would have a much better idea of what
the RNA structure probably looks like. In order to do this, we utilize the
Boltzman factor:

prob(S) =
exp(−4G(S)/RT )

Z

Which gives us the probability of a given structure, in a thermodynamic
system. We need to normalize the temperature using the partition function
Z,which is the weighted sum of all structures, based on their Boltzman factor:

Z =
∑
S

exp(−4G(S)/RT )

We can also represent this ensemble graphically, using a dot plot to visualize
the base pair probabilities. To calculate the specific probability for a base
pair (i; j) , we need to calculate the partition function, which is given by
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the following formula :

pij =
ẐijZi+1,j−1 exp(−βij)/RT

Z
.

To calculate Z we use the recursion similar to the Nussinovs Algorithm The
inner partition function is calculated using the formula:

Zij = Zi+1,j +
∑

i+1<k<j

Zi+1,k−1Zk+1,j exp(−βij)/RT

With each of the additions corresponding to a different split as founded in
[9]

4.2. The evolution of RNA

Let us consider two methods such as dynamic programming and probabilis-
tic method, we start by probabilistic as seen in [21] there are different ways
that can be used in evolution of RNA we have: It is very interesting to know
about its evolution structure, since it unveils valuable data, and can also give
us hints to treat our structure predictions. When we look into functionally
important RNA over time, although their nucleotides have changed at some
parts, but the structure is not changed. In RNA there are a lot of com-
pensatory or consistent mutations, in a consistent mutation the structure
does not change. There are the mutation between U and A which makes
the pairs AU and the mutation of C and G then makes the CG pairs. To
do this we may calculate the probability and compare it with of two base
pair structures agreeing randomly to be paired the information content is
calculated using the formula bellow

Mij =
∑
xy

fij(XY ) log
XY

fi(X)fj(Y )

if we normalize these probabilities, we can plot it in a 3D model and track
the evolutionary signatures.

4.3. Probabilistic folding

It is very hard problem of finding RNA coding sequence inside the genome
there are the way to do it. One way is to combine the thermodynamic
stability information with normalized RNA fold score and then we can do
a Support Vector Machine classification and compare the thermodynamic
stability of the sequence to some random sequence of the same GC content
and the same length by combining it with the evolutionary measure and see
if the RNA is more conserved or not. This gives us an idea if the genomic
sequence is actually coding an RNA [9].
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4.4. Thermodynamics folding

The thermodynamic approach is a good way of folding the RNAs since it use
the algorithm solution like Zuker’s mfoldprogram and implement an efficient
recursive calculation of the minimum free energy configuration under certain
assumptions, these energy calculation is assumed to decompose into the sum
over independent loop energies [16]

4.5. Representation of Secondary Structure

From Waterman’s definition [22]we have seen that the are many ways of
representing secondary structure as shown in 2.3.1 section. There are the
rules that governing sequence of matching brackets and dots. A secondary
structures implies that each branch of the corresponding Υ tree representa-
tion has at least one terminal half-vertex, or equivalently,each matching pair
of brackets contains at least one dot. The number of unpaired positions is
at least 3, implying at least 3 dots within each pair of matching brackets .

From the combinatorial point of view it makes perfect sense to consider
the general problem with a minimum number m ≥ 0 of unpaired vertices in
each hairpin loop. In fact, for m = 0 one recovers three well known Motzkin
families [20].

For Some application it is useful to work with simplified representations
by comparing RNA secondary structures using tree comparison A tree T is
obtained by denoting a stack by single vertex. In terms of the representa-
tion Υ this means that each vertex of degree 2 not carrying a half-vertex is
merged with its son and then the half-vertices are removed thus The num-
ber of vertices in T is then just the number of stacks in S, the number of
components of S coincides with the number of sons of the root in T . An
alternative ”coarse grained” representation of a secondary structures is the
homeomorphically irreducible tree H corresponding to Υ which is obtained
by removing all vertices of degree 2 and all half-vertices. Again the number
of components of S equals the number of sons of the root. Waterman’s
degree ω coincides with the height of H [22].

4.5.1. Secondary Structures of a Given Order

The Secondary Structures of a Given Order is founded in [8], as follows
let start by setting Dn(c, ω) as the number of secondary structures with c
components and order ω. Furthermore letD∗n(ω) be the number of structures
which yield a structure of order ω when enclosed by an additional base pair.
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The recursion holds as following

Dn+1(c, ω) = Dn(c, ω) +
n−1∑
k=m

{D∗n(ω)
ω−1∑
l=0

Dn−k−1(c− 1, l)+

Dn−k−1(c− 1, ω)

ω−1∑
l=0

D∗k(l) +D∗k(ω)Dn−k−1(c− 1, ω)}

Where
Dn(0, 0) = 1, Dn(0, d) = Dn(c, 0)

for n ≤ m + 1 a structure with a base pair 1 ≡ k + 2 has order d and c
components if and only if either the bracketed part has order ω and the tail
has a order at most ω and c − 1 components or the bracketed part has a
degree smaller than ω and the tail has c − 1 components and the order ω.
Where D∗n(ω) is obtained by

D∗n(0) = 0

D∗n(0) = 1 +Dn(1, 1)

D∗n(ω) = Dn(1, ω) +
∞∑
l=2

Dk(l, ω − 1), ω ≥ 2

While for n ≤ m we have D∗n(ω) = 0 There is no structure of order 0 with a
bracket in it; order one is obtained by either bracketing the open structure
or by bracketing a structure with a single component and order 1. If the
bracketed part has only a single components its order is preserved by adding
a terminal bracket. If it consists of more than one components, the addition
of the multiloop increases the order by one.

Theorem 4.5.1. For any finite order ω there is a positive constant ε such
that

lim
n→∞

D̃n(ω − 1)eεn

D̃n(ω)
= 0 (4.1)

Proof. To prove this we need to use the generating function

Mω=
∞∑
n=0

D̃n(ω)xn Mω∗=
∞∑
n=0

Dṅ(ω)x
n M

′
ω=

∞∑
n=0

Dn(1, ω)xn (4.2)

where D̃n(ω) be the number of structures with the given order, by using the
recursion formula bellow

D̃n+1(ω) = D̃n +

n−1∑
k=m

{
D∗k

ω−1∑
l=0

D̃n−k−1(l) + D̃n−k−1(d)

ω∑
l=0

D∗k(l)
}
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D∗k(ω) = D̃k(ω − 1) +Dk(1, ω)−Dk(1, ω − 1) n ≥ m+ 2

Dn+1(1, ω) = Dn(1, ω) +
n−1∑
k=m

D∗k(ω)D̃n(0) = 1

D̃n(ω) = 0 for ω ≥ 1 n ≤ m+ 1

yields the following system of coupled functional equations for the above
generating functions

Mω= x Mω +x2 M∗ω

ω−1∑
i=0

Mi +x2 Mω

ω∑
i=0

M∗i

M∗ω=Mω−1 + M
′
ω − M

′
ω−1 ω ≥ 2

M
′
ω= x M

′
ω +x2 M∗ω

1

1− x

For ω = 0 we have M0=
1

1−x and for ω = 1 we find the explicitly

M∗1 (x)
1− x
1− 2x

xm

M1 (x) =
xm+2

1− x
1

1− 2x− xm+2
(4.3)

By eliminating M
′
ω we find explicitly for ω ≥ 2

M∗ω=
(1− x)2

1− 2x
Mω−1 −

x2

1− 2x
M∗ω−1

Mω=
x2 M∗ω

∑ω−1
i=0 Mi

1− x− x2
∑ω

i=0 M
∗
i

(4.4)

we find the result of Mω (x) by using Mathematica [8].

We need to know the total number like unpaired , the paired, vertices, stacks
and the loops bases of RNA secondary structure so that we can predict the
folding that can exist as seen [8]. Let us denotes Un the total unpaired
obtained by summing over k an unpaired base to each structure on n digits
plus them the Sn.

Un+1 = (Un + Sn) +
n−1∑
k=m

[SkUn−k−1 + Sn−k−1Uk], n ≥ m+ 1 (4.5)

Un = n, n ≤ m+ 1

Let us denote the total number of base pairs by Pn we have the following
recursion

Pn+1 = Pn +

n−1∑
k=m

SkPn−k−1 + Sn−k−1(Pk + Sk), (4.6)
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n ≤ m+ 1, Pn = 0

The same way the number of vertices In is given by

In+1 = In +
n−1∑
k=m

SkIn−k−1 + Sn−k−1 In = 0 n ≤ m+ 1 (4.7)

The number of stack in the set of structure on Nn+1 digits of all stacks and
add all the number of structure with new introduced base pair of all stacks
we have

Nn+1 = Nn +

n−1∑
k=m

{
SkNn−k−1 + Sn−k−1(Nk + Sk)

}
−

n−1∑
k=m+2

SK−2Sn−k−1,

(4.8)

n ≥ m+ 1, Nn = 0, n ≤ m+ 1

Let us consider Qn(b) denote the number of loop with b u unpaired digits
in the set of all secondary structures we have

Qn+1(b) = Qn(b) +

n−1∑
k=m

{
Qn−k−1(b)Sk + Sn−k−1[Qk(b) + Ek(b)]

}
, (4.9)

n ≤ m+ 1, b > 0 Qn(b) = 0, n ≥ m+ 1

where b unpaired vertices remains unchanged and additionally each with
exactly b external vertices within the new base pair gives rise to an addi-
tional loop with b unpaired digit [8]. The RNA secondary structure with
certain given in this section help to deduce the relationship between them
and Catalan number.

4.6. Catalan number and RNA Secondary structure

The Catalan number and the RNA secondary structure have quite relation-
ship. An RNA molecule is the sequence of four possible letters A,C,G,U
connected by backbone and is called RNA primary structure this can be
pairing by two nucleotide in the following way, according to Watson-Crick
A pairs with U and G pairs with C but in the Wobble base pairing G forms
pair with U [14]. Any sequence of RNA can be represented as Catalan
numbers in terms of parenthesis and dots as shown in the example bellow

Example 4.6.1. The sequence GAGAGCCUUUGGACCUCA can be rep-
resented in parenthesis and dots like (((..((...))..))).

This can be mathematically denoted as: An RNA sequence of length n is
assumed as sequence of n points each point i is connected to i − 1 and to

43



i + 1 such that 1 < i < n. The notation i.j stands for the nucleotide i is
pairing with j and i < j Therefore an RNA structure is a set S of base pairs
i.j with 1 < i < j < n such that i1.j1, i2.j2 ∈ S : i1 = i2 ⇔ j1 = j2 while
S is called secondary structure if for all i1.j1, i2.j2 ∈ S they are nested or
disjoint [14].

The relationship between Catalan numbers and RNA secondary structure
can be given as: Let us consider counting non crossing matching of base pair
edges. Let Cn denote the number of non crossing perfect matching in the
complete graph L2n. We know that C0 = C1 = 1 for the general case n we
say that the nodes L2n are labeled with the positive integer from 1 to 2n.
there are 2L− 2 nodes on one side and 2n− 2L nodes on other side, we can
form different ways Ck−1.Cn−k a perfect matching remaining codes of L2n.
If we let m varies over all possible n− 1 choices of even numbers between 1
and 2n then we have the recurrence relation Cn =

∑n
k=1Ck−1Cn−k. Thus

the resulting number Cn counting non crossing perfect matching in L2n are
called The Catalan number found in rosalind.info/problems/cat/

Based on the theorems 4.6.1 and 4.6.2 we show relationship between the
recursion formula and Catalan number as given in [8]

Theorem 4.6.1. Let

y(x) =
∞∑
n=0

ynx
n (4.10)

be of the form

y(x) = β(x) +
∑
k

gk(x)
(

1− x

α

)ωk

where β, gk are analytic on a circle larger than the circle of convergence of
y(x), ωk real but not a non-negative integer. Suppose y has only a single
singularity at x = α Denote by ω the smallest exponent ω and by g(x) the
corresponding analytic factor. Then

yn ∼
g(α)

Γ(−ω)
n−1−ω

( 1

α

)n
(4.11)

and the theorem

Theorem 4.6.2. The total number of structures with b base pairs is

Hn(b) ∼
1

(b+ 1)!b!
n2n (4.12)
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also the recursion formula

hb(x) = ηb(x)
1

1− x

( x

1− x

)2b
(4.13)

where

ηb(x) =

b∑
k=1

ηk(x)ηp−k−1(x) + xmηb−1 (4.14)

The theorem 4.6.1 assures that

Hn(b) ∼
ηb(1)

Γ(2b+ 1)
n2b

since η0(1) = 0 the recursion 4.14 becomes the well known recursion for the
Catalan number with

ηb(1) = Cb =
1

b+ 1

(
2b

b

)
Also we can see the relationship between Catalan number and RNA sec-
ondary structure. Let us consider the generating function of the form

νb(x) = µb(x)
1

(x+ 1)b
1

(x− 1)3b+1

ζb = ξb(x)
1

(x+ 1)b
1

(x− 1)3b+1
(4.15)

where µb(x) and ξb(x) are polynomials, the theorem 4.6.1 thus yields

Nn(b) ∼
1

2b
µb(1)

Γ(3b+ 1)
n3b (4.16)

where µb(1) and ξb(1) fulfill the recursions

ξb−1(1) = µb−1(1) µn(1) =
b∑
l=1

ξl(1)µb−1(1) =
b−1∑
l=0

µl(1)µb−l−1(1)

(4.17)

so the coefficient µb(1) coincide with Catalan numbers. The following theo-
rem also gives that relationship.

Theorem 4.6.3. Let Cn be the number of secondary structures for n points.
Then C1 = C2 = 1, and for n > 2, Cn satisfies

Cn = Cn−1 +
n−1∑
k=1

CkCn−k−1 (4.18)

Where C0 = 1
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This theorem coincides exactly with the first property of Catalan numbers
seen in section 1.2, [14] where the authors claim the following four identities
are true for the Catalan number Ck for k = 1, 2, ... and give the crucial
relationship between Catalan numbers and RNA secondary structure seen
in [14].

1)

t−1∑
k=3

(
k − 1

k − 2

)
Ct−kCk−2 =

(
t− 3

1

)
Ct−2

2)

t−1∑
k=3

(
k − 1

k − 2

)
Ct−k

k−1∑
l=3

(
l − 1

1− 2

)
Ck−lCl−2

−
t−1∑
k=3

(
k − 1

k − 3

) t∑
i=k+2

Ct+l−iCi−l−kCk−2 =

(
t− 3

2

)
Ct−2;

3)

t−1∑
k=3

(
k − 1

k − 2

)(
k − 3

3

)
Ct−2Ct−kCk−2

−
t−1∑
k=3

(
k − 1

k − 2

)(
k − 3

1

) t∑
i=k+2

Ct+1−i1Ci1−1−kCk−2

+

t−1∑
k=3

(
k − 1

k − 4

) t∑
i2=k+3

i2∑
i1=k+3

Ct+1−i2Ci2+1−i1Ci1−k−2Ck−2 =

(
t− 3

3

)
Ct−2;

4)

t−1∑
k=3

(
k − 1

k − 2

)(
k − 3

3

)
Ct−kCk−2

−
t−1∑
k=3

(
k − 1

k − 3

)(
k − 3

2

) t∑
i=k+2

Ct+1−i1Ci1−1−kCk−2

+

t−1∑
k=3

(
k − 1

k − 4

)(
k − 3

1

) t∑
i2=k+3

i2∑
i1=k+3

Ct+1−i2Ci2+1−i1Ci1−k−2Ck−2

−
t−1∑
k=3

(
k − 1

k − 5

) t∑
i3=k+4

i3∑
i2=k+4

i2∑
i1=k+4

Ct+1−i3Ci3+1−i2Ci2+1−i1Ci1−k−2Ck−2

=

(
t− 3

4

)
Ct−2;
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This can generalised as

Ak(t, j1, j2, . . . , jk−1) =

t−1∑
j1=3

(
j1 − 1

j1 − 2

)
Ct−j1Ak−1(t, j1, j2, . . . , jk−2)

−
t−1∑
j1=3

(
j1 − 1

j1 − 3

) t∑
i1=j1+2

Ct+1−i1Ci1−1−j1Ak−2(t, j1, j2, . . . , jk−3)

+

t−1∑
j1=3

(
j1 − 1

j1 − 4

) t∑
i2=j1+3

i2∑
i1=j1+3

Ct+1−i2Ci2+1−i1Ci1−k−2Ak−3(t, j1, j2, . . . , jk−4)

+ . . .+ (−1)k
t−1∑
j1=3

(
j1 − 1

j1 − k

) t∑
ik−2=j1+k−1

ik−2∑
ik−3=j1+k−1

. . .

i2∑
i1=j1+(k−1)

Ct+1−ik−2
Cik−1+1−ik−3

Ci2+1−i1Ci1−k−2Ck−2 . . . Ci2+1−i1Ci1−j1−2A1(j1)

+ (−1)k+1
t−1∑
j1=3

(
j1 − 1

j1 − (k + 1)

) t∑
ik−2=j1+k

ik−2∑
ik−3=j1+k

. . .

i2∑
i1=j1+k

Ct+1−ik−2
Ctk−1+1−ik−3

. . . Ci2+1−i1Ci1−j1−2Cj1−2

=

(
t− 3

k

)
Ct−2;

Note that the proof of first relation is given in 3.1.5.

By using these new properties of Catalan number will help us to achieve the
goals of deciphering RNA and represent them in 3D.
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Chapter 5

Conclusions

We have studied some nice properties of the Catalan numbers in this the-
sis. It covers material from enumerative combinatorics, function theory and
applications in RNA second structure. In particular, we found that gener-
ating functions are powerful in proving some difficulty-looking sums, which
appear in counting subjects. Many parts of this thesis do not involve com-
binatoric arguments. We tried to use classical function theory and linear
algebra to prove and illustrate theorems. We gave proofs to some identities
whose proofs could not be found in the literature to our knowledge. We
recommend the researchers to continue the proof of the rest of the identi-
ties mentioned in the end of the preceding chapter because we do not prove
all due to the limitation of time and volume. We recommend also the re-
searchers to give a proper code to do a concrete problem in protein folding
so that they reply to the problem of theoretical biophysics face for .
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Appendix: Matlab Code for representation of secondary structure

phe_seq = ’GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCU

GUGUUCGAUCCACAGAAUUCGCACCA’;

phe_str = rnafold(phe_seq)

% === Plot RNA secondary structure as tree

rnaplot(phe_str, ’seq’, phe_seq, ’format’, ’tree’);

% === Plot the secondary structure using the dot diagram representation

rnaplot(phe_str, ’seq’, phe_seq, ’format’, ’dot’);

text(500, 200, ’T-stem’);

text(100, 600, ’Anticodon stem’);

text(550, 650, ’D-stem stem’);

text(700, 400, ’Acceptor stem’);

aag_pos = 34:36;

cca_pos = 74:76;

rnaplot(phe_str, ’sequence’, phe_seq, ’format’, ’diagram’, ...

’selection’, [aag_pos, cca_pos]);

rnaplot(phe_str, ’sequence’, phe_seq, ’format’, ’graph’);

[ha, H] = rnaplot(phe_str, ’sequence’, phe_seq, ’format’, ’circle’, ...

’colorby’, ’state’);

H.Unpaired.Visible = ’off’;

legend off;

[ha, H] = rnaplot(phe_str, ’sequence’, phe_seq, ’format’, ’circle’,

’colorby’, ’residue’);
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